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A CONSTRUCTION OF GRAPHS WITHOUT TRIANGLES HAVING 

PRE-ASSIGNED ORDER AND CHROMATIC NUMBER 

P. ERD& and R. RADO*. 

I. Introduction and statement of result. 

The chromatic number x(r) of a combinatorial graph r is the least 

cardinal number a such that the set of nodes of I’ can be divided into 

a subsets so that every edge of P joins nodes belonging to different subsets. 
It is known? that corresponding to every finite a there exists a finite 

graph Pa without triangles satisfying x(P,) = a. In [l], Theorem 2, we 

have extended this result to transflnite values of a. For every graph F 

the order 4 (l?), i.e. the cardinal of the set of nodes of I’, satisfies 4 (I’) > x( I’). 
The construction used in [l] was of considerable complexity and did not 

allow us to prove that it was most economical, i.e. that it leads to a graph 

Pa such that +(I’,) = a. This equation was only established ([l], 

Theorem 3) when essential use was made of a form of the general con- 

tinuum hypothesis. 

In the present note we describe a much simpler construction of such a 

graph Pa and we shall at the same time prove, without using the continuum 

hypothesis, that our new graph Pa satisfies $(l’,) = x(l’J = a. Trivially, 
for instance by adding isolated nodes to the graph, we can make its order 
equal to any given cardinal b such that b 3 a, without changing the 

chromatic number or introducing any triangles. 

THEOREM. Given a > X,, there is a graph lTa without triangles such that 

w2 = x(u = a. 
The proof depends on some lemmas, each a special case of a more 

general proposition. An essential part is played by Lemma 4, which is an 

adaptation of a result due to Specker [2]. 

2. Notation. 

We use the notation set out in [l], 92. Every small letter, unless the 
contrary is stated, denotes an ordinal. The order type of an ordered set 

A is denoted by tp A. If A, -23, . . . are elements of an ordered set then 

the symbol {A, B, . ..j< denotes the set (A, B ,... } and at the same time 

expresses the fact that A < B < .‘.. For a cardinal r, the partition 

relation $ 
a--f (&, 181, -*-, Bn) (1) 
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expresses the fact that whenever tp A = a ; [A]I = X(V < n) K, there is a 
subset B of A and an ordinal u < n such that tp B = /?” ; [B]r c K,. If 

* e,= . . . = ph = /3 we write (1) also in the form 

a-+ Kvnl. 

The logical negation of (1) is denoted by 
* 

3. Lemmas. 

Throughout Lemmas 1-5 we denote by a a tied ordinal such that 
either a = w0 or a is of the form w~+~. In the proofs of Lemmas 2, 3, 5 
only the case a = whtl is considered. The case a = ti,, can be dealt with 
by making the obvious modifications and is easier. 

LEMMA 1. Let /3 be an ordinal and c a cardinal such that 

a--f b),l; 8+ (8),1- 

Then 4 +- h%1- 

Proof. I&t x = ((y, x): 2 < a ; y < /3], and order S lexicographically. 
ThentpX=c@. LetliVj=c; S=C(YEN)S,. Chooseanyy<p. Put 
A,(y) = (x: (y, x)EXJ (v&N). Th en, since every x < a is a member of 
some A,(y), [0, a) = E(veiV) A,(y), and by ~1--f (a)fNl there is an element 
u(y) of N with tpAd(,j(y) > a. Put B,,= (y: v(y) = V> (v&N). Then, 
since y can take any value less than /3, [0, /3) = C(V EN) B,, and by 
/3-+ (/3)fN, there is QEN such that tpB,,O > ,6. Then tp A,,(y) 3 a (YE B,J, 
and the set D = ((y, x) : 3s BY, ; x ~A,,(y)f satisfies 

DC&,; tpS,,0>tpD=a/3. 

This proves Lemma 1. 

LEMMA 2. a3+ (a”),’ for every cardinal p such that p < 1 a\. 

Proof. We need only consider the case a = oh+1 ; p = X,. Let 
[0, a) = zl(v < w,J S,. If for all Y < wA we have 1 S,] < K, then the con- 
tradiction X A+1 < E (V < oh)] S, 1 < K,a = K, follows. Hence there is 
q, < wA with 1 SVO ( = XA+l, and so tp S,,, = a. This proves a + (a&,, and 
Lemma 2 follows by two applications of Lemma 1. 

LEMMA 3. Let k < wo, and let V be a set of vectors (x0, . .., &) with 
x0, . . ., S$ c a, mi?ed Zexicographically. Let tp V = ark. Then there are 
sets T,(x,,, . . ., $) c[O, a) with tpT,(z,,, . . . . &J=a (u<k; x0, . . . . &,<a) 
such that the relations xv E T,,(xO, . . . , 4) (v < I%) imply (x0, . . ., 6&k) E V. 

Proof. Let a = fxAfl. The assertion holds for Ic = 0. Let k > 1, and 
use induction with respect to Ic. Put 

f(xo) = ((xlj . .., %) : txoj xl3 . . ., %) E q txo < a)e 
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Then tpf(x) < akhl (x < a) ; tp V = X(x < a) tpf(s). 

