Remarks on number theory II
 Some problems on the σ function

by

P. Erdös (Budapest)

H. J. Kanold and I (see [1] and [4]) observed that if a and b, where $a \neq b$, are squarefree integers then $\sigma(a) / a \neq \sigma(b) / b$. The proof is very simple. Assume $\sigma(a) / a=\sigma(b) / b$; we can clearly assume $(a, b)=1$. Let p be the greatest prime factor of $a b$, say $p \mid a, p \nmid b$. But then $a \sigma(b)=b \sigma(a)$ is clearly impossible, since the left side is a multiple of p and the right side is not.

On the other hand the equation

$$
\begin{equation*}
\frac{\sigma(a)}{a}=\frac{\sigma(b)}{b} \tag{1}
\end{equation*}
$$

clearly has infinitely many solutions, e. g. if $(n, 42)=1$,

$$
\frac{\sigma(6 n)}{6 n}=\frac{\sigma(28 n)}{28 n}=2 \frac{\sigma(n)}{n} .
$$

A solution of (1) is called primitive if

$$
\frac{\sigma(a)}{a}=\frac{\sigma(b)}{b} \text { but for every } d|a, d| b
$$

$$
\begin{equation*}
\left(d, \frac{a}{b}\right)=\left(d, \frac{b}{d}\right)=1, \quad \sigma\left(\frac{a}{d}\right) \neq \sigma\left(\frac{b}{d}\right), \tag{2}
\end{equation*}
$$

in other words a and b are called primitive solutions of (1) if no prime p divides a and b to the same exponent. Clearly every solution a_{1}, b_{1} of (1) can be written in the form $a_{1}=a u_{1}, b_{1}=b u$ where a and b are primitive solutions and $(u, a b)=1$.

It is very probable that if $\left\{a_{1}, b_{1}\right\},\left\{a_{2}, b_{2}\right\}$ are primitive solutions then $a_{2}=k a_{1}, b_{2}=k b_{1}$ is impossible.

It seems very likely that (1) has infinitely many primitive solutions, but I cannot prove this. Perhaps even the equation

$$
\begin{equation*}
\frac{\sigma(a)}{a}=\frac{\sigma(b)}{b}, \quad(a, b)=1 \tag{3}
\end{equation*}
$$

has infinitely many solutions. (3) clearly implies that $\sigma(a) \equiv 0(\bmod a)$, $\sigma(b) \equiv 0(\bmod b)$, i. e. that a and b are multiply perfect. In fact, no solution of (3) is known, since no odd multiply perfect number is known.

In the present paper I shall prove that the number of distinct numbers of the form

$$
\frac{\sigma(n)}{n}, \quad 1 \leqslant n \leqslant x
$$

equals $c_{1} x+o(x)$ where $6 / \pi^{2}<c_{1}<1$.
Further I shall outline the proof of the following result:
The number of solutions of (1) satisfying $a<b \leqslant x$ equals $c_{2} x+o(x)$ for some constant $0<c_{2}<\infty$.

The analogous questions for $\varphi(n)$ are all trivial, since it is easy to see that $\varphi(a) / a=\varphi(b) / b$ holds if and only if a and b have the same prime factors. To see this observe that if a and b are both composed of the primes $p_{1}, p_{2}, \ldots, p_{k}$ then

$$
\frac{\varphi(a)}{a}=\frac{\varphi(b)}{b}=\prod_{i=1}^{k}\left(1-\frac{1}{p_{i}}\right) .
$$

If a and b do not have the same prime factors we can write $a=a_{1} d d_{1}$, $b=b_{1} d d_{2}$ where $\left(a_{1}, b_{1}\right)=1$ and not both $a_{1}=1, b_{1}=1$ and all prime factors of d_{1} and d_{2} divide d. Then $\varphi(a) / a=\varphi(b) / b$ would clearly imply $p\left(a_{1}\right) / a_{1}=\varphi\left(b_{1}\right) / b_{1}$, and this is clearly impossible.

I would finally like to call attention to three simple problems which as far as I know are still unsolved (see [6], p. 193 and 198).

