ON RANDOM INTERPOLATION

P. ERDOS
(received 23 March 1959)

In a recent paper Salem and Zygmund [1] proved the following result: Put

$$
a_{\nu}=\alpha_{p}^{(n)}=\frac{2 \pi v}{2 n+1} \quad(v=0,1, \ldots, 2 n)
$$

and denote the $\varphi_{y}(t)$ the y-th Rademacher function. Denote by $L_{n}(t, \theta)$ the unique trigonometric polynomial (in θ) of degree not exceeding n for which

$$
L_{n}\left(t, \alpha_{\nu}\right)=\varphi_{\nu}(t) \quad(\nu=0,1, \ldots, 2 n) .
$$

Denote $M_{n}(t)=\max _{0 \unlhd \theta<2 \pi}\left|L_{n}(t, \theta)\right|$. Then for almost all t

$$
\varlimsup_{n=\infty} \frac{M_{\mathrm{n}}(t)}{(\log n)^{\frac{1}{4}}} \leqq 2 .
$$

I am going to prove the following sharper
Theorem 1. For almost all t

$$
\varliminf_{n=\infty} \frac{M_{n}(t)}{\log \log n}=\varlimsup_{n=\infty} \frac{M_{n}(t)}{\log \log n}=\frac{2}{\pi} .
$$

Instead of Theorem 1 we shall prove the following stronger (throughout this paper c_{1}, c_{2}, \ldots will denote suitable positive constants)
Theorem 2. To every c_{1} there exists a constant $c_{2}=c_{2}\left(c_{1}\right)$ so that for $n>n_{0}\left(c_{1}, c_{2}\right)$ the measure of the set in t for which

$$
\frac{2}{\pi} \log \log n-c_{2}<M_{n}(t)<\frac{2}{\pi} \log \log n+c_{2}
$$

is not satisfied, is less than $1 / n^{c_{1}}$.
Theorem 1 follows immediately from Theorem 2 by the Borel-Cantelli Lemma. Thus we only have to prove Theorem 2.

First we need two simple combinatorial lemmas. Let m be a sufficiently large integer, we define for $1 \leqq i<m$ (for the purpose of these lemmas)

$$
\varphi_{m+i}(t)=\varphi_{i}(t), \varphi_{-i}(t)=\varphi_{m-i}(t) .
$$

Lemma 1. Let $m>m_{0}\left(c_{1}\right)$. Then neglecting a set in t of measure less than $1 / 2 m^{c_{1}}$ there exists for every t a $k, 0 \leqq k \leqq m$ satisfying

$$
\begin{equation*}
\varphi_{k+l}(t)=\varphi_{k-1-l}(t)=(-1)^{t} \text { for all } 0 \leqq l<\frac{1}{2} \log m \tag{1}
\end{equation*}
$$

The measure of the set in t for which $k=[r \log m]$ satisfies (1) is clearly equal to

$$
2^{-2\left[\left(\frac{\log m}{2}\right]+1\right)}<2^{-\log n}
$$

But there are clearly $[m / \log m]+1$ possible choices of r (i.e. r can take all the values $0 \leqq r<m / \log m$). Thus by an obvious independence argument the measure of the set in t for which none of the possible choices of r satisfies (1) is less than

$$
\left(1-2^{-\log m}\right)^{m / \log m}<\frac{1}{2} m^{-c_{1}}
$$

for every c_{1} if $m>m_{0}\left(c_{1}\right)$, which proves Lemma 1 .
Lemma 2. To every c_{1} there exists a c_{3} so that for $m>m_{0}\left(c_{1}, c_{3}\right)$ neglecting a set (in t) of measure less than $\frac{1}{2} m-c_{1}$ we have for every $t, r,(0 \leqq r \leqq m)$ and $v,(-m / 2<v<m / 2)$

$$
\begin{equation*}
s_{p, k}(t)=\left|\sum_{i=0}^{\nu}(-1)^{i} \varphi_{k+i} \quad(t)\right|<c_{3} v^{\frac{1}{2}}(\log m)^{\frac{1}{2}} . \tag{2}
\end{equation*}
$$

It is well known that the measure of the set in t for which

$$
\left|\sum_{i=0}^{v}(-1)^{i} \varphi_{k+i}(t)\right| \geqq c_{3} v^{\frac{1}{2}}(\log m)^{\frac{1}{2}}
$$

holds is less than

$$
\begin{equation*}
c_{4} c^{-1 c_{3}{ }^{2} \log m}<\frac{1}{2} m^{-\varepsilon_{1}-2} \tag{3}
\end{equation*}
$$

for sufficiently large c_{3}. In (3) there are fewer than m^{2} possible choices for r and v, thus Lemma 2 clearly follows from (3).

