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SOME REMARKS ON PRIME FACTORS OF INTEGERS

P. ERDŐS

1. Let 1 < al < a2 < . . . be a sequence of integers and let N(x) denote
the number of a's not exceeding x . If N(x)/x tends to a limit as x tends to
infinity we say that the a's have a density . Often one calls it the asymptotic
density to distinguish it from the Schnirelmann or arithmetical density . The
statement that almost all integers have a certain property will mean that
the integers which do not have this property have density 0 . Throughout
this paper p, q, r will denote primes .

I conjectured for a long time that, if E > 0 is any given number, then
almost all integers n have two divisors dl and d2 satisfying

(1) dl <d2< (1+E)di .

I proved (1, p . 691) that the integers with two divisors satisfying (1)
have a density, but I cannot prove that this density has the value 1 . How-
ever, analogous questions can be asked about the prime divisors of integers
and a more complete result is contained in the following theorem .

THEOREM 1 . Let Ey > 0, S, = EP if Ey < 1 and S, = 1 if Ey > 1 . The diver-
gence of F_DSn/p is a necessary and sufficient condition that almost all integers
should have two prime factors p and q satisfying

(2)

	

p<q<pl+~

From the prime number theorem we have

pn = (1 + o(1))n log n ;

thus F_DEDp-1 will diverge if Ey = (log log p)-l, but will converge if Ey =
(log log p)-l-°, for any c > 0 .

Further, we shall outline a proof of

THEOREM 2. The density of integers n which have two prime factors p and q
satisfying

p < q < pl+c/log log n
equals 1 - e-1 .

Let pl < p2 < . . . < pk be the distinct prime factors of n . Define the
real number qj by pini = pt+i . A famous result of Hardy and Ramanujan
(4) asserts that k = (1 + 0(1)) log log n for almost all n . I proved (2, p .
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533, Theorem 9) that, for almost all n, the number of rt's not exceeding
t (t > 1) is

(1 + 0(1))(1 - t ) log log n .

Theorem 2 can be stated as follows : the density of integers with

min 77 1 < 1 +	c
KKk

	

log log n

is 1 - e-0 . By similar methods, we can prove that the density of integers n
satisfying

max qs > clog log n
lei<k

is 1 - exp [- 1/c]. Further, we can prove that the divergence of Epbp/p
(bp < 1) is the necessary and sufficient condition that almost all integers n
should have a prime factor p such that n =- 0 (mod p), and n 0 0 (mod q)
for all primes with

p<q<p ap .

We shall not give the proof of these results, since they are similar to those
of Theorems 1 and 2 .

2. First, we show that the condition of Theorem 1 is necessary . In fact,
we show that if F-pbp/p < -, then the upper density of integers having two
prime divisors satisfying (2) is less than one . Since F_pbpp -1 < -, it is clear
that

E'>1

Denote by b 1 < b 2 < . . . the integers consisting of the primes p satisfying
Ep > 1 and the integers of the form pq, where Ep < 1 and p < q < p 1+f

p

Clearly the integers not divisible by any b have no divisor of the form pq
satisfying (2) . But Y_bz 1 < thus by a well-known and simple argument
(3, p. 279) one can show that the density of integers divisible by a b is less
than one . We really only proved that if Y_pbp/p < 1 then the upper density
of integers having a divisor of the form pq satisfying (2) is less than one . In
fact it would be quite easy to show that the density in question exists .

Now we prove the sufficiency of Theorem 1 . We first show that it will
suffice to prove the following

THEOREM 1' . Let Ep < q, Ep --> 0, Y_,Ep/p = m . Then the density of integers n
having two prime divisors p and q satisfying

p<q<p 1+
"

is 1 .

To deduce the sufficiency of the condition of Theorem 1 from Theorem 1'
it will suffice to show that if Y-pbp/p = co there always exists an Ep ' < Ep,

e



Ey < 4, F,DEp'/p = co . To show this we observe that if ED S D/p = - then
either there exists a subsequence p t with

1

	

1
EDipí = . r

	

EDi < 4

and then we put

EDi - EDir

Ey' = 0 if p v5 p t , or for a certain

c > Sr

	

E P-1 = Co .
epl e

But in this case there clearly exists an ED' < ED such that

r

	

i

	

ED _
ED --> 0,

	

ED < 4,

	

p

which completes our proof .

Now we prove Theorem 1' . Put

E 1 7 1-

	

- = A (x) ;
D<= P D<v< P", q

then, since F_D ED/p = -,

A (x) --+ - as x ---> - .

We have to show that almost all integers have at least one divisor of the
form pq, where p < q < p1+Ep . Instead of this we shall prove the stronger
result that if f (n) denotes the number of divisors of n of the above form
then, for almost all n,

(3)
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1<i< -,

f(n) _ (1 + o(1))A(n) .

co ,

Or, because of the slow growth of A(n), we shall in fact prove that

(4)

	

f(n) _ (1 + o(1))A(x),

except for o(x) values of n < x . It is easy to see that (3) and (4) are equivalent
since

(5)

	

A(x) - A(x} ) = E 1 E 1 -

	

ED	
+

	 0(1)
- 0(1)

2I<D<x P D<q<p1+,p q 2i<D<s

	

p

by the well-known estimate

E P-1 = log log x + c1 + 0	
D<=

	

(log x) '

To prove (4) we shall use Turan's method (6, pp . 274-6) . We have

Since

x

	

z

	

x

(6)

	

(f(n) - A(x)) 2 = x(A(x»' - 2A (x) E j'(n) +j: . 2 (n) .
n=1

	

n=1

	

n-I
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we may write

(7)

	

Ef(n) _ E E[x] = xE, E, 1 + O(x),
n=1

	

P<z P<q<Pl + eP pq

	

P p<q<Pi+ep pq

where the dash indicates that pq < x .* Now ep < I implies that for p < xf,
pq < x

}

	

1

A(x ) < z P<g<P'+fP

	

< A (x) .

