ERDÖS, P.
1959
CAN. J. MATH.
Vol. 11, pp 161-167

SOME REMARKS ON PRIME FACTORS OF INTEGERS

Paul Erdös

SOME REMARKS ON PRIME FAGTORS OF INTEGERS

P. ERDÖS

1. Let $1<a_{1}<a_{2}<\ldots$ be a sequence of integers and let $N(x)$ denote the number of a 's not exceeding x. If $N(x) / x$ tends to a limit as x tends to infinity we say that the a 's have a density. Often one calls it the asymptotic density to distinguish it from the Schnirelmann or arithmetical density. The statement that almost all integers have a certain property will mean that the integers which do not have this property have density 0 . Throughout this paper p, q, r will denote primes.

I conjectured for a long time that, if $\epsilon>0$ is any given number, then almost all integers n have two divisors d_{1} and d_{2} satisfying

$$
\begin{equation*}
d_{1}<d_{2}<(1+\epsilon) d_{1} . \tag{1}
\end{equation*}
$$

I proved (1, p. 691) that the integers with two divisors satisfying (1) have a density, but I cannot prove that this density has the value 1 . However, analogous questions can be asked about the prime divisors of integers and a more complete result is contained in the following theorem.

Theorem 1. Let $\epsilon_{p}>0, \delta_{p}=\epsilon_{p}$ if $\epsilon_{p} \leqslant 1$ and $\delta_{p}=1$ if $\epsilon_{p} \geqslant 1$. The divergence of $\sum_{p} \delta_{p} / p$ is a necessary and sufficient condition that almost all integers should have two prime factors p and q satisfying

$$
\begin{equation*}
p<q<p^{1+e_{p}} . \tag{2}
\end{equation*}
$$

From the prime number theorem we have

$$
p_{n}=(1+o(1)) n \log n ;
$$

thus $\sum_{p} \epsilon_{p} p^{-1}$ will diverge if $\epsilon_{p}=(\log \log p)^{-1}$, but will converge if $\epsilon_{p}=$ $(\log \log p)^{-1-c}$, for any $c>0$.
Further, we shall outline a proof of
Theorem 2. The density of integers n which have two prime factors p and q satisfying

$$
p<q<p^{1+c / \log \log n}
$$

equals $1-e^{-c}$.
Let $p_{1}<p_{2}<\ldots<p_{k}$ be the distinct prime factors of n. Define the real number η_{i} by $p_{i}{ }^{n_{i}}=p_{i+1}$. A famous result of Hardy and Ramanujan (4) asserts that $k=(1+o(1)) \log \log n$ for almost all n. I proved (2, p.

[^0]533 , Theorem 9) that, for almost all n, the number of η 's not exceeding $t(t>1)$ is

$$
(1+o(1))\left(1-\frac{1}{t}\right) \log \log n
$$

Theorem 2 can be stated as follows: the density of integers with

$$
\min _{1<i<k} \eta_{i}<1+\frac{c}{\log \log n}
$$

is $1-e^{-c}$. By similar methods, we can prove that the density of integers n satisfying

$$
\max _{1 \leqslant i<k} \eta_{i}>c \log \log n
$$

is $1-\exp [-1 / c]$. Further, we can prove that the divergence of $\sum_{p} \delta_{p} / p$ $\left(\delta_{p}<1\right)$ is the necessary and sufficient condition that almost all integers n should have a prime factor p such that $n \equiv 0(\bmod p)$, and $n \neq 0(\bmod q)$ for all primes with

$$
p \leqslant q<p^{\delta_{p}^{-1}}
$$

We shall not give the proof of these results, since they are similar to those of Theorems 1 and 2.
2. First, we show that the condition of Theorem 1 is necessary. In fact, we show that if $\sum_{p} \delta_{p} / p<\infty$, then the upper density of integers having two prime divisors satisfying (2) is less than one. Since $\sum_{p} \delta_{p} p^{-1}<\infty$, it is clear that

