ACADEMIE SERBE DES SCIENCES

P. ERDOS and G. SZEKERES

ON THE PRODUCT $\prod_{k=1}^{n}\left(1-z^{a_{k}}\right)$

Extrait des

pUBLICATIONS DE L'TNSTITUT MATHEMATIQUE T. XIII

BEOGRAD

1959

ON THE PRODUCT $\prod_{k=1}^{n}\left(1-z^{a_{k}}\right)$.

P. ERDŐS and G. SZEKERES (Budapest)

Consider the product $\prod_{k=1}^{n}\left(1-z^{a_{k}}\right)$ where $a_{1} \leqslant a_{2} \leqslant \cdots \leqslant a_{n}$ are positive integers. Put

$$
\max _{|z|=1} \prod_{i=1}^{n}\left(1-z^{a_{i}}\right) \mid=M\left(a_{1}, a_{2}, \ldots, a_{n}\right), \quad f(n)=\min _{a_{1}, a_{2}, \ldots, a_{n}} M\left(a_{1}, a_{2}, \ldots, a_{n}\right) .
$$

Clearly $M\left(a_{1}, \ldots, a_{n}\right) \leqslant 2^{n}$ (equality if and only if $\left(a_{1}, a_{2}, \ldots, a_{n}\right)>1$ or $\left.a_{1}=a_{2}=\cdots=a_{n}=1\right)$. The determination of $f(n)$ seems to be a very difficult question, and even a good estimation of $f(n)$ does not seem easy. In the present note we are going to prove that $f(n)^{1 / n} \rightarrow 1$ as $n \rightarrow \infty$, and it seems possible that a refinement of our method would give $\left(\exp z=e^{z}\right)$

$$
f(n)<\exp \left(n^{1-c}\right)
$$

for some $c<1$. The lower bound $f(n) \geqslant \sqrt{2 n}$ is nearly trivial, and we are unable at present to do any better.

We want to remark that it is easy to show that

$$
\lim _{n=\infty}[M(1,2, \ldots, n)]^{1 / n}
$$

exists and is between 1 and 2 .
Put $z=e^{2 \pi i \alpha},\langle\alpha\rangle=\left|1-e^{2 \pi i \alpha}\right|$. Several further questions can be asked. It is not difficult to prove that for almost all α (almost all means except a set of Lebesgue measure 0)

$$
\begin{equation*}
\lim \prod_{k=1}^{n}<k \alpha>=0 . \tag{1}
\end{equation*}
$$

We only outline the proof of (1). A special case of a well known theorem of Khintchine states that for almost all α there is an infinite sequence of integers p_{n} and q_{n} satisfying

$$
\begin{equation*}
\left|\alpha-\frac{p_{n}}{q_{n}^{\prime}}\right|=o\left(\frac{1}{q_{n}^{2} \log q_{n}}\right) . \tag{2}
\end{equation*}
$$

A simple computation then shows that

$$
\lim \prod_{k=1}^{q_{n}}<k \alpha>=0
$$

Perhaps (1) holds for all α.
It is easy to see that

$$
\begin{equation*}
\overline{\lim } \prod_{k=1}^{n}<k \alpha>=\infty . \tag{3}
\end{equation*}
$$

holds for almost all α. (Clearly (3) can not hold for all α, e.g. it fails if α is rational). To see this we observe that a simple computation shows that if the q_{n} are the integers satisfying (2) then

$$
\lim \prod_{k=1}^{q_{n}-1}<k \alpha>=\infty
$$

Perhaps one could determine how fast (1) tends to 0 and (3) tends to ∞ for almost all α.

