445

A CONSTRUCTION OF GRAPHS WITHOUT TRIANGLES HAVING PRE-ASSIGNED ORDER AND CHROMATIC NUMBER

P. ERDÖS and R. RADO*.

1. Introduction and statement of result.

The chromatic number $\chi(\Gamma)$ of a combinatorial graph Γ is the least cardinal number a such that the set of nodes of Γ can be divided into a subsets so that every edge of Γ joins nodes belonging to different subsets. It is known[†] that corresponding to every finite a there exists a finite graph Γ_a without triangles satisfying $\chi(\Gamma_a) = a$. In [1], Theorem 2, we have extended this result to transfinite values of a. For every graph Γ the order $\phi(\Gamma)$, *i.e.* the cardinal of the set of nodes of Γ , satisfies $\phi(\Gamma) \ge \chi(\Gamma)$. The construction used in [1] was of considerable complexity and did not allow us to prove that it was most economical, *i.e.* that it leads to a graph Γ_a such that $\phi(\Gamma_a) = a$. This equation was only established ([1], Theorem 3) when essential use was made of a form of the general continuum hypothesis.

In the present note we describe a much simpler construction of such a graph Γ_a and we shall at the same time prove, without using the continuum hypothesis, that our new graph Γ_a satisfies $\phi(\Gamma_a) = \chi(\Gamma_a) = a$. Trivially, for instance by adding isolated nodes to the graph, we can make its order equal to any given cardinal b such that $b \ge a$, without changing the chromatic number or introducing any triangles.

THEOREM. Given $a \ge \aleph_0$, there is a graph Γ_a without triangles such that

$$\phi(\Gamma_a) = \chi(\Gamma_a) = a.$$

The proof depends on some lemmas, each a special case of a more general proposition. An essential part is played by Lemma 4, which is an adaptation of a result due to Specker [2].

2. Notation.

We use the notation set out in [1], §2. Every small letter, unless the contrary is stated, denotes an ordinal. The order type of an ordered set A is denoted by tp A. If A, B, \ldots are elements of an ordered set then the symbol $\{A, B, \ldots\}_{<}$ denotes the set $\{A, B, \ldots\}$ and at the same time expresses the fact that $A < B < \ldots$ For a cardinal r, the partition relation \ddagger

$$\alpha \to (\beta_0, \beta_1, \dots, \hat{\beta}_n)^r \tag{1}$$

^{*} Received 25 June, 1959; read 19 November, 1959.

^{† [3], [4], [5].}

[‡] The obliteration operator ^ removes from a well-ordered sequence the term above which it is placed.

[[]JOURNAL LONDON MATH. Soc. 35 (1960), 445-448]

expresses the fact that whenever $\operatorname{tp} A = \alpha$; $[A]^r = \Sigma(\nu < n) K_{\nu}$ there is a subset B of A and an ordinal $\nu < n$ such that $\operatorname{tp} B = \beta_{\nu}$; $[B]^r \subset K_{\nu}$. If $\theta_0 = \ldots = \hat{\beta}_n = \beta$ we write (1) also in the form

$$\alpha \rightarrow (\beta)_{|n|}^r$$

The logical negation of (1) is denoted by

$$\alpha \leftrightarrow (\beta_0, ..., \hat{\beta}_n)^r.$$

3. Lemmas.

Throughout Lemmas 1-5 we denote by α a fixed ordinal such that either $\alpha = \omega_0$ or α is of the form $\omega_{\lambda+1}$. In the proofs of Lemmas 2, 3, 5 only the case $\alpha = \omega_{\lambda+1}$ is considered. The case $\alpha = \omega_0$ can be dealt with by making the obvious modifications and is easier.