Is it true that the equation $\sigma(n)=\varphi(m)$ has infinitely many solutions? The answer certainly must be yes.

Let $1 \leqslant c \leqslant \infty$. Does there exist an infinite sequence of integers n_{k}, m_{k}, where $n_{k} \neq m_{k}$, for which $\sigma\left(n_{k}\right)=\sigma\left(m_{k}\right)$ and $m_{k} / n_{k} \rightarrow c$? It is not difficult to see that for $c=1$ the answer is positive, but I cannot decide the general question, in particular $c=\infty$ is open. The analogous question for the function φ can easily be answered affirmatively.

Is it true that the number $g(x)$ of solutions of

$$
\begin{equation*}
\sigma(a)=\sigma(b), \quad(a, b)=1 \tag{4}
\end{equation*}
$$

satisfies $g(x) / x \rightarrow \infty$?

Theorem 1. The number of distinct numbers of the form

$$
\frac{\sigma(n)}{n}, \quad 1 \leqslant n \leqslant x
$$

equals $c_{1} x+o(x)$ (compare [5]).
Write $n=A_{n} B_{n}$ where A_{n} is the squarefree part and B_{n} the quadratic part of n, i. e.

$$
A_{n}=\prod_{p \mid n, p^{2}+n} p, \quad B_{n}=\frac{n}{A_{n}}, \quad\left(A_{n}, B_{n}\right)=1 .
$$

Now we prove the following
Lemma. Let v_{1} and v_{2} be two integers whose all prime factors occur with an exponent greater than 1 , (i.e. whose squarefree part is 1). Then there exists at most one pair of squarefree integers u_{1} and u_{2} satisfying

$$
\begin{equation*}
\frac{\sigma\left(u_{1} v_{1}\right)}{u_{1} v_{1}}=\frac{\sigma\left(u_{2} v_{2}\right)}{u_{2} v_{2}}, \quad\left(u_{1}, v_{1}\right)=\left(u_{2}, v_{2}\right)=\left(u_{1}, u_{2}\right)=1 . \tag{5}
\end{equation*}
$$

Suppose that there is a second pair $u_{1}^{\prime}, u_{2}^{\prime}$ satisfying (5). Then we should have

$$
\begin{equation*}
\frac{\sigma\left(u_{1}\right)}{u_{1}} \frac{u_{2}}{\sigma\left(u_{2}\right)}=\frac{\sigma\left(u_{1}^{\prime}\right)}{u_{1}^{\prime}} \frac{u_{2}^{\prime}}{\sigma\left(u_{2}^{\prime}\right)}=\frac{r}{s}, \quad\left(u_{1}, u_{2}\right)=\left(u_{1}^{\prime}, u_{2}^{\prime}\right)=(r, s)=1 . \tag{6}
\end{equation*}
$$

Now we show that (6) has no solutions (except if $u_{1}=u_{1}^{\prime}, u_{2}=u_{2}^{\prime}$ or $u_{1}=u_{2}^{\prime}, u_{2}=u_{1}^{\prime}$), and this contradiction will complete the proof of the Lemma. Assume that $u_{1}, u_{2}, u_{1}^{\prime}, u_{2}^{\prime}$ is a solution of (6) for which the product $u_{1} u_{2} u_{1}^{\prime} u_{2}^{\prime}$ is minimal (it clearly must be greater than 1 since not all the u 's can be 1). Let $p>1$ be the greatest prime factor of $u_{1} u_{2} u_{1}^{\prime} u_{2}^{\prime}$; assume say $p \mid u_{1}, p \nmid u_{2}$. Clearly $p \mid s$ (since $\sigma\left(u_{1}\right) \neq 0(\bmod p)$ as u_{1} is squarefree). But then by $(6) u_{1}^{\prime} \sigma\left(u_{2}^{\prime}\right) \equiv 0(\bmod p)$ or $u_{1}^{\prime} \equiv 0(\bmod p)$, u_{2}^{\prime} $\not \equiv 0(\bmod p)$. But then $u_{1} / p, u_{2}, u_{1}^{\prime} / p, u_{2}^{\prime}$ also satisfy (6), which contradicts the minimality of the product $u_{1} u_{2} u_{1}^{\prime} u_{2}^{\prime}$.

