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SOME REMARKS ON PRIME FACTORS OF INTEGERS

P. ERDOUS

1. Let 1 < a1 <a: <... be a sequence of integers and let N(x) denote
the number of a's not exceeding x. If N(x)/x tends to a limit as x tends to
infinity we say that the a’s have a density. Often one calls it the asymptotic
density to distinguish it from the Schnirelmann or arithmetical density. The
statement that almost all integers have a certain property will mean that
the integers which do not have this property have density 0. Throughout
this paper p, g, r will denote primes.

I conjectured for a long time that, if e > 0 is any given number, then
almost all integers n have two divisors di and d, satisfying

(1) di < dys < (14 ¢ da.

I proved (1, p. 691) that the integers with two divisors satisfying (1)
have a density, but I cannot prove that this density has the value 1. How-
ever, analogous questions can be asked about the prime divisors of integers
and a more complete result is contained in the following theorem.

THEOREM 1. Let ¢, > 0,6, = ¢, if ¢, < 1 and 8, = 1 if ¢, > 1. The diver-
gence of 3.,0,/p is a necessary and sufficient condition that almost all integers
should have two prime factors p and q satisfying
2) p<g<p"™

From the prime number theorem we have

pn = (1 + o(1))n log n;

thus ¥ ,e,p~! will diverge if ¢ = (log log p)~*, but will converge if ¢, =
(log log p)~'—¢, for any ¢ > 0.
Further, we shall outline a proof of

TaroreM 2. The density of integers n which have two prime factors p and q
satisfying
p < q < Pl+c!log log n
equals 1 — e°.
Let p1 < p2 < ... < pi be the distinct prime factors of #. Define the

real number 7, by p% = p;1. A famous result of Hardy and Ramanujan
(4) asserts that & = (1 + o(1)) log log 7 for almost all n. I proved (2, p.
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533, Theorem 9) that, for almost all n, the number of 5's not exceeding
t(>1)is

a+ a(l))(l = }) oglog.
Theorem 2 can be stated as follows: the density of integers with
c
min g <14+ ———
1< il{k " : log log n
is 1 — ¢° By similar methods, we can prove that the density of integers n
satisfying

max n; > ¢ log log n
1< i<k

is 1 —exp [— 1/¢]. Further, we can prove that the divergence of },5,/p
(6, < 1) is the necessary and sufficient condition that almost all integers »
should have a prime factor p such that # = 0 (mod p), and # = 0 (mod ¢)
for all primes with

p<g<p”.
We shall not give the proof of these results, since they are similar to those
of Theorems 1 and 2.

2. First, we show that the condition of Theorem 1 is necessary. In fact,
we show that if 3,8,/p < e, then the upper density of integers having two
prime divisors satisfying (2) is less than one. Since }_,8,p~! < e, it is clear

that
30 Pt 2w,

1
Denote by b, < by < ... the integers consisting of the primes p satisfying
e, > 1 and the integers of the form pg, where ¢, < 1 and p < g < plte,
Clearly the integers not divisible by any b have no divisor of the form pg
satisfying (2). But 2.6, < «; thus by a well-known and simple argument
(3, p. 279) one can show that the density of integers divisible by a & is less
than one. We really only proved that if > ,8,/p < 1 then the upper density
of integers having a divisor of the form pg satisfying (2) is less than one. In
fact it would be quite easy to show that the density in question exists.
Now we prove the sufficiency of Theorem 1. We first show that it will
suffice to prove the following

TuEOREM 1'. Let ¢, < %, ¢, — 0, 2 ,6,/p = ®. Then the density of integers n
having two prime divisors p and q satisfying
P < q <p1+¢p
15 1.
To deduce the sufficiency of the condition of Theorem 1 from Theorem 1’
it will suffice to show that if 3,8,/p = = there always exists an ¢’ < ¢,
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& < %, X,6'/p = ». To show this we observe that if 3 ,5,/p = « then
either there exists a subsequence p; with

Z fm'PTi = W € < i

i
and then we put

‘;¢=E;m 1<i< »,
&' = 0if p # p,, or for a certain

c>h XL pl=o.

Gpre
But in this case there clearly exists an ¢,’ < ¢, such that

¢ —0, %<t Z§z=°°,

which completes our proof.

Now we prove Theorem 1’. Put
1 1
= —=A(x);
<z P r<epi+ e 4
then, since ¥ ,6,/p = «,
A(x) — o as x— o,
We have to show that almost all integers have at least one divisor of the
form pg, where p < g < p'**». Instead of this we shall prove the stronger

result that if f(n) denotes the number of divisors of # of the above form
then, for almost all n,

(3) f(n) = (1 4+ o(1))A (n).
Or, because of the slow growth of A4 (n), we shall in fact prove that
(4) f(m) = (1 + o(1))4 (x),

except for o(x) values of n < x. It is easy to see that (3) and (4) are equivalent
since

