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§ 1. Y. Wang and A. Schinzel proved . by Brun's method, the fol-
lowing theorem ([3]) :

For any given sequence of h nova-negative -numbers a,, a 2 , . . ., ah and
> 0, there exist positive constants e = c(a, E) and x o = x0 (a, E) such

that the number of positive integers n, <. x satisfying

(ra {- i )

92(n -i:-1) -

p

<

	

(I. ~ i

	

h)

is greater than cxjlog h'T'x, whenever x > x, .

They also proved the analogous theorem for the function a.
Shao Pin Tsung, also using Brun's method, extended this result

to all multiplicative positive functions f,(ir) satisfying the following con-
ditions ([4]) :

1 . For any positive integer 1 and prime number p

lim (f,(pa) ;pa') = 1

	

(p denotes primes) .
1J->C

II. There exists an interval Via, b>, a = 0 or b = oo, such that for any
integer -11 > 0 the set of numbers

	

where (_V, ll) = 1, is dense

(This formulation is not the same but equivalent to the original one .)
In this paper we shall show without using Brun's method that if

we replace the condition. I by the condition

~~ff,(p)-ps)_ y
2s+1

(bit preserving condition II) then there exist more than. C(a, e)x posi-
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tive integers n

	

x for which

	 fs(n±i)
-a < e

	

(i = I, 2, . . ., h) .
fs( 71•+ i -1 )

This theorem follows easily from the following stronger theorem .
THEOREM 1 . Let f (n) be an additive function, satisfying the following

Conditions
1 . f (Ilf(p)11 21p) is converge-nt, where sinsinfll denotes f(p) for sinf(p)sin < 1

p
and 1 for if(p), >I

2. There exists a nu-mber e1 such that, for a-nn integer M > 0, the set
of numbers f(N), where (.V, 1) = I is dense in (,c 1 , c) .

Then. for any given sequence of h real numbers a 1 , a,,	ah and
s > 0 . there exist snore than C(a, e)x positive integers a < x for which

(1 )

	

f(n.+i)-f(n-i-I)-azl < e

	

(i = 1, 2, . . ., la) ;

C(a, s) is a positive constant, depending on s and a j .
LEMMA. There exists an absolute constant c such that the -number of

the integers of the form pq > x for which one can find n G x satisfying
n - b (moda), n - 0 (modp) an (7, n---1 - 0 (modci) is for x >xo (a) less
than ex la .

Proof. Let c 1 , c 2 , . . . denote absolute constants . Assume p >x"12
(q > x1,2 can be dealt similarly) . Denote by A 1 (x) the number of integers
of the form pq satisfying

pq > x,

	

x;1 -1 ;2l C p < :I?1-1 ;2I+1

	

n = b (moda ),

	

pln, qln+I ,

for some n, 1 < n < y,

and by A' (x) the number of integers pq for which
1 1'21 <

p
< X1-1,21-1

,

	

> x 1'`
1 2 1+ 1

q

	

,

	

n - b (moda),

	

p r-z,

	

qirz+l,
for some n, 1 < n < x .

Clearly A1 (x) > A, (x) and it will suffice to prove that for x > x, (a),
00

A' (x) < ex /a .
a_1

Define positive integer lx by the inequality

2'x

	

1logx > 2 Zx-1 .
a

The number k of integers it satisfying

(2) n < x,

	

n - b (moda),

	

n -- 0 (modp),

	

x'-' 121 < p < x1-1,121+1
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for an I >, lx does not exceed (	 -j-1 , thus by theorems of
p>x

Mertens and Chebyshev
c l x

	

c 2 x
< a2 7x T logx

and by the definition of I,,,

k < C
3 x

log,,-e,

Denote the numbers satisfying (2) for an I > Ix by a, < a > < . . .
< ax. < x . Since for all y < x, v(y) < c,,logx/loglogx (from the prime
number theorem or from more elementary results), we have

(3 )

	

A'(x) <

	

v(a,) <
0311

	

c4 logx < C 5 "11!

1,i,

	

=1

	

logx loglogx

	

a

for x > x, (a) .
For I < Ix denote numbers satisfying (2) by a(,1) <

	

. . . < a,(z .
Similarly as for Ic we have for 1c 1 the inequality

c6x

	

c 2X
h1

< a2 1_ 1

	

logx
hence by I < I x

(4)

	

k, < c
; x

a .-?' •
We shall prove that for I < l x and sufficiently large x

x 1

(5)

	

Eli (x) _ ' v1(az1)-}-1) <
aal 2i=1

where v 1(m) denotes the number of prime factors > x 11 '
1+1 of mma .

For this purpose, we split the summands of the sum (5) into two
classes. In the first class are the integers a( l) for which v1(a~,1'+1) ---, 2 1 /12 .
From (4) it follows that the contribution of these integers ak1) to (5) is less
than c7x/ale. The integer in the second class satisfy v1 (ai1) --1) >2,' /12 .
Thus these integers are divisible by more than 21 /1 2 primes q > x 1121+1
Thus the number of integers of the second class is less than

I

) [211i2, 1x 11'1+1 <pyx q

	

2 1 r < x(c9 1) ,2

	

21 1x '

[2 1 /1 2 ]
+.

	

[2]

	

a[2 1 /I 2 ]I

	

C 1 j

x

1 T

21ogx !

<

x

a •5

	

aloglog wI

	

a •4 1
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for 1 > e10 , x > x, (a.) . By definition, v,((t(') +1) < 2 1+ 1 . Thus, for l > c 10f
the contribution of the numbers of the second class to (5) is < x/a •21-1 ;
for l ~ c 10 the contribution is clearly < 2°10- 1x. Thus, for l < le