Now we are ready to prove our Theorem. (Define for $0<v \leqq n$ $\alpha_{-p}=\alpha_{2 n-p}, \alpha_{2 n+v}=\alpha_{\nu}$). It is well known that

$$
\begin{equation*}
L_{n}(t, \theta)=\frac{1}{2 n+1} \sum_{v=0}^{2 n} \varphi_{v}(t) D_{n}\left(\theta-\alpha_{p}\right) \tag{4}
\end{equation*}
$$

where $D_{n}(\theta)=\sin \left(n+\frac{1}{2}\right) \theta / \sin \frac{1}{2} \theta$ is the Dirichlet kernel. Let $\alpha_{k} \leqq \theta<\alpha_{k+1}$. We have

$$
\begin{equation*}
L_{n}(t, \theta)=\frac{1}{2 n+1}\left(\sum_{p=0}^{n} \varphi_{v}(t) D_{n}\left(\theta-\alpha_{k+p}\right)+\sum_{p=1}^{n} \varphi_{p}(t) D_{n}\left(\theta-\alpha_{k-p}\right)\right)=\Sigma_{1}+\Sigma_{2} \tag{5}
\end{equation*}
$$

Now we consider only the t which satisfy Lemmas 1 and 2 , (put $m=2 n$), by our Lemmas we thus neglect a set in t of measure less than $n^{-e_{1}}$. Put

$$
\begin{equation*}
\Sigma_{1}=\Sigma_{1}^{\prime}+\Sigma_{1}^{\prime \prime} \tag{6}
\end{equation*}
$$

where in $\Sigma_{1}^{\prime} 0 \leqq v \leqq[\log n]$ and in $\Sigma_{1}^{\prime \prime}[\log n] \leqq v \leqq n$. We evidently have by $\left|D_{n}(\theta)\right| \leqq 2 n+1$ and a simple computation

$$
\begin{align*}
\Sigma_{1}^{\prime} & \leqq \frac{1}{2 n+1} \sum_{0 \leq v \leq \log n]}\left|D_{n}\left(\theta-\alpha_{k+v}\right)\right| \tag{7}\\
& \leqq 1+\frac{1}{2 n+1} \sum_{1 \leq r \leq \operatorname{los} \pi} \frac{1}{\sin \frac{r \pi}{2 n+1}}<\frac{1}{\pi} \log \log n+c_{*} .
\end{align*}
$$

Further by partial summation and Lemma 2

$$
\begin{aligned}
\Sigma_{1}^{\prime \prime}= & \frac{1}{2 n+1} \sum_{n \log n]^{2}<v \leq n}\left(s_{v, k}(t)-s_{n-1, k}(t)\right)(-1)^{\nu} D_{n}\left(\theta-\alpha_{k+\nu}\right) \\
= & \frac{1}{2 n+1} \sum_{p \sim(\log n)+1}^{n-1} s_{v, k}(t)\left((-1)^{\nu} D_{n}\left(\theta-\alpha_{k+v}\right)-(-1)^{v+1} D_{n}\left(\theta-\alpha_{k+v+1}\right)\right) \\
- & \frac{1}{2 n+1} s_{(\log n), k}(t)(-1)^{[\log n)^{2}+1} D_{n}\left(\theta-\alpha_{2+(\log n)+1}\right) \\
& +\frac{1}{2 n+1} s_{n, k}(t)(-1)^{n} D_{n}\left(\theta-\alpha_{k+n}\right) \\
\leqq & \frac{1}{2 n+1} c_{5}(\log n)^{4} \sum_{v>\log n} v^{-1}+c_{6}<c_{7}
\end{aligned}
$$

since a simple computation shows that for $\alpha_{k} \leqq \theta<\alpha_{k+1}$

$$
\left|D_{n}\left(\theta-\alpha_{k+\nu}\right)\right|<c_{8} \frac{n}{v}
$$

and

$$
\left|D_{n}\left(\theta-\alpha_{k+\nu}\right)+D_{n}\left(\theta-\alpha_{k+v+1}\right)\right|<c_{s} \frac{n}{v^{2}} .
$$