$$
\sum_{\epsilon_{p}>1} p^{-1}<\infty
$$

Denote by $b_{1}<b_{2}<\ldots$ the integers consisting of the primes p satisfying $\epsilon_{p} \geqslant 1$ and the integers of the form $p q$, where $\epsilon_{p}<1$ and $p<q<p^{1+\epsilon_{p}}$. Clearly the integers not divisible by any b have no divisor of the form $p q$ satisfying (2). But $\sum b_{i}{ }^{-1}<\infty$; thus by a well-known and simple argument (3, p. 279) one can show that the density of integers divisible by a b is less than one. We really only proved that if $\sum_{p} \delta_{p} / p<1$ then the upper density of integers having a divisor of the form $p q$ satisfying (2) is less than one. In fact it would be quite easy to show that the density in question exists.

Now we prove the sufficiency of Theorem 1 . We first show that it will suffice to prove the following

Theorem 1^{\prime}. Let $\epsilon_{p}<\frac{1}{4}, \epsilon_{p} \rightarrow 0, \sum_{p} \epsilon_{p} / p=\infty$. Then the density of integers n having two prime divisors p and q satisfying

$$
p<q<p^{1+\epsilon_{p}}
$$

is 1 .
To deduce the sufficiency of the condition of Theorem 1 from Theorem 1^{\prime} it will suffice to show that if $\sum_{p} \delta_{p} / p=\infty$ there always exists an $\epsilon_{p}{ }^{\prime} \leqslant \epsilon_{p}$,
$\epsilon_{p}{ }^{\prime}<\frac{1}{2}, \sum_{p} \epsilon_{p}{ }^{\prime} / p=\infty$. To show this we observe that if $\sum_{p} \delta_{p} / p=\infty$ then either there exists a subsequence p_{i} with

$$
\sum_{i} \epsilon_{p i} p_{i}^{-1}=\infty, \quad \epsilon_{p i}<\frac{1}{4}
$$

and then we put

$$
\epsilon_{p i}^{\prime}=\epsilon_{p i}, \quad 1 \leqslant i<\infty,
$$

$\epsilon_{p}{ }^{\prime}=0$ if $p \neq p_{t}$, or for a certain

$$
c \geqslant \frac{1}{\frac{s}{3}}, \quad \sum_{\epsilon_{p}>c} p^{-1}=\infty .
$$

But in this case there clearly exists an $\epsilon_{p}{ }^{\prime}<\epsilon_{p}$ such that

$$
\epsilon_{p}^{\prime} \rightarrow 0, \quad \epsilon_{p}^{\prime}<\frac{1}{4}, \quad \sum \frac{\epsilon_{p}^{\prime}}{p}=\infty,
$$

which completes our proof.
Now we prove Theorem 1^{\prime}. Put

$$
\sum_{p<x} \frac{1}{p} \sum_{p<p^{<p^{1+\epsilon}}} \frac{1}{q}=A(x) ;
$$

then, since $\sum_{p} \epsilon_{p} / p=\infty$,

$$
A(x) \rightarrow \infty \quad \text { as } \quad x \rightarrow \infty .
$$

We have to show that almost all integers have at least one divisor of the form $p q$, where $p<q<p^{1+e p}$. Instead of this we shall prove the stronger result that if $f(n)$ denotes the number of divisors of n of the above form then, for almost all n,

$$
\begin{equation*}
f(n)=(1+o(1)) A(n) . \tag{3}
\end{equation*}
$$

Or, because of the slow growth of $A(n)$, we shall in fact prove that

$$
\begin{equation*}
f(n)=(1+o(1)) A(x), \tag{4}
\end{equation*}
$$

except for $o(x)$ values of $n \leqslant x$. It is easy to see that (3) and (4) are equivalent since

$$
\begin{equation*}
A(x)-A\left(x^{\frac{1}{2}}\right)=\sum_{x^{1} \ll p<x} \frac{1}{p} \sum_{p<q^{\prime}<p^{1}+\epsilon_{p}} \frac{1}{q}=\sum_{x^{1}<p<x} \frac{\epsilon_{p}+o(1)}{p}=o(1) \tag{5}
\end{equation*}
$$

by the well-known estimate

$$
\sum_{p<x} p^{-1}=\log \log x+c_{1}+O\left(\frac{1}{\log x}\right) .
$$

To prove (4) we shall use Turan's method (6, pp. 274-6). We have

$$
\begin{equation*}
\sum_{n=1}^{x}(f(n)-A(x))^{2}=x(A(x))^{2}-2 A(x) \sum_{n=1}^{x} f(n)+\sum_{n=1}^{x} f^{2}(n) . \tag{6}
\end{equation*}
$$