Is it true that for all α

$$
\begin{equation*}
\overline{\lim } \max _{|z|=1} \prod_{k=1}^{n}\left|z-e^{2 \pi i k \alpha}\right|=\infty \text { ? } \tag{4}
\end{equation*}
$$

An old conjecture of P. Erdős which would imply (4) states as follows: Let z_{1}, z_{2}, \ldots be any infinite sequence satisfying $\left|z_{i}\right|=1$.
Then

$$
\overline{\lim } \max _{|z|=1} \prod_{i=1}^{n}\left|z-z_{i}\right|=\infty
$$

On the other hand a simple computation shows that for the q_{n} satisfying (2)

$$
\begin{equation*}
\lim \max _{|z|=1} \prod_{k=1}^{q_{n}}\left|z-e^{2 \pi i k \alpha}\right|=2, \tag{5}
\end{equation*}
$$

and perhaps

$$
\lim \max _{|z|=1} \prod_{k=1}^{n}\left|z-e^{2 \pi i k \alpha}\right|<\infty
$$

for all irrational α (it certainly is ∞ for rational α).

$$
\text { On the product } \prod_{k=1}^{n}\left(1-z^{a_{k}}\right)
$$

Finally we pose the following problem: Let $a_{1}<a_{2}<\ldots$ be any infinite sequence of integers. Is it true that for almost all α

$$
\overline{\lim } \prod_{k=1}^{n}<a_{k} \alpha>=\infty, \underline{\lim } \prod_{k=1}^{n}<a_{k} \alpha>=0 ?
$$

Throughout this paper $0 \leqslant \alpha<1$ and c_{1}, c_{2}, \ldots will denote positive absolute constants, $|\theta|<1$ (and the θ 's appearing are not necessarily the same).

LEMMA 1. Let

$$
\begin{equation*}
\alpha=\frac{p}{q}+\frac{\theta}{q^{2}}, \quad(p, q)=1 . \tag{6}
\end{equation*}
$$

Then for every 1

$$
\begin{equation*}
\prod_{t=l+1}^{l+q}<t \alpha><q^{a_{1}} \tag{7}
\end{equation*}
$$

If $\theta=0$ the product in (7) is 0 , hence (7) holds. Thus we can assume $\theta \neq 0$. Order the numbers $e^{2 \text { nita }, ~} l+1 \leqslant t \leqslant l+q$ according to the size of their arguments and denote them by $z_{1}, z_{2}, \ldots, z_{q}\left(0<\arg z_{1}<\arg z_{2}<\ldots<\right.$ $<\arg z_{q}<2 \pi$, i. e. (6) implies that the z 's are all different). From (6) we have

$$
\begin{equation*}
\arg z_{k}=2 \pi\left(\frac{k}{q}+\frac{\theta}{q}\right) \quad(k=1,2, \ldots, q) . \tag{8}
\end{equation*}
$$

Put $y_{k}=e^{2 \pi i(k-1 / 2) / q}$. From (8) we evidently have

$$
\begin{equation*}
\left|1-z_{k}\right|<\left|1+y_{k}\right|\left(1+c_{2}\left(\frac{1}{k}+\frac{1}{q+1-k}\right)\right) . \tag{9}
\end{equation*}
$$

Now from $\prod_{k=1}^{q}\left|1-y_{k}\right|=2,\left(\prod_{k=1}^{q}\left|1-y_{k}\right|\right.$ is simply the value at $z=1$ of $\left.\left(z^{2 k}-1\right) /\left(z^{k}-1\right)=z^{k}+1\right)$ and (9) we have

$$
\prod_{k=1}^{q}\left|1-z_{k}\right|<2 \prod_{k=1}^{q}\left(1+c_{2}\left(\frac{1}{k}+\frac{1}{q+1-k}\right)\right)<q^{c_{1}}
$$

which proves the Lemma.
THEOREM 1. To every ε there exists an $n_{0}(\varepsilon)$ and $A=A(\varepsilon), B=B(\varepsilon)$ so that for every $n>n_{0}(\varepsilon)$ and every α which does not satisfy one of the
inequalities

$$
\begin{equation*}
\frac{1}{B n}<\left|\alpha-\frac{p}{q}\right| \leqslant \frac{1}{\varepsilon n} \quad \text { for some } 0 \leqslant p<q \leqslant A \tag{10}
\end{equation*}
$$

we have

$$
\begin{equation*}
\prod_{t=1}^{n}<t \alpha><(1+\varepsilon)^{n} \tag{11}
\end{equation*}
$$

Theorem 1 means that (11) is satisfied except if α can be approximated ${ }^{n}$ well" but not „too well" by rational fractions with nsmall" denominators.