In the same way we can prove that for squarefree integers u_{i}, u_{j}^{\prime} the equation

$$
\prod_{i=1}^{r} \frac{\sigma\left(u_{i}\right)}{u_{i}}=\prod_{j=1}^{s} \frac{\sigma\left(u_{j}^{\prime}\right)}{u_{j}^{\prime}}
$$

is impossible except if $\prod_{i=1}^{r} u_{i}=\prod_{j=1}^{s} u_{j}^{\prime}$.

Now let $1=v_{1}<v_{2}<\ldots$ be the sequence of the integers whose all prime factors occur with an exponent greater than 1 . Clearly

$$
\begin{equation*}
\sum_{i=1}^{\infty} \frac{1}{v_{i}}=\prod_{p}\left(1+\frac{1}{p^{2}}+\frac{1}{p^{3}}+\ldots\right)<\infty \tag{7}
\end{equation*}
$$

and it is easy to see by a simple sieve process that the density of integers n whose quadratic part is v_{i} equals

$$
\begin{equation*}
\frac{1}{v_{i}} \prod_{p \mid v_{i}}\left(1-\frac{1}{p}\right) \prod_{p \nmid v_{i}}\left(1-\frac{1}{p^{2}}\right) . \tag{8}
\end{equation*}
$$

It clearly follows from (7) and (8) that

$$
\begin{equation*}
\sum_{i=1}^{\infty} \frac{1}{v_{i}} \prod_{p \mid v_{i}}\left(1-\frac{1}{p}\right) \prod_{p \nmid v_{i}}\left(1-\frac{1}{p^{2}}\right)=1 \tag{9}
\end{equation*}
$$

Now denote by $a_{1}^{(i)}<a_{2}^{(i)}<\ldots$ the integers whose quadratic part is v_{i}. Clearly
$\frac{\sigma\left(a_{k}^{(i)}\right)}{a_{k}^{(i)}}=\frac{\sigma\left(v_{i}\right)}{v_{i}} \cdot \frac{\sigma\left(u_{k}\right)}{u_{k}}, \quad$ where u_{k} is squarefree and $\left(u_{k}, v_{i}\right)=1$.
Thus the numbers $\sigma\left(a_{k}^{(i)}\right) / a_{k}^{(i)}$ are all different. Next we show that the number of numbers $\sigma\left(a_{k}^{(i)}\right) / a_{k}^{(i)}, v_{i} \leqslant a_{k}^{(i)} \leqslant x$, which differ from all the numbers of the form $\sigma\left(a_{k}^{(j)}\right) / a_{k}^{(j)}, 1 \leqslant j<i, a_{k}^{(j)} \leqslant x$ (i. e. which differ from all the numbers of the form $\sigma(n) / n$ whose quadratic part is less than v_{i}) equals

$$
\begin{equation*}
\frac{\alpha_{i} x}{v_{i}} \prod_{p \mid v_{i}}\left(1-\frac{1}{p}\right) \prod_{p \nmid v_{i}}\left(1-\frac{1}{p^{2}}\right)+o(x), \quad 0<\alpha_{i} \leqslant 1 . \tag{10}
\end{equation*}
$$

To prove (10) observe that

$$
\begin{equation*}
\sigma\left(a_{k}^{(i)}\right) / a_{k}^{(i)}=\sigma\left(a_{k^{\prime}}^{(j)}\right) / a_{k}^{(j)}, \quad 1 \leqslant j<i \tag{11}
\end{equation*}
$$

holds if and only if there is a primitive solution n_{l}, m_{l} of (1) so that

$$
\begin{equation*}
a_{k}^{(i)}=t n_{l}, \quad a_{k^{\prime}}^{(j)}=t m_{l}, \quad\left(t, n_{l} m_{l}\right)=1 \tag{12}
\end{equation*}
$$

Clearly the quadratic part of n_{l} and m_{l} must be less than or equal to v_{i}; thus by our Lemma there is only a finite number of possible choices for n_{l} and m_{l} (in fact the number of choices is at most $i-1$). Thus (11) does not hold if $a_{k}^{(i)}$ is not of the form (12). (10) now follows by a simple sieve process.