Since

$$
f(n)=\sum_{\substack{p, \|_{n} \\ p<p_{0}>\varepsilon^{1}+\epsilon_{p}}} 1,
$$

we may write

$$
\begin{equation*}
\sum_{n=1}^{x} f(n)=\sum_{p<x} \sum_{p \ll_{0}<p^{1+\epsilon_{p}}}\left[\frac{x}{p q}\right]=x \sum_{p}^{\prime} \sum_{p<q<p^{1+\epsilon_{p}}}^{\prime} \frac{1}{p q}+O(x), \tag{7}
\end{equation*}
$$

where the dash indicates that $p q \leqslant x$.* Now $\epsilon_{p}<\frac{1}{4}$ implies that for $p<x^{\frac{1}{2}}$, $p q<x$

$$
A\left(x^{\frac{1}{2}}\right) \leqslant \sum_{p}^{\prime} \sum_{p<p^{\prime}<p^{1}+\epsilon_{p}}^{\prime} \frac{1}{p q} \leqslant A(x) .
$$

Thus from (5),

$$
\begin{equation*}
\sum_{n=1}^{x} f(n)=x A(x)+O(x) \tag{8}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\sum_{n=1}^{x} f^{2}(n)=\sum_{p<x} \sum_{p<p<p^{1}+\epsilon_{p}}\left[\frac{x}{p q}\right]+\sum \sum\left[\frac{x}{\left\{p_{1} q_{1}, p_{2} q_{2}\right\}}\right] \tag{9}
\end{equation*}
$$

where in the second sum

$$
p_{1}<q_{1}<p_{1}^{1+\epsilon_{1}}, \quad p_{2}<q_{2}<p_{2}^{1+\epsilon_{p}},
$$

$p_{1} q_{1} \neq p_{2} q_{2}$, and ($\left\{p_{1} q_{1}, p_{2} q_{2}\right\}$ denotes the least common multiple of $p_{1} q_{1}$ and $p_{2} q_{2}$).

The first sum on the right of (9) is $(1+o(1)) x A(x)$. For the second sum we have

$$
\begin{equation*}
\sum \sum\left[\frac{x}{\left\{p_{1} q_{1}, p_{2} q_{2}\right\}}\right]=x \sum^{\prime} \Sigma^{\prime} \frac{1}{\left\{p_{1} q_{1}, p_{2} q_{2}\right\}}+O(x) \tag{10}
\end{equation*}
$$

where the dash indicates that $p_{1} q_{1} \neq p_{2} q_{2}$ and $\left\{p_{1} q_{1}, p_{2} q_{2}\right\} \leqslant x$. Clearly, from (5), if $p_{1}<x^{\frac{1}{2}}, p_{2}<x^{\frac{k}{3}},\left\{p_{1} q_{1}, p_{2} q_{2}\right\}<x$

$$
\begin{equation*}
\Sigma^{\prime} \Sigma^{\prime} \frac{1}{\left\{p_{1} q_{1}, p_{2} q_{2}\right\}}>\left(A \left(x^{\left.\left.\frac{1}{2}\right)\right)^{2}+O(1)=(1+o(1))(A(x))^{2} . . . ~}\right.\right. \tag{11}
\end{equation*}
$$

