A CONSTRUCTION OF GRAPHS WITHOUT TRIANGLES HAVING PRE-ASSIGNED ORDER AND CHROMATIC NUMBER

P. Erdös and R. Rado*.
\section*{1. Introduction and statement of result.}

The chromatic number $\chi(\Gamma)$ of a combinatorial graph Γ is the least cardinal number a such that the set of nodes of Γ can be divided into a subsets so that every edge of Γ joins nodes belonging to different subsets. It is known \dagger that corresponding to every finite a there exists a finite graph Γ_{a} without triangles satisfying $\chi\left(\Gamma_{a}\right)=a$. In [1], Theorem 2, we have extended this result to transfinite values of a. For every graph Γ the order $\phi(\Gamma)$, $i . e$. the cardinal of the set of nodes of Γ, satisfies $\phi(\Gamma) \geqslant \chi(\Gamma)$. The construction used in [1] was of considerable complexity and did not allow us to prove that it was most economical, i.e. that it leads to a graph Γ_{a} such that $\phi\left(\Gamma_{a}\right)=a$. This equation was only established ([1], Theorem 3) when essential use was made of a form of the general continuum hypothesis.

In the present note we describe a much simpler construction of such a graph Γ_{a} and we shall at the same time prove, without using the continuum hypothesis, that our new graph Γ_{a} satisfies $\phi\left(\Gamma_{a}\right)=\chi\left(\Gamma_{a}\right)=a$. Trivially, for instance by adding isolated nodes to the graph, we can make its order equal to any given cardinal b such that $b \geqslant a$, without changing the chromatic number or introducing any triangles.

Theorem. Given $a \geqslant \boldsymbol{\aleph}_{0}$, there is a graph Γ_{a} without triangles such that

$$
\phi\left(\Gamma_{a}\right)=\chi\left(\Gamma_{a}\right)=a .
$$

The proof depends on some lemmas, each a special case of a more general proposition. An essential part is played by Lemma 4, which is an adaptation of a result due to Specker [2].

2. Notation.

We use the notation set out in [1], §2. Every small letter, unless the contrary is stated, denotes an ordinal. The order type of an ordered set A is denoted by $\operatorname{tp} A$. If A, B, \ldots are elements of an ordered set then the symbol $\{A, B, \ldots\}_{<}$denotes the set $\{A, B, \ldots\}$ and at the same time expresses the fact that $A<B<\ldots$. For a cardinal r, the partition relation \ddagger

$$
\begin{equation*}
\alpha \rightarrow\left(\beta_{0}, \beta_{1}, \ldots, \hat{\beta}_{n}\right)^{r} \tag{1}
\end{equation*}
$$

[^0]expresses the fact that whenever $\operatorname{tp} A=\alpha ;[A]^{r}=\Sigma(\nu<n) K_{\nu}$ there is a subset B of A and an ordinal $v<n$ such that $\operatorname{tp} B=\beta_{v} ;[B]^{r} \subset K_{\nu}$. If $\theta_{0}=\ldots=\hat{\beta}_{n}=\beta$ we write (1) also in the form
$$
\alpha \rightarrow(\beta)_{|n|}^{r} .
$$

The logical negation of (1) is denoted by

$$
\alpha \leftrightarrow\left(\beta_{0}, \ldots, \hat{\beta}_{n}\right)^{r} .
$$

3. Lemmas.

Throughout Lemmas 1-5 we denote by α a fixed ordinal such that either $\alpha=\omega_{0}$ or α is of the form $\omega_{\lambda+1}$. In the proofs of Lemmas 2, 3, 5 only the case $\alpha=\omega_{\lambda+1}$ is considered. The case $\alpha=\omega_{0}$ can be dealt with by making the obvious modifications and is easier.