LEMMA 1. Let β be an ordinal and c a cardinal such that

$$\begin{aligned} \alpha \to (\alpha)_c^{\ 1}; \ \beta \to (\beta)_c^{\ 1}; \\ \alpha \beta \to (\alpha \beta)_c^{\ 1}. \end{aligned}$$

Then

Proof. Let $S = \{(y, x) : x < \alpha; y < \beta\}$, and order S lexicographically. Then $\operatorname{tp} S = \alpha\beta$. Let |N| = c; $S = \Sigma(\nu \in N) S_{\nu}$. Choose any $y < \beta$. Put $A_{\nu}(y) = \{x : (y, x) \in S_{\nu}\}$ ($\nu \in N$). Then, since every $x < \alpha$ is a member of some $A_{\nu}(y)$, $[0, \alpha) = \Sigma(\nu \in N) A_{\nu}(y)$, and by $\alpha \to (\alpha)_{|N|}^{\mathrm{I}}$ there is an element $\nu(y)$ of N with $\operatorname{tp} A_{\nu(y)}(y) \ge \alpha$. Put $B_{\nu} = \{y : \nu(y) = \nu\}$ ($\nu \in N$). Then, since y can take any value less than β , $[0, \beta] = \Sigma(\nu \in N) B_{\nu}$, and by $\beta \to (\beta)_{|N|}^{\mathrm{I}}$ there is $\nu_0 \in N$ such that $\operatorname{tp} B_{\nu_0} \ge \beta$. Then $\operatorname{tp} A_{\nu_0}(y) \ge \alpha$ ($y \in B_{\nu_0}$), and the set $D = \{(y, x) : y \in B_{\nu_0}; x \in A_{\nu_0}(y)\}$ satisfies

$$D \subset S_{\nu_0}; \quad \operatorname{tp} S_{\nu_0} \geqslant \operatorname{tp} D = \alpha \beta.$$

This proves Lemma 1.

LEMMA 2. $\alpha^3 \rightarrow (\alpha^3)_p^1$ for every cardinal p such that $p < |\alpha|$.

Proof. We need only consider the case $\alpha = \omega_{\lambda+1}$; $p = \aleph_{\lambda}$. Let $[0, \alpha) = \Sigma(\nu < \omega_{\lambda}) S_{\nu}$. If for all $\nu < \omega_{\lambda}$ we have $|S_{\nu}| \leq \aleph_{\lambda}$ then the contradiction $\aleph_{\lambda+1} \leq \Sigma(\nu < \omega_{\lambda}) |S_{\nu}| \leq \aleph_{\lambda}^2 = \aleph_{\lambda}$ follows. Hence there is $\nu_0 < \omega_{\lambda}$ with $|S_{\nu_0}| = \aleph_{\lambda+1}$, and so the $S_{\nu_0} = \alpha$. This proves $\alpha \to (\alpha)_{\aleph_{\lambda}}^{1}$, and Lemma 2 follows by two applications of Lemma 1.

LEMMA 3. Let $k < \omega_0$, and let V be a set of vectors $(x_0, ..., \hat{x}_k)$ with $x_0, ..., \hat{x}_k < \alpha$, ordered lexicographically. Let $\operatorname{tp} V = \alpha^k$. Then there are sets $T_{\nu}(x_0, ..., \hat{x}_{\nu}) \subset [0, \alpha)$ with $\operatorname{tp} T_{\nu}(x_0, ..., \hat{x}_{\nu}) = \alpha$ ($\nu < k; x_0, ..., \hat{x}_{\nu} < \alpha$) such that the relations $x_{\nu} \in T_{\nu}(x_0, ..., \hat{x}_{\nu})$ ($\nu < k$) imply $(x_0, ..., \hat{x}_k) \in V$.

Proof. Let $\alpha = \omega_{\lambda+1}$. The assertion holds for k = 0. Let $k \ge 1$, and use induction with respect to k. Put

$$f(x_0) = \{(x_1, ..., \hat{x}_k) : (x_0, x_1, ..., \hat{x}_k) \in V\} \quad (x_0 < \alpha)$$

446

GRAPHS WITHOUT TRIANGLES.

 $\operatorname{tp} f(x) \leq \alpha^{k-1} (x < \alpha); \operatorname{tp} V = \Sigma(x < \alpha) \operatorname{tp} f(x).$

Then

Put

 $T_0 = \{x \colon \operatorname{tp} f(x) = \alpha^{k-1}\}.$ $\operatorname{tp} T_0 < \alpha$. Assume that

Then tp $T_0 < \omega_{\lambda+1}$; $|T_0| \leq \aleph_{\lambda}$, and T_0 is not cofinal in $[0, \alpha)$. There is $\beta < \alpha$ with $T_0 \subset [0, \beta)$. If k = 1 then the contradiction