On the other hand, by a simple argument,

$$
\begin{equation*}
\Sigma^{\prime} \Sigma^{\prime} \frac{1}{\left\{p_{1} q_{1}, p_{2} q_{2}\right\}}<A^{2}(x)+4 \sum^{\prime \prime} \frac{1}{r_{1} r_{2} r_{3}}, \tag{12}
\end{equation*}
$$

where in $\Sigma^{\prime \prime}$

$$
r_{1}<r_{2}<r_{1}^{1+e r_{1}}, \quad r_{3}<\max \left(r_{1}^{1+e r_{1}}, \quad r_{2}^{1+r_{0}}\right),
$$

or $r_{3}<r_{1}{ }^{2}$, and $r_{1} \leqslant x$. (12) follows from the fact that $r_{1} r_{2} r_{3}=\left\{p_{1} q_{1}, p_{2} q_{2}\right\}$ has four solutions. Now

[^1]$$
\sum^{\prime \prime} \frac{1}{r_{1} r_{2} r_{3}} \leqslant \sum_{p<x} \frac{1}{p} \sum_{p \ll^{1} p^{1}+\epsilon_{p}} \frac{1}{q} \sum_{p<r<p^{2}} \frac{1}{r}<c A(x)
$$
hence
\[

$$
\begin{equation*}
\sum^{\prime} \sum^{\prime} \frac{1}{\left\{p_{1} q_{1}, p_{2} q_{2}\right\}}=(1+o(1)) A^{2}(x) \tag{13}
\end{equation*}
$$

\]

Thus, by (9), (10), and (13),

$$
\begin{equation*}
\sum_{n=1}^{x} f^{2}(n)=(1+o(1)) x(A(x))^{2} \tag{14}
\end{equation*}
$$

Hence from (6), (8), and (14)

$$
\sum_{n=1}^{x}(f(n)-A(x))^{2}=o\left(x A^{2}(x)\right)
$$

which proves that $f(n)=(1+o(1)) A(x)$, except for $o(x)$ values of $n \leqslant x$. Thus Theorem 1 is proved.
3. Now we outline the proof of Theorem 2. Denote by $a_{1}<a_{2}<\ldots$. $<a_{k} \leqslant x$, the integers not exceeding x of the form $p q$, where

$$
p<q<p^{1+c / \log \log x}
$$

Clearly the a 's depend on x and $a_{1} \rightarrow \infty$ as x tends to infinity. Denote by $N_{c}\left(a_{1}, \ldots, a_{k} ; x\right)$ the number of integers not exceeding x which are not divisible by any of the a_{i} 's. Further, denote by $M_{c}(x)$ the number of integers $n \leqslant x$ which do not have two prime factors p and q satisfying

$$
p<q<p^{1+c / \log \log n} .
$$

We have to prove that

$$
\begin{equation*}
M_{c}(x)=(1+o(1)) e^{-c} x \tag{15}
\end{equation*}
$$

Clearly

$$
M_{c}(x) \leqslant N_{c}\left(a_{1}, a_{2}, \ldots, a_{k} ; x\right)
$$

but because of the slow increase of $\log \log n$ it is easy to see that

$$
M_{c}(x)=N_{c}\left(a_{1}, a_{2}, \ldots, a_{k} ; x\right)+o(x)
$$

Thus to prove Theorem 2 it will suffice to show that

$$
\begin{equation*}
N_{c}\left(a_{1}, a_{2}, \ldots, a_{k} ; x\right)=x e^{-c}+o(x) \tag{16}
\end{equation*}
$$

We obtain by a simple sieve process the well-known formula

$$
N_{c}\left(a_{1}, a_{2}, \ldots, a_{k} ; x\right)=x \sum_{l=0}^{k}(-1)^{l} \sum_{l}
$$

where

$$
\sum_{0}=1, \quad \text { and } \quad \sum_{l}=\sum \frac{1}{\left\{a_{i_{1}} \ldots, a_{i_{l}}\right\}}
$$

where $i_{1}, i_{2}, \ldots, i_{l}$ runs through all distinct l-tuples from 1 to k. (The curly bracket in the denominator denotes least common multiple.)