Lemma 1. Let β be an ordinal and c a cardinal such that

Then

$$
\begin{gathered}
\alpha \rightarrow(\alpha)_{c}^{1} ; \beta \rightarrow(\beta)_{c}{ }^{1} . \\
\alpha \beta \rightarrow(\alpha \beta)_{c}{ }^{1} .
\end{gathered}
$$

Proof. Let $S=\{(y, x): x<\alpha ; y<\beta\}$, and order S lexicographically. Then $\operatorname{tp} S=\alpha \beta$. Let $|N|=c ; S=\Sigma(\nu \varepsilon N) S_{v}$. Choose any $y<\beta$. Put $A_{\nu}(y)=\left\{x:(y, x) \varepsilon S_{\nu}\right\}(\nu \varepsilon N)$. Then, since every $x<\alpha$ is a member of some $A_{\nu}(y),[0, \alpha)=\Sigma(\nu \varepsilon N) A_{\nu}(y)$, and by $\alpha \rightarrow(\alpha)_{|N|}^{1}$ there is an element $\nu(y)$ of N with $\operatorname{tp} A_{\nu(y)}(y) \geqslant \alpha$. Put $B_{y}=\{y: \nu(y)=\nu\} \quad(\nu \varepsilon N)$. Then, since y can take any value less than $\beta,[0, \beta)=\Sigma(\nu \varepsilon N) B_{v}$, and by $\beta \rightarrow(\beta)_{|N|}^{1}$ there is $\nu_{0} \varepsilon N$ such that $\operatorname{tp} B_{\nu_{0}} \geqslant \beta$. Then $\operatorname{tp} A_{\nu_{0}}(y) \geqslant \alpha\left(y \varepsilon B_{\nu_{0}}\right)$, and the set $D=\left\{(y, x): y \varepsilon B_{\nu_{0}} ; x \in A_{\nu_{0}}(y)\right\}$ satisfies

$$
D \subset S_{\nu_{0}} ; \quad \operatorname{tp} S_{\nu_{0}} \geqslant \operatorname{tp} D=\alpha \beta
$$

This proves Lemma 1.
Lemma 2. $\alpha^{3} \rightarrow\left(\alpha^{3}\right)_{p}{ }^{1}$ for every cardinal p such that $p<|\alpha|$.
Proof. We need only consider the case $\alpha=\omega_{\lambda+1} ; p=\boldsymbol{\aleph}_{\lambda}$. Let $[0, \alpha)=\Sigma\left(\nu<\omega_{\lambda}\right) S_{\nu}$. If for all $\nu<\omega_{\lambda}$ we have $\left|S_{\nu}\right| \leqslant \boldsymbol{\aleph}_{\lambda}$ then the contradiction $\boldsymbol{\aleph}_{\lambda+1} \leqslant \Sigma\left(\nu<\omega_{\lambda}\right)\left|S_{\nu}\right| \leqslant \boldsymbol{\aleph}_{\lambda}^{2}=\boldsymbol{\aleph}_{\lambda}$ follows. Hence there is $\nu_{0}<\omega_{\lambda}$ with $\left|S_{\nu_{0}}\right|=\boldsymbol{\aleph}_{\lambda+1}$, and so tp $S_{\nu_{0}}=\alpha$. This proves $\alpha \rightarrow(\alpha)_{\mathbf{N}_{i}}^{1}$, and Lemma 2 follows by two applications of Lemma 1.

Lemma 3. Let $k<\omega_{0}$, and let V be a set of vectors $\left(x_{0}, \ldots, \hat{x}_{k}\right)$ with $x_{0}, \ldots, \hat{x}_{k}<\alpha$, ordered lexicographically. Let $\operatorname{tp} V=\alpha^{k}$. Then there are sets $T_{\nu}\left(x_{0}, \ldots, \hat{x}_{\nu}\right) \subset[0, \alpha)$ with $\operatorname{tp} T_{\nu}\left(x_{0}, \ldots, \hat{x}_{\nu}\right)=\alpha\left(\nu<k ; x_{0}, \ldots, \hat{x}_{\nu}<\alpha\right)$ such that the relations $x_{\nu} \varepsilon T_{\nu}\left(x_{0}, \ldots, \hat{x}_{\nu}\right)(\nu<k)$ imply $\left(x_{0}, \ldots, \hat{x}_{k}\right) \varepsilon V$.