Put To = {x : tpf(x) = a”-‘}. 

Assume that tpTO<a. 

Then tp To < CCJ~+~ ; 1 To / < X,, and T, is not col?nal in [0, a). There is 
,3 c u with T,, c [0, p). If k = 1 then the contradiction 

a=tpv=qx</3)tpf(z) <‘B 

follows. Now let k 3 2. Then tpf(s) < ak-26(x) where 

S(x)<a; lw)l~~x, W<~<a)* 

IfB<y<athen 

IW9-t...+g(y)l G%Iy[ <XX,; s(B)+...+~(y)(w~+l=a. 

Hence 0 = S(p)+...+$(a) < ct, and we obtain the contradiction 

tPv<W<iJ) ak-l+~(~<~<a)a k-2 6 @) = ak-l p+ ak--2 u 

< ak-‘(j3+ 1) < ak. 

Hence the assumption is false, and tp T, = a. 
Let x0 ET,. By induction hypothesis, applied to f(q,), there are sets 

TJq,, -.., 2&c[O, a) (1 <v<k; x1, . . . . 6$<a) 

with tp T&o, .a., 2J=a (1 <v<k; x1, . . . . S$<a) 

such that whenever 
x,~Tv(q,, .--I 2,) (1 <v < w 

then (zr, . . . . $kk) Ef(%)a fit 

T,ko, -.., 2J= [0, a) (1 <v<k; q,&[O, a)-To; x1, . . ..S$<a). 

Then the sets TV (v < 4%) satisfy the assertion of Lemma 3. 

LEMMA 4. ct3++ (3, a3)2. 

Proof. Put X = ((2, y, z) : x, 9, .z < a> and order X lexicographically. 
Then tpS=a3; [X12 = K,+K, ; K, K1= 0, 

Ko= [I( a,, a13 a2), (&i, h, b,)],: a, < 6, < a2 < b, < a}. 

If ordinals a,, b,, c, satisfy 

[((a,, ~1, a2), (bo, 4, b,)> (cot 01, c,~)<12=Ko 
then the contradiction a2 < b, < co < a2 follows. 

If, on the other hand, a subset V of S satisfies tp B = aa ; [I’]2 c Kl 

then there are sets TV which have, for k = 3, the properties mentioned in 
Lemma 3. Then there are ordinals a,, b, such that 

aoETo; al& W~,)-P, a,+l); bos To-P, al+ 11, 

a,~T2@4,, al)-P, h,+l); h~Tl@+L-o, uz+l); b,~T2(b,, b,). 
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But then the contradiction {(a,, a,, a&, (b,, b,, 6,)), EK,[V]~ = 0 follows. 
This proves Lemma 4. 

LEMNA 5. There is a graph I’ without triangles such that, if x( I’) = e, 

$(I‘) = 1 aI ; lx3-H (a”),‘. 

Proof. Let cc= o,,,; tpS= K3. By Lemma 4 there is a partition 
[S]2=K,+K,suchthat(i)thereisnoAcSsuchthattpA=3;[A]2CKg, 
(ii) there is no B t X such that tp B = a3 ; [B12 c X,. Put I’ = (8, K,), 
Then F has no triangle, and (S(I’)=~SJ=ICY.~)=X~+~. Lot jiVl=x(I’). 
Then there is a function g from S into AT such that g(x) = g(y) implies 

h Yl~Ko* Then S=E(YEN)S,, where S,= (z:g(z)=v> (V&N). Let 
v E N, If 2, y E S,, then g(z) = v = g(y) ; (2, y> $ K,. Hence [SJ2 c K, ; 
whence by (ii) above tp S,, < m3. This proves a3+ (GC~)~~,,, and completes 
the proof of Lemma 5. 

Proof of the Theorem. 

Case 1. a=& By Lemma 5, with CI=O,,, there is a graph I’ 
without triangles such that I+(F) = K,; w,,~++ (oJ~~)~~, where e= x(r). 
By Lemma 2 it follows that e 3 K,. Hence X, < x( I’) < 4 (J?) = X,, and 
we may put ra = r. 

Case 2. a > X,. Put A! = {b+ : K, <b+ <a}, where b+ denotes the 
next larger cardinal to the cardinal b. Then X, F ilJ ; ) N) < a. Let 
c = b+r M. Then b = X, for some A. Put cc = w~+~. By Lemma 5 
there is a graph rC’ without triangles such that $(I’,‘) = XA+, ; e3 -t+ (cx~),~, 
where e = x(I’,‘). Then, by Lemma 2, e >, c. We can arrange that 
I’c) = (A,, B,), where ACOAC1 = 0 ({c,, c& cN). Put 

ra = (Z(CEM)A,, E(CS M) 23,). 

Then x(r,) > x(&J 3 H,. If X(I’J=d<a, then &,<d+<~~a; ~+EM, 

and we obtain the contradiction ,(I’,) ax(&) >d+. Hence 

a <x(r,) <&I’,) =~C(CEM)A,J <Z(cEM)a=ajM) <a, 

and the theorem is proved. 
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