(6), (7) and (8) implies

$$
\begin{equation*}
\Sigma_{1}<\frac{\log \log n}{\pi}+c_{4}+c_{7} . \tag{9}
\end{equation*}
$$

Similarly we can show

$$
\begin{equation*}
\Sigma_{2}<\frac{\log \log n}{\pi}+c_{9} \tag{10}
\end{equation*}
$$

(9), (10) and (5) implies that for our t (i.e. for all t neglecting a set in t of measure $<n^{-\varepsilon_{1}}$).

$$
\begin{equation*}
\left|L_{n}(t, \theta)\right|<\frac{2}{\pi} \log \log n+c_{10} . \tag{11}
\end{equation*}
$$

Let now k satisfy Lemma 1 and put $\theta_{0}=\pi(2 k+1) /(2 n+1)$. Then we have by (4) and the definition of k

$$
\begin{align*}
& L_{n}\left(t, \theta_{0}\right)=\frac{1}{2 n+1} \sum_{p=0}^{n} \varphi_{p}(t) D_{n}\left(\theta_{0}-\alpha_{p}\right) \\
& \quad=\frac{1}{2 n+1} \sum_{|p-k|<\frac{1}{2} \log n}\left|D_{n}\left(\theta_{0}-\alpha_{p}\right)\right|+\frac{1}{2 n+1} \sum_{|p-k| \geq \frac{1}{2} \log n} \varphi_{v}(t) D_{n}\left(\theta_{0}-\alpha_{p}\right) \tag{12}\\
& \quad=\Sigma_{1}+\Sigma_{3}
\end{align*}
$$

Further clearly

$$
\begin{align*}
\Sigma_{1} & =\frac{1}{2 n+1} \sum_{|r|<\frac{1}{\log n}} \frac{2}{\sin \frac{(2 r+1) \pi}{2(2 n+1)}} \tag{13}\\
& =\frac{1}{2 n+1} \sum_{|r|<\frac{1}{\log n} \mathrm{E}} \frac{2}{\frac{2 r+1) \pi}{2(2 n+1)}+0\left(\frac{r^{3}}{n^{3}}\right)}>\frac{2}{\pi} \log \log n-c_{11} .
\end{align*}
$$

As in (8) we can show that

$$
\begin{equation*}
\left|\Sigma_{2}\right|<c_{12} . \tag{14}
\end{equation*}
$$

(12), (13) and (14) implies

$$
\begin{equation*}
\left|L_{n}\left(t, \theta_{0}\right)\right|>\frac{2}{\pi} \log \log n-c_{11}-c_{12} \tag{15}
\end{equation*}
$$

(11) and (15) complete the proof of Theorem 2.

By more complicated arguments we could prove the following sharper,
Theorem 3. There exists an absolute constant C so that neglecting a set in t whose measure tends to 0 as n tends to infinity we have

$$
M_{n}(\theta)=\frac{2}{\pi} \log \log n+c+o(1) .
$$

(The exceptional set whose measure goes to 0 depends on n).
Using the methods of another paper by Salem and Zygmund [2] we can prove the following

Theorem 4. There exists a distribution function $\langle\psi(\alpha)$ (i.e. $\psi(\alpha),-\infty<\alpha<\infty$ is non decreasing, $\psi(-\infty)=0, \psi(+\infty)=1$), so that, neglecting a set in t whose measure tends to 0 as n tends to infinity, we have

$$
m\left(\theta: L_{n}(t, \theta)<\alpha\right) \rightarrow \psi(\alpha) .
$$

In other words: If we neglect a set in t of measure tending to 0 (the exceptional set may depend on n) we have for a t not belonging to this exceptional set the following situation: The measure of the set in θ for which $L_{n}(t, \theta)<\alpha$ holds, equals $\psi(\alpha)+o(1)$.

We do not discuss in this paper the proofs of Theorem 3 and 4.

References

[1] Salem and Zygmund, Third Berkeley Symposium for probability and statistics, Vol. 2, 243-246.
[2] Salem and Zygmund, Acta Math. 91 (1954).
Technion, Haifa.