Proof. Let $\alpha=\omega_{\lambda+1}$. The assertion holds for $k=0$. Let $k \geqslant 1$, and use induction with respect to k. Put

$$
f\left(x_{0}\right)=\left\{\left(x_{1}, \ldots, \hat{x}_{k}\right):\left(x_{0}, x_{1}, \ldots, \hat{x}_{k}\right) \in V\right\} \quad\left(x_{0}<\alpha\right)
$$

Then

$$
\operatorname{tp} f(x) \leqslant \alpha^{k-1}(x<\alpha) ; \operatorname{tp} V=\Sigma(x<\alpha) \operatorname{tp} f(x)
$$

Put

$$
T_{0}=\left\{x: \operatorname{tp} f(x)=\alpha^{k-1}\right\}
$$

Assume that

$$
\operatorname{tp} T_{0}<\alpha
$$

Then $\operatorname{tp} T_{0}<\omega_{\lambda+1} ;\left|T_{0}\right| \leqslant \boldsymbol{\aleph}_{\lambda}$, and T_{0} is not cofinal in $[0, \alpha)$. There is $\beta<\alpha$ with $T_{0} \subset[0, \beta)$. If $k=1$ then the contradiction

$$
\alpha=\operatorname{tp} V=\Sigma(x<\beta) \operatorname{tp} f(x) \leqslant \beta
$$

follows. Now let $k \geqslant 2$. Then $\operatorname{tp} f(x) \leqslant \alpha^{k-2} \delta(x)$ where

$$
\delta(x)<\alpha ; \quad|\delta(x)| \leqslant \aleph_{\lambda} \quad(\beta \leqslant x<\alpha) .
$$

If $\beta \leqslant \gamma<\alpha$ then

$$
|\delta(\beta)+\ldots+\hat{\delta}(\gamma)| \leqslant \boldsymbol{\aleph}_{\lambda}|\gamma| \leqslant \boldsymbol{\aleph}_{\lambda} ; \quad \delta(\beta)+\ldots+\hat{\delta}(\gamma)<\omega_{\lambda+1}=\alpha
$$

Hence $\sigma=\delta(\beta)+\ldots+\hat{\delta}(\alpha) \leqslant \alpha$, and we obtain the contradiction

$$
\begin{aligned}
\operatorname{tp} V & \leqslant \Sigma(x<\beta) \alpha^{k-1}+\Sigma(\beta \leqslant x<\alpha) \alpha^{k-2} \delta(x)=\alpha^{k-1} \beta+\alpha^{k-2} \sigma \\
& \leqslant \alpha^{k-1}(\beta+1)<\alpha^{k} .
\end{aligned}
$$

Hence the assumption is false, and $\operatorname{tp} T_{0}=\alpha$.
Let $x_{0} \varepsilon T_{0}$. By induction hypothesis, applied to $f\left(x_{0}\right)$, there are sets

$$
\begin{array}{lll}
& T_{\nu}\left(x_{0}, \ldots, \hat{x}_{\nu}\right) \subset[0, \alpha) & \left(1 \leqslant \nu<k ; x_{1}, \ldots, \hat{x}_{\nu}<\alpha\right) \\
\text { with } & \operatorname{tp} T_{\nu}\left(x_{0}, \ldots, \hat{x}_{\nu}\right)=\alpha & \left(1 \leqslant \nu<k ; x_{1}, \ldots, \hat{x}_{\nu}<\alpha\right)
\end{array}
$$

such that whenever

$$
x_{\nu} \varepsilon T_{\nu}\left(x_{0}, \ldots, \hat{x}_{\nu}\right) \quad(1 \leqslant \nu<k)
$$

then $\left(x_{1}, \ldots, \hat{x}_{k}\right) \varepsilon f\left(x_{0}\right)$. Put

$$
T_{\nu}\left(x_{0}, \ldots, \hat{x}_{\nu}\right)=[0, \alpha) \quad\left(1 \leqslant \nu<k ; x_{0} \varepsilon[0, \alpha)-T_{0} ; x_{1}, \ldots, \hat{x}_{\nu}<\alpha\right)
$$