Assume first that α is such that for every p and $q \leqslant A$

$$
\begin{equation*}
\left|\alpha-\frac{p}{q}\right| \geqslant \frac{1}{\mathrm{e} n} . \tag{12}
\end{equation*}
$$

By a well known theorem of Dirichlet there exists a $q \leqslant \varepsilon \boldsymbol{n}$ for which

$$
\begin{equation*}
\left|\alpha-\frac{p}{q}\right|<\frac{1}{q \varepsilon n}<\frac{\theta}{q^{2}} \quad(p, q)=1 . \tag{13}
\end{equation*}
$$

By (12) $q>A$. Put $u q \leqslant n<(u+1) q$. Then we have by $<t \alpha>\leqslant 2$ and our Lemma (since $2^{\varepsilon}<1+\varepsilon$ for small ε and $q^{1 / q}<A^{1 / A}$ for $q>A>e$)

$$
\begin{equation*}
\prod_{t=1}^{n}<t \alpha><2^{q} q^{c_{1} u}<2^{\varepsilon n} q^{c_{1} \frac{n}{q}}<2^{\varepsilon n} A^{c_{1} \frac{n}{A}}<(1+\varepsilon)^{n} \tag{14}
\end{equation*}
$$

if $A>A(\varepsilon)$ is large enough.
If for some $q \leqslant A,\left|\alpha-\frac{p}{q}\right| \leqslant \frac{1}{\varepsilon n}$ then by (10) we can assume that $\left|\alpha-\frac{p}{q}\right|<\frac{1}{B n}$. But then the arguments of the numbers $e^{2 \pi i(v q+\eta \alpha}, v<u$, $1 \leqslant l \leqslant q(u q \leqslant n<(u+1) q)$ differ from the corresponding q-th roots of unity by less than $1 / B$. Thus for B sufficiently large a simple computation gives

$$
\prod_{v q<1 \leqslant(v+1) q}<t \alpha><\frac{1}{2},
$$

or
(15) $\prod_{t=1}^{n}<t \alpha>=<\prod_{t=1}^{u q}<t \alpha>\prod_{u_{q}<t<n}<t \alpha><\left(\frac{1}{2}\right)^{u} 2^{q}<\left(\frac{1}{2}\right)^{n / A} 2^{A}<1$ and Theorem 1, follows from (14) and (15).

$$
\text { On the product }{\underset{k=1}{n}\left(1-z^{a_{k}}\right), ~}_{n}
$$

Next we prove
THEOREM 2.

$$
\lim f(n)^{1 / n}=1
$$

Let $m^{2} \leqslant n<(m+1)^{2}$. Consider the product

$$
g_{n}(z)=\prod_{k=1}^{m} \prod_{l=1}^{m}\left(1-z^{2^{k} l}\right)(1-z)^{n-m^{2}}
$$

In other words $a_{1}=a_{2}=\cdots=a_{n-m^{2}}=1$ and the other a 's are the integers $2^{k} l, 1 \leqslant k \leqslant m, 1 \leqslant l \leqslant m$. To prove Theorem 2 it will be sufficient to show that

$$
\begin{equation*}
\lim \max _{|z|=1}\left|g_{n}(z)\right|^{1 / n}=1 \tag{16}
\end{equation*}
$$

We evidently have for $|z| \leqslant 1$

$$
\left.|1-z|^{n-m^{2}} \leqslant 2^{2 \sqrt{n}} \quad \text { (i. e. } n-m^{2} \leqslant 2 \sqrt{\bar{n}}\right)
$$