 $\alpha = \operatorname{tp} V = \Sigma(x < \beta) \operatorname{tp} f(x) \leq \beta$

follows. Now let $k \ge 2$. Then $\operatorname{tp} f(x) \le \alpha^{k-2} \delta(x)$ where

$$\delta(x) < \alpha; |\delta(x)| \leq \aleph_{\lambda} \quad (\beta \leq x < \alpha).$$

If $\beta \leq \gamma < \alpha$ then

$$|\delta(\beta)+...+\hat{\delta}(\gamma)|\leqslant \aleph_{\lambda}|\gamma|\leqslant \aleph_{\lambda}; \quad \delta(\beta)+...+\hat{\delta}(\gamma)<\omega_{\lambda+1}=\alpha.$$

Hence $\sigma = \delta(\beta) + \ldots + \hat{\delta}(\alpha) \leq \alpha$, and we obtain the contradiction

$$\begin{aligned} \operatorname{tp} V \leqslant & \Sigma(x < \beta) \, \alpha^{k-1} + \Sigma(\beta \leqslant x < \alpha) \, \alpha^{k-2} \, \delta(x) = \alpha^{k-1} \beta + \alpha^{k-2} \, \sigma \\ & \leqslant \alpha^{k-1}(\beta+1) < \alpha^k. \end{aligned}$$

Hence the assumption is false, and tp $T_0 = \alpha$.

Let $x_0 \in T_0$. By induction hypothesis, applied to $f(x_0)$, there are sets

 $T_{\nu}(x_0, ..., \hat{x}_{\nu}) \subset [0, \alpha) \quad (1 \leq \nu < k; x_1, ..., \hat{x}_{\nu} < \alpha)$

tp $T_{\nu}(x_0, ..., \hat{x}_{\nu}) = \alpha$ $(1 \leq \nu < k; x_1, ..., \hat{x}_{\nu} < \alpha)$ with

such that whenever

 $x_n \in T_n(x_0, \ldots, \hat{x}_n) \quad (1 \leq \nu < k)$

then $(x_1, \ldots, \hat{x}_k) \in f(x_0)$. Put

$$T_{\nu}(x_{0}, \, ..., \, \hat{x}_{\nu}) = [0, \, \alpha) \quad (1 \leqslant \nu < k \, ; \, x_{0} \, \varepsilon \, [0, \, \alpha) - T_{0} \, ; \, x_{1}, \, ..., \, \hat{x}_{\nu} < \alpha).$$

Then the sets T_{ν} ($\nu < k$) satisfy the assortion of Lemma 3.

LEMMA 4. $\alpha^3 \leftrightarrow (3, \alpha^3)^2$.

Proof. Put $S = \{(x, y, z) : x, y, z < \alpha\}$ and order S lexicographically. Then tp $S = \alpha^3$; $[S]^2 = K_0 + K_1$; $K_0 K_1 = \emptyset$,

 $K_0 = \left\{ \{ (a_0, a_1, a_2), (b_0, b_1, b_2) \}_{<} : a_1 < b_0 < a_2 < b_1 < \alpha \right\}.$

If ordinals $a_{\nu}, b_{\nu}, c_{\nu}$ satisfy

 $[\{(a_0, a_1, a_2), (b_0, b_1, b_2), (c_0, c_1, c_2)\}] \subset K_0$

then the contradiction $a_2 < b_1 < c_0 < a_2$ follows.

If, on the other hand, a subset V of S satisfies $tp V = \alpha^3$; $[V]^2 \subset K_1$ then there are sets T_{ν} which have, for k=3, the properties mentioned in Lemma 3. Then there are ordinals a_{ν} , b_{ν} such that

$$\begin{array}{ccc} a_0 \in T_0; & a_1 \in T_1(a_0) - [0, \, a_0 + 1); & b_0 \in T_0 - [0, \, a_1 + 1), \\ a_2 \in T_2(a_0, \, a_1) - [0, \, b_0 + 1); & b_1 \in T_1(b_0) - [0, \, a_2 + 1); & b_2 \in T_2(b_0, \, b_1). \end{array}$$

447

But then the contradiction $\{(a_0, a_1, a_2), (b_0, b_1, b_2)\}_{<} \in K_0[V]^2 = \emptyset$ follows. This proves Lemma 4.