6  Aw-4ch=F 1 ¢ 1.3 etdl_,,
s P pcipiv e @ tper P

by the well-known estimate

dp ' =loglogx 4+ ¢+ O (-—l—)

pez log x/
To prove (4) we shall use Turan's method (6, pp. 274-6). We have

® 300 - A@) = xA@) —24() 10 + X £,

Since
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fm) = 2 1,

pgin
p<g<pl*ep
we may write
I x r r
7 n) = [—] = — 4+ 0(x),
@ ,.z-:xf( ) ,).;:,; %ﬁg‘“’ pq xg r<r¢§:"‘rpg+ =)
where the dash indicates that pg < x.* Now ¢, < } implies that for p < i,
pg < x

A6 42' Z’ e <A,

Thus from (5),

®) 3 fn) = 4 ) + 0.
Similarly,
®) gf(ﬂ) i pz<:: Kcé":l: ]+ E Z [ {Prq, P ﬂ:l]

where in the second sum
PpL<a <, p<q@<p:

£1q1 # pegs, and ({p1q1, p2ge] denotes the least common multiple of pig, and

P2qs).
The first sum on the right of (9) is (1 4 o(1))x4 (x). For the second sum

we have

(10) z X [IPIQh Pﬂ!jl E Z (P11, P:q=}+0(x)'

where the dash indicates that pigi # puge and {p1gs, P2g2} < x. Clearly, from
(5), if p1 < x}, p2 < 2}, {pigu, Pags) < x

1) T F o> () +00) = (L + o)A@

On the other hand, by a simple argument,

l+¢,.

—_——< A
(12) Sl e M p <A +4 24 i
where in 3"
r <1y < fll-H", rs < max (rlt'i'lr‘, rzl—i-lr,).

or r3 < %, and r; < x. (12) follows from the fact that riyrirs = {p1g1, pagsl
has four solutions. Now

*Since p < g, the equation pg = X has at most one solution p, g and so there are at most x
terms in the double sum. Hence the error in omitting the square brackets is at most x.
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T <Tl T Ly l<cdw,

s p3x P <ot § p<r<p?

hence

r r I 2
(13) E E {P:Qh Pﬂz! = Erethase)
Thus, by (9), (10), and (13),
(14) .);f’(n) = (1 4+ o(1))x(4 ()

Hence from (6), (8), and (14)
3 () — A@)* = o(ed’ (),

which proves that f(n) = (1 + o(1))4 (x), except for o(x) values of n < x.
Thus Theorem 1 is proved.

3. Now we outline the proof of Theorem 2. Denote by a; <a: <...
< a; < x, the integers not exceeding x of the form pg, where
P < q <Pi+ei’10¢ ht-'_

Clearly the a's depend on x and @, — = as x tends to infinity. Denote by
N.(ay, ..., as; x) the number of integers not exceeding x which are not
divisible by any of the a,'s. Further, denote by M,(x) the number of integers
n< x which do not have two prime factors p and ¢ satisfying

p<q < pl+=.~'lu hll.
We have to prove that
(15) M (x) = (1 4+ o0(1))e “x.

Clearly
Mc(x) < N:(ah Qg . . ., Gy, x)i

but because of the slow increase of log log 7 it is easy to see that
M.(x) = N.(ay, @ ...,a; %) + o(x).
Thus to prove Theorem 2 it will suffice to show that
(16) N ay as, ...,a:;%x) = xe *+ o(x).
We obtain by a simple sieve process the well-known formula

N (ayas...,6;%) =« E,l (""l)I El.

where
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where 1y, 43, . . ., 7; runs through all distinct [-tuples from 1 to k. (The curly
bracket in the denominator denotes least common multiple.)
By a well-known combinatorial argument*
21

17) = }:_‘,o ((—1)' E:) < N@y...,a%) <x ﬁo ((—I)-l Z;) '

for every t > 0. We evidently have, by a simple computation (the dashes
indicate that p < g < p'*¢/181%%% apd pg < x)

(18) ;;ai‘= 5 i): $=Qﬁ—%§:lﬁ+o(l)=c+o(l).

by the estimate for } ,<: p~'. Further, for every fixed / (the two dashes in-
dicate that

r

{@us Bty o0 00 Gity] S 2)
1 D= E [t | m e B et gl
' lag, ... a4} "ay, ..., a4)
=x 3 + o),

since there are only o(x) l-tuples satisfying
{Bg ooy tyl < 2
This last statement follows from the fact that the integers

{ags---,a4}

have at most 2/ prime factors and, by a well-known theorem of Landau
(5, Vol. I, pp. 208-11), the number of integers not exceeding x having 2/
prime factors equals

A+ o) 53 (10(g2 log x1>)1“ = o(x),

and finally a simple argument shows that the number of solutions of

y={ag ... 04}
is less than a constant depending only on [.
Now we outline the proof of

"

(20) i =5 +o().

For Il = 1, (20) follows from (18). For / > 1 we can prove (20) by a simple
induction process, similar but a bit more complicated than that used in the
estimations in Theorem 1. We do not give the details since they are somewhat
cumbersome,

*This is one of the basic ideas of Brun's method, see for example, Landau Zahlentheorie,
Vol. 1, Kap. 2.
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From (17) and (20) we have
(21) NolGiy oo o5 Q3 %) = % Z =ls 1) + o(x) = xe °+ o(x),

=0

which is (16).
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