By a well-known combinatorial argument*

$$
\begin{equation*}
x \sum_{l=0}^{2 t-1}\left((-1)^{l} \sum_{l}\right) \leqslant N\left(a_{1}, \ldots, a_{k} ; x\right) \leqslant x \sum_{l=0}^{2 t}\left((-1)^{l} \sum_{l}\right) \tag{17}
\end{equation*}
$$

for every $t>0$. We evidently have, by a simple computation (the dashes indicate that $p<q<p^{1+c / \log \log x}$ and $p q<x$)

$$
\begin{equation*}
\sum_{i=1}^{k} \frac{1}{a_{i}}=\sum^{\prime} \frac{1}{p} \sum^{\prime} \frac{1}{q}=\frac{(1+o(1)) c}{\log \log x} \sum_{p<x} \frac{1}{p}+o(1)=c+o(1) \tag{18}
\end{equation*}
$$

by the estimate for $\sum_{p<x} p^{-1}$. Further, for every fixed l (the two dashes indicate that

$$
\begin{gather*}
\left.\left\{a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{i}}\right\} \leqslant x\right) \\
\sum_{t}=\sum\left[\frac{x}{\left\{a_{i_{1}}, \ldots, a_{i_{i}}\right\}}\right]=x \sum_{t}^{\prime \prime} \frac{1}{\left\{a_{i_{1}}, \ldots, a_{i}\right\}}+o(x) \tag{19}\\
=x \sum_{i}^{\prime \prime}+o(x),
\end{gather*}
$$

since there are only $o(x) l$-tuples satisfying

$$
\left\{a_{i_{1}}, \ldots, a_{i_{i}}\right\}<x .
$$

This last statement follows from the fact that the integers

$$
\left\{a_{i_{1}}, \ldots, a_{i_{4}}\right\}
$$

have at most $2 l$ prime factors and, by a well-known theorem of Landau (5, Vol. I, pp. 208-11), the number of integers not exceeding x having $2 l$ prime factors equals

$$
(1+o(1)) \frac{x}{\log x} \frac{(\log \log x)^{2 l-1}}{(2 l-1)!}=o(x)
$$

and finally a simple argument shows that the number of solutions of

$$
y=\left\{a_{i_{1}}, \ldots, a_{i_{k}}\right\}
$$

is less than a constant depending only on l.
Now we outline the proof of

$$
\begin{equation*}
\sum_{l}^{\prime \prime}=\frac{c^{l}}{l!}+o(1) \tag{20}
\end{equation*}
$$

For $l=1$, (20) follows from (18). For $l>1$ we can prove (20) by a simple induction process, similar but a bit more complicated than that used in the estimations in Theorem 1. We do not give the details since they are somewhat cumbersome.

[^2]From (17) and (20) we have

$$
\begin{equation*}
N_{c}\left(a_{1}, \ldots, a_{k} ; x\right)=x \sum_{l=0}^{\infty} \frac{(-1)^{l} c^{l}}{l!}+o(x)=x e^{-c}+o(x) \tag{21}
\end{equation*}
$$

which is (16).

References

1. P. Erdös, On the density of some sequences of integers, Bull. Amer. Math. Soc., 54 (1948), 691.
2. -, Some remarks about additive and multiplicative functions, Bull. Amer. Math. Soc., 52 (1946), 533, theorem 9.
3. -_, On the density of the abundant numbers, J. Lond. Math. Soc., 9 (1934), 279.
4. G. H. Hardy and S. Ramanujan, The normal number of prime factors of n, Quart. J. Math., 48 (1917), 76-92.
5. E. Landau, Verteilung der Primzahlen,
6. P. Turán, On a theorem of Hardy and Ramanujan, J. Lond. Math. Soc., 9 (1934), 274-6.

University of Alberta

[^0]: Received April 23, 1958.

[^1]: *Since $p<q$, the equation $p q=\lambda$ has at most one solution p, q and so there are at most \boldsymbol{x} terms in the double sum. Hence the error in omitting the square brackets is at most \boldsymbol{x}.

[^2]: *This is one of the basic ideas of Brun's method, see for example, Landau Zahlentheorie, Vol. 1, Kap. 2.