LEMMA 5. There is a graph Γ without triangles such that, if $\chi(\Gamma) = e$, $\phi(\Gamma) = |\alpha|; \quad \alpha^3 \mapsto (\alpha^3)_e^{-1}.$

Proof. Let $\alpha = \omega_{\lambda+1}$; tp $S = \alpha^3$. By Lemma 4 there is a partition $[S]^2 = K_0 + K_1$ such that (i) there is no $A \subset S$ such that tp A = 3; $[A]^2 \subset K_0$, (ii) there is no $B \subset S$ such that tp $B = \alpha^3$; $[B]^2 \subset K_1$. Put $\Gamma = (S, K_0)$, Then Γ has no triangle, and $\phi(\Gamma) = |S| = |\alpha^3| = \aleph_{\lambda+1}$. Let $|N| = \chi(\Gamma)$. Then there is a function g from S into N such that g(x) = g(y) implies $\{x, y\} \notin K_0$. Then $S = \Sigma(\nu \in N) S_{\nu}$, where $S_{\nu} = \{x: g(x) = \nu\} (\nu \in N)$. Let $\nu \in N$. If $x, y \in S_{\nu}$, then $g(x) = \nu = g(y)$; $\{x, y\} \notin K_0$. Hence $[S_{\nu}]^2 \subset K_1$; whence by (ii) above tp $S_{\nu} < \alpha^3$. This proves $\alpha^3 \leftrightarrow (\alpha^3)_{|N|}^{|N|}$ and completes the proof of Lemma 5.

Proof of the Theorem.

Case 1. $a = \aleph_0$. By Lemma 5, with $\alpha = \omega_0$, there is a graph Γ without triangles such that $\phi(\Gamma) = \aleph_0$; $\omega_0^3 \mapsto (\omega_0^3)_e^1$, where $e = \chi(\Gamma)$. By Lemma 2 it follows that $e \ge \aleph_0$. Hence $\aleph_0 \le \chi(\Gamma) \le \phi(\Gamma) = \aleph_0$, and we may put $\Gamma_a = \Gamma$.

Case 2. $a > \aleph_0$. Put $M = \{b^+ : \aleph_1 \leq b^+ \leq a\}$, where b^+ denotes the next larger cardinal to the cardinal b. Then $\aleph_1 \in M$; $|M| \leq a$. Let $c = b^+ \in M$. Then $b = \aleph_{\lambda}$ for some λ . Put $\alpha = \omega_{\lambda+1}$. By Lemma 5 there is a graph Γ_c' without triangles such that $\phi(\Gamma_c') = \aleph_{\lambda+1}$; $\alpha^3 \leftrightarrow (\alpha^3)_e^1$, where $e = \chi(\Gamma_c')$. Then, by Lemma 2, $e \geq c$. We can arrange that $\Gamma_c' = (A_c, B_c)$, where $A_{c_0}A_{c_1} = \emptyset$ ($\{c_0, c_1\}_{<} \subset M$). Put

$$\Gamma_a = \left(\Sigma(c \in M) A_c, \ \Sigma(c \in M) B_c \right).$$

Then $\chi(\Gamma_a) \ge \chi(\Gamma'_{\aleph_1}) \ge \aleph_1$. If $\chi(\Gamma_a) = d < a$, then $\aleph_2 \le d^+ \le a$; $d^+ \varepsilon M$, and we obtain the contradiction $\chi(\Gamma_a) \ge \chi(\Gamma'_{d^+}) \ge d^+$. Hence

$$a \leq \chi(\Gamma_a) \leq \phi(\Gamma_a) = |\Sigma(c \in M) A_c| \leq \Sigma(c \in M) a = a |M| \leq a,$$

and the theorem is proved.

References.

- P. Erdös and R. Rado, "Partition relations connected with the chromatic number of graphs", Journal London Math. Soc., 34 (1959), 63-72.
- E. Specker, "Teilmengen von Mengen mit Relationen", Commentarii Math. Helvetii, 31 (1957), 302-314.
- Blanche Descartes, "A three colour problem ", Eureka (April, 1947) (Solution : March, 1948).
- "Solution to Advanced Problem No. 4526", Amer. Math. Monthly, 61 (1954), 352.
- J. B. Kelly and L. M. Kelly, "Paths and circuits in critical graphs", Amer. J. of Math., 76 (1954), 729.

The University, Birmingham.

The University, Reading.

448