Thus to prove (16) it will suffice to show that for every ε if $m>m_{0}(\varepsilon)$

$$
\begin{equation*}
\max _{|z|=1} \prod_{k=1}^{m} \prod_{l=1}^{m}\left|1-z^{2^{k} l}\right|=\max _{0 \leqslant \alpha \leqslant 1} \prod_{k=1}^{m} \prod_{l=1}^{m}<2^{k} l \alpha><(1+2 \mathrm{~s})^{m^{2}} \tag{17}
\end{equation*}
$$

Consider the numbers $2^{k} \alpha=\boldsymbol{\alpha}_{k}, 1 \leqslant k \leqslant m$. We claim that only $o(m)$ of them satisfy (10). Since $q \leqslant A$ it will suffice to show that only $o(m)$ of them satisfy (10) for a fixed q.

Suppose in fact that α_{k} satisfies (10) for a certain q. Then we have $\left|\alpha_{k}-\frac{p}{q}\right|=\frac{b_{k}}{n}$ where $\frac{1}{B} \leqslant\left|b_{k}\right| \leqslant \frac{1}{\varepsilon}$. Also $\left|\alpha_{k+1}-\frac{p^{\prime}}{q}\right|=\frac{2 b_{k}}{n}$ where $p^{\prime} \equiv 2 p$ $(\bmod q)$. Thus (10) can be satisfied for at most $\frac{\log B / \varepsilon}{\log 2}+1$ consecutive values of k and these are followed by at least $c_{3} \log n$ values of k for which (10) is not satisfied for this particular value of q applying this argument for all the $k \leqslant m$ which satisfy (10) we obtain that (10) is satisfied for only $o(m)$ values of k, as stated.

Now we can prove (17). Write

$$
\prod_{k=1}^{m} \prod_{l=1}^{m}<2^{k} \mid \alpha>=\prod_{k} \prod_{l=1}^{m}<2^{k} / \alpha>\prod_{k} \prod_{l=1}^{m}<2^{k} / \alpha>
$$

where in $\Pi_{1} k$ is such that $2^{k} \alpha=\alpha_{k}$ satisfies (10). Clearly $\prod_{l=1}^{m}<2^{k} / \alpha>$ $\leqslant 2^{m}$, thus by what we just proved

$$
\begin{equation*}
\prod_{k} \prod_{l=1}^{m}<2^{k} l \alpha>=2^{o\left(m^{m}\right)} \tag{18}
\end{equation*}
$$

By Theorem 1 we have for every k in Π_{2}

$$
\prod_{l=1}^{m}<2^{k} \mid \alpha><(1+\varepsilon)^{m}
$$

Thus

$$
\begin{equation*}
\Pi_{k} \prod_{l=1}^{m}<2 \cdot l \alpha><(1+\varepsilon)^{m^{2}} \tag{19}
\end{equation*}
$$

(18) and (19) implies (17), and thus Theorem 2 is proved.

THEOREM 3.

$$
f(n) \geqslant \sqrt{2 n} .
$$

To prove Theorem 3 write

$$
\prod_{i=1}^{n}\left(1-x^{a_{i}}\right)=\sum_{i} x^{b_{i}}-\sum_{i} x^{c_{1}}, \quad b_{1}<b_{2}<\ldots ; c_{1}<c_{2}<\ldots
$$

First we show that

$$
\begin{equation*}
\sum_{i} b_{i}^{p}=\sum_{i} c_{i}^{p}, \quad p=0,1, \ldots, n-1 \tag{20}
\end{equation*}
$$

To show (20) observe that 1 is an n-fold root of $\prod_{i=1}^{n}\left(1-x^{a_{i}}\right)$. Thus $f^{(p)}(1)=0$ for $p=0,1, \ldots, n-1$; or

$$
\sum_{i} b_{i}\left(b_{i}-1\right) \ldots\left(b_{i}-p+1\right)=\sum_{i} c_{i}\left(c_{i}-1\right) \ldots\left(c_{i}-p+1\right), p=0,1, \ldots, n-1
$$

which implies (20). From (20) we immediately obtain that at least $n b$'s and $n c$'s do not vanish which implies Theorem 3 by Parseval's equality.