Thus from (5),

(8)

Similarly,

(9 )

	

Efz(n) = E
v<v<n'+eP [pql +

	

{plglxpzgz} ] ,

where in the second sum

pl < ql < pi+ep ',

	

p2 < q2 < pz+fpf ,

plgl

	

p2g2, and ({pigs, p2Q2} denotes the least common multiple of p,q, and

p2g2)
The first sum on the right of (9) is (1 -+ o(1))xA(x) . For the second sum

we have

f (n) _ E 1,
Pgln

P<KP1+e p

(10)

2
f(n) = xA(x) -+ O(x) .

A=l

x	 _

	

'

	

1
{pigl, pzg2} -

x

	

{pigl, p2Q2} +
O(x),

where the dash indicates that plgl

	

pzg2 and {plgl, p2g2} < x . Clearly, from
(5), if pl < x }, pz < x', { p lg l , p2Q 2 } < x

(11)

	

F, E {plgl,
	 1

pzg2}
> (A (xf))2 -+ O(1) - (1 + 0(1))(A(x))2 .

On the other hand, by a simple argument,

r

	

I

	

1

	

<Azx

	

4
	 1

(12)

	

E E
{plgh p2g2}

	

( ) +

	

rlr2r3 ,

where in 57"

r, < r2 < rll+f'''

	

r3 < max (rl l+e,, ,

	

r21+f") ,

or r3 < r, 2 , and r, < x. (12) follows from the fact that rlr2r3 = {pigs, p2g2}
has four solutions. Now

*Since p < q, the equation pq = a has at most one solution p, q and so there are at most x
terms in the double sum . Hence the error in omitting the square brackets is at most x .
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1

hence

(13)

	

E , E,
{1'

,~, 1g1+ r1,1~2g2}
- (1 + o(1))A2(x) .

Thus, by (9), (10), and (13),
2

(14)

	

1: f2(n) _ (1 + o(1))x(A(x))2 .
n=1

Hence from (6), (8), and (14)
Z

Z (f(n) - A(x))2 = o(xA 2 (x)),
n=1

which proves that f(n) _ (1 + o(1))A (x), except for o(x) values of n < x.
Thus Theorem 1 is proved .

3. Now we outline the proof of Theorem 2 . Denote by a1 < a2 < . . .
< ak < x, the integers not exceeding x of the form pq, where

p <
q < P'+ ' 11" "' z .

Clearly the a's depend on x and a, -4 oo as x tends to infinity . Denote by
N,(a1 , . . . , ak ; x) the number of integers not exceeding x which are not
divisible by any of the a 4 's. Further, denote by M,(x) the number of integers
n< x which do not have two prime factors p and q satisfying

p < q < p 1+c/log log n .
We have to prove that

(15)

	

M,(x) _ (1 + o(1))e`x .

Clearly
M, (x) < N, (a,, a2, . . . , ak; x),

but because of the slow increase of log log n it is easy to see that

M, (x) = N, (a,, a2, . . . , ak ; x) + o (x) -

Thus to prove Theorem 2 it will suffice to show that

(16)

	

N, (a,, a2, . . . , a k ; x) = xé` + o(x) .

We obtain by a simple sieve process the well-known formula

where

E0 = 1,

	

and
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1- < Z 1,~ Z - E -<cAx,
rlr2r3

	

P<Z Y D<q<,, +,, q,<,<,2 r

	

( )

k

N, (al, a2, . . . , ak ; x) = x

	

(-1) i
1=0

E , = E
	 1	

{ail,

	

a4í} '
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where il, i2, . . . , i, runs through all distinct l-tuples from 1 to k. (The curly
bracket in the denominator denotes least common multiple .)

By a well-known combinatorial argument*
21

(17) x z~1 ((-1)` ~,~ < Nal , . . . , a k ; x) < x`

	

=~

for every t > 0. We evidently have, by a simple computation (the dashes
indicate that p < q < p'+`/ log 'ogX and pq < x)

k 1 _

	

' 1

	

' 1 _ (1 + o(1))c

	

1
(18) E ¢, - E p E q

	

log log x

	

p +
0(1) = c + 0(1),

by the estimate for EP« p-1 . Further, for every fixed l (the two dashes in-
dicate that

(20)

{a,,, aí21 . . . . a,, } < x)

	 X	_	 1	x

	

+ 0(x)

= x E, + o(x),

since there are only o(x) l-tuples satisfying

{a,,	at, } < x .

This last statement follows from the fact that the integers

{¢,,, . . . , a,, }

have at most 21 prime factors and, by a well-known theorem of Landau
(5, Vol . I, pp. 208-11), the number of integers not exceeding x having 21
prime factors equals

	 x (log log x)	2 `-1
(1 + 0(1)) log x

	

(2l - 1)!

	

- °(x) '

and finally a simple argument shows that the number of solutions of

y = {a	a,, }
is less than a constant depending only on l.

Now we outline the proof of

c`Zi + 0(1) .

For l = 1, (20) follows from (18) . For l > 1 we can prove (20) by a simple
induction process, similar but a bit more complicated than that used in the
estimations in Theorem 1 . We do not give the details since they are somewhat
cumbersome .

*This is one of the basic ideas of Brun's method, see for example, Landau Zahlentheorie,
Vol . 1, Kap . 2.



From (17) and (20) we have

(21)

	

N,(ai, . . . . a k ; x) = x Z
l=O

which is (16) .

PRIME FACTORS OF INTEGERS

(_l1)1c1
+o(x) =xe'+ (x),
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