Theorem 1 clearly follows from (7) and (10).
Theorem 2. The number of solutions of the equation

$$
\begin{equation*}
\sigma(a) / a=\sigma(b) / b, \quad a<b \leqslant x \tag{13}
\end{equation*}
$$

equals $c_{2} x+o(x)$.
We will only sketch the proof of Theorem 2. Denote by $\left\{a_{i}, b_{i}\right\}, a_{i}<b_{i}$, the set of all the primitive solutions of (1). Since every solution of (13) is a multiple of a primitive solution, Theorem 2 will follow by a simple sieve process if we succeed in proving that

$$
\begin{equation*}
\sum_{i=1}^{\infty} \frac{1}{b_{i}}<\infty \tag{14}
\end{equation*}
$$

Let v_{k} and $v_{l}\left(v_{k}<v_{l}\right)$ be any two integers whose squarefree part is 1. From our Lemma it follows that there is at most one primitive solution of (1) $\left\{a_{i}, b_{i}\right\}$ for which $B_{a_{i}}=v_{k}, B_{b_{i}}=v_{l}$.

Thus clearly

$$
\begin{equation*}
\sum_{i=1}^{\infty} \frac{1}{b_{i}}<\sum_{j=1}^{\infty} \frac{j}{v_{j}} \tag{15}
\end{equation*}
$$

Unfortunately $\sum_{j=1}^{\infty} j / v_{j}=\infty$, since it is well known that (see [2]) v_{j} $=c j^{2}+O(j)$. Thus to prove (14) we need somewhat more complicated arguments, and from now on we will omit most of the details since they are somewhat cumbersome, but not really difficult and similar to arguments used in previous papers of mine [2].

To prove the convergence of (14) we first split the pairs $\left(v_{k}, v_{l}\right)$ which give rise to primitive solutions $\left\{a_{i}, b_{i}\right\}$ into two classes. In the first class are the pairs satisfying $v_{k}<v_{l} /\left(\log v_{l}\right)^{4}$. For these pairs we have as in (15)

$$
\begin{equation*}
\sum^{\prime} \frac{1}{b_{i}}<\sum_{l} f\left(v_{l}\right) / v_{l} \tag{16}
\end{equation*}
$$

where the accent in the summation indicates that the summation is extended only over those pairs $\left\{a_{i}, b_{i}\right\}$ which correspond to pairs (v_{k}, v_{l}) of the first class, and $f\left(v_{l}\right)$ denotes the number of the v 's not exceeding $v_{l} /\left(\log v_{l}\right)_{4}$. From $v_{j}=c j^{2}+O(j)$ we evidently have

$$
\begin{equation*}
f\left(v_{l}\right)<c_{3} l /(\log l)^{2} . \tag{17}
\end{equation*}
$$

(16) and (17) clearly implies that $\sum^{\prime} 1 / b_{i}<\infty$.

Henceforth we can restrict ourselves to the pairs (v_{k}, v_{l}) satisfying

$$
\begin{equation*}
v_{l} /\left(\log v_{l}\right)^{4}<v_{k}<v_{l} . \tag{18}
\end{equation*}
$$

Now put

$$
\begin{equation*}
a_{i}=u v, \quad b_{i}=u^{\prime} v^{\prime}, \quad\left(u, u^{\prime}\right)=1 \tag{19}
\end{equation*}
$$

where $\left(v, v^{\prime}\right)$ is a pair satisfying (18). We split the pairs satisfying (18) again into two classes. In the first class are the pairs for which

$$
\begin{equation*}
\max \left(u, u^{\prime}\right)>(\log v)^{5} . \tag{20}
\end{equation*}
$$

It easily follows from (15), (18) and (20) that

$$
\begin{equation*}
\sum^{\prime \prime} \frac{1}{b_{i}}<\sum_{j=1}^{\infty} \frac{j}{v_{j}^{2}\left(\log v_{j}^{2}\right)}<\infty \tag{21}
\end{equation*}
$$

where $\sum^{\prime \prime}$ denotes that the summation is extended over the pairs $\left(v, v^{\prime}\right)$ satisfying (20).