Then the sets $T_{\nu}(\nu<k)$ satisfy the assertion of Lemma 3.
Lemma 4. $\quad \alpha^{3} \rightarrow\left(3, \alpha^{3}\right)^{2}$.
Proof. Put $S=\{(x, y, z): x, y, z<\alpha\}$ and order S lexicographically. Then $\operatorname{tp} S=\alpha^{3} ;[S]^{2}=K_{0}+K_{1} ; K_{0} K_{1}=\varnothing$,

$$
K_{0}=\left\{\left\{\left(a_{0}, a_{1}, a_{2}\right),\left(b_{0}, b_{1}, b_{2}\right)\right\}_{<}: a_{1}<b_{0}<a_{2}<b_{1}<\alpha\right\}
$$

If ordinals $a_{\nu}, b_{\nu}, c_{\nu}$ satisfy

$$
\left[\left\{\left(a_{0}, a_{1}, a_{2}\right),\left(b_{0}, b_{1}, b_{2}\right),\left(c_{0}, c_{1}, c_{2}\right)\right\}_{<}\right]^{2} \subset K_{0}
$$

then the contradiction $a_{2}<b_{1}<c_{0}<a_{2}$ follows.
If, on the other hand, a subset V of S satisfies $\operatorname{tp} V=\alpha^{3} ;[V]^{2} \subset K_{1}$ then there are sets T_{ν} which have, for $k=3$, the properties mentioned in Lemma 3. Then there are ordinals a_{ν}, b_{ν} such that

$$
\begin{gathered}
a_{0} \varepsilon T_{0} ; \quad a_{1} \varepsilon T_{1}\left(a_{0}\right)-\left[0, a_{0^{+}} 1\right) ; \quad b_{0} \varepsilon T_{0}-\left[0, a_{1}+1\right), \\
a_{2} \varepsilon T_{2}\left(a_{0}, a_{1}\right)-\left[0, b_{0^{+}}\right) ; \quad b_{1} \varepsilon T_{1}\left(b_{0}\right)-\left[0, a_{2^{+}}\right) ; \quad b_{2} \varepsilon T_{2}\left(b_{0}, b_{1}\right) .
\end{gathered}
$$

But then the contradiction $\left\{\left(a_{0}, a_{1}, a_{2}\right),\left(b_{0}, b_{1}, b_{2}\right)\right\}_{<} \varepsilon K_{0}[V]^{2}=\varnothing$ follows. This proves Lemma 4.

Lemma 5. There is a graph Γ without triangles such that, if $\chi(\Gamma)=e$,

$$
\phi(\Gamma)=|\alpha| ; \quad \alpha^{3} \longrightarrow\left(\alpha^{3}\right)_{e}^{1}
$$

Proof. Let $\alpha=\omega_{\lambda+1} ; \operatorname{tp} S=\alpha^{3}$. By Lemma 4 there is a partition $[S]^{2}=K_{0}+K_{1}$ such that (i) there is no $A \subset S$ such that $\operatorname{tp} A=3 ;[A]^{2} \subset K_{0}$, (ii) there is no $B \subset S$ such that $\operatorname{tp} B=\alpha^{3} ;[B]^{2} \subset K_{1}$. Put $\Gamma=\left(S, K_{0}\right)$, Then Γ has no triangle, and $\phi(\Gamma)=|S|=\left|\alpha^{3}\right|=\boldsymbol{X}_{\lambda+1} . \quad$ Let $|N|=\chi(\Gamma)$. Then there is a function g from S into N such that $g(x)=g(y)$ implies $\{x, y\} \notin K_{0}$. Then $S=\Sigma(\nu \varepsilon N) S_{\nu}$, where $S_{\nu}=\{x: g(x)=\nu\}(\nu \varepsilon N)$. Let $\nu \varepsilon N$. If $x, y \varepsilon S_{\nu}$, then $g(x)=\nu=g(y) ;\{x, y\} \notin K_{0}$. Hence $\left[S_{\nu}\right]^{2} \subset K_{1}$; whence by (ii) above $\operatorname{tp} S_{\nu}<\alpha^{3}$. This proves $a^{3} \rightarrow\left(\alpha^{3}\right)_{N \mid}^{1}$ and completes the proof of Lemma 5.

Proof of the Theorem.

Case 1. $a=\aleph_{0}$. By Lemma 5 , with $\alpha=\omega_{0}$, there is a graph Γ without triangles such that $\phi(\Gamma)=\boldsymbol{\aleph}_{0} ; \omega_{0}{ }^{3} \rightarrow\left(\omega_{0}{ }^{3}\right)_{e}{ }^{1}$, where $e=\chi(\Gamma)$. By Lomma 2 it follows that $e \geqslant \boldsymbol{\aleph}_{0}$. Hence $\boldsymbol{\aleph}_{0} \leqslant \chi(\Gamma) \leqslant \phi(\Gamma)=\boldsymbol{\aleph}_{0}$, and we may put $\Gamma_{a}=\Gamma$.

Case 2. $a>\boldsymbol{K}_{0}$. Put $M=\left\{b^{+}: \boldsymbol{\aleph}_{1} \leqslant b^{+} \leqslant a\right\}$, where b^{+}denotes the next larger cardinal to the cardinal b. Then $\aleph_{1} \in M ;|M| \leqslant a$. Let $c=b^{+} \varepsilon M$. Then $b=\boldsymbol{\aleph}_{\lambda}$ for some λ. Put $\alpha=\omega_{\lambda+1}$. By Lemma 5 there is a graph $\Gamma_{\mathrm{e}}{ }^{\prime}$ without triangles such that $\phi\left(\Gamma_{c}{ }^{\prime}\right)=\boldsymbol{N}_{\lambda+1} ; \alpha^{3} \mapsto\left(\alpha^{3}\right)_{e}{ }^{1}$, where $e=\chi\left(\Gamma_{c}{ }^{\prime}\right)$. Then, by Lemma $2, e \geqslant c$. We can arrange that $\Gamma_{c}{ }^{\prime}=\left(A_{c}, B_{c}\right)$, where $A_{c_{0}} A_{c_{1}}=\varnothing\left(\left\{c_{0}, c_{1}\right\}_{<} \subset M\right)$. Put

$$
\Gamma_{a}=\left(\Sigma(c \varepsilon M) A_{c}, \Sigma(c \varepsilon M) B_{c}\right)
$$

Then $\chi\left(\Gamma_{a}\right) \geqslant \chi\left(\Gamma_{\boldsymbol{N}_{1}}^{\prime}\right) \geqslant \boldsymbol{\aleph}_{1}$. If $\chi\left(\Gamma_{a}\right)=d<a$, then $\boldsymbol{\aleph}_{2} \leqslant d^{+} \leqslant a ; d^{+} \varepsilon M$, and we obtain the contradiction $\chi\left(\Gamma_{a}\right) \geqslant \chi\left(\Gamma_{d^{+}}^{\prime}\right) \geqslant d^{+}$. Hence

$$
a \leqslant \chi\left(\Gamma_{a}\right) \leqslant \phi\left(\Gamma_{a}\right)=\left|\Sigma(c \varepsilon M) A_{c}\right| \leqslant \Sigma(c \varepsilon M) a=a|M| \leqslant a \text {, }
$$

and the theorem is proved.

References.

1. P. Erdös and R. Rado, "Partition relations connected with the chromatic number of graphs ', Journal London Math. Soc., 34 (1959), 63-72.
2. E. Specker, "Teilmengen von Mengen mit Relationen ", Commentarii Math. Helvetii, 31 (1957), 302-314.
3. Blanche Descartes, "A three colour problem ", Eureka (April, 1947) (Solution: March, 1948).
4. -_, "Solution to Advanced Problem No. 4526 ", Amer. Math. Monthly, 61 (1954), 352.
5. J. B. Kelly and L. M. Kelly, "Paths and circuits in critical graphs ", Amer. J. of Math., 76 (1954), 729.
The University, Birmingham.
The University, Reading.
Printed by C. F. Hodggon \& Son, Ltd., Pakenham Street, London, W.O. 1

[^0]: * Received 25 June, 1959; read 19 November, 1959.
 \dagger [3], [4], [5].
 \ddagger The obliteration operator ${ }^{\wedge}$ removes from a well-ordered sequence the term above which it is placed.