Thus finally we can assume that (20) does not hold. But then if $\left(v_{k}, v_{l}\right)$ give rise to the primitive pair $\left(a_{i}, b_{i}\right)$ we must have

$$
\begin{equation*}
\frac{\sigma\left(v_{k}\right)}{v_{k}}=\frac{u_{k}}{\sigma\left(u_{k}\right)} \cdot \frac{\sigma\left(u_{l}\right)}{u_{l}} \cdot \frac{\sigma\left(v_{l}\right)}{v_{l}}, \quad\left(a_{i}=u_{k} v_{k}, b_{i}=u_{l} v_{l}\right) . \tag{22}
\end{equation*}
$$

Since (20) does not hold, there are at most $\left(\log v_{l}\right)^{10}$ choices for

$$
\frac{u_{k}}{\sigma\left(u_{k}\right)} \cdot \frac{\sigma\left(u_{l}\right)}{u_{l}}
$$

or there are at most $\left(\log v_{l}\right)^{10}$ possible choices for $\sigma\left(v_{k}\right) / v_{k}$. I can prove tre following

Theorem 3. Let $1 \leqslant \alpha<\infty$. Then the number of solutions of $\sigma(n) / n$ $=\alpha, 1 \leqslant n \leqslant x$ is less than $c_{4} x^{1 / 2-c_{5}}$, where c_{4} and c_{5} are independent of α.

We do not give the proof of Theorem 3 since it is similar to one used in a previous paper [1] and also uses the remark that for squarefree n the numbers $\sigma(n) / n$ are all different. It is very likely that Theorem 3 is very far from being best possible and I would guess that the number of solutions of $\sigma(n) / n=\alpha, 1 \leqslant n \leqslant x$ is $o\left(x^{s}\right)$. Possibly one can prove this by using the method of Hornfeck and Wirsing [3].

From Theorem 3 it follows that the number of solutions of (22) is less than

$$
\begin{equation*}
c_{4} v_{l}^{1 / 2-c_{5}}\left(\log v_{l}\right)^{10}<v_{l}^{1 / 2-c_{6}}<c_{7} l^{1-2 c_{6}} \tag{23}
\end{equation*}
$$

for sufficiently large l.

From (23) it follows that (as in (15))

$$
\begin{equation*}
\sum^{\prime \prime \prime} \frac{1}{b_{j}}<\sum_{j=1}^{\infty} \frac{c_{7} j^{1-2 c_{6}}}{v_{j}}<\sum_{j=1}^{\infty} \frac{c_{8}}{j^{1+2 c_{6}}}<\infty \tag{24}
\end{equation*}
$$

where in $\sum^{\prime \prime \prime}$ the summation is extended over those $\left\{a_{i}, b_{i}\right\}$ which give rise to the pair $\left(v_{k}, v_{l}\right)$, which does not satisfy (20). (16), (17), (21), and (24) prove (14) and thus the proof of Theorem 2 is complete.

References

[1] P. Erdös, On primitive abundant numbers, J. Lond. Math. Soc. 10 (1935), p. $49-58$.
[2] - and G. Szekeres, Über die Anzahl der Abelschen Gruppen gegebener Ordnung und über ein verwandtes zahlentheoretisches Problem, Acta Litt. Sci. Szeged 7 (1934), p. 95-102.
[3] B. Hornfeck und E. Wirsing, Über die Häufigkeit vollkommener Zahlen, Math. Ann. 133 (1957), p. 431-438.
[4] H.-J. Kanold, Über die Verteilung der vollkommenen Zahlen und allgemeinerer Zahlenmengen, Math. Ann. 132 (1957), p. 442-450.
[5] - Über zahlentheoretische Funktionen, J. Reine Angew. Math. 195 (1955), p. 180-191.
[6] A. Schinzel et W. Sierpiński, Sur certains hypothèses concernant les nombres premiers, Acta Arithmetica 4 (1958), p. 185-208.

Reģu par la Rédaction le 28. 8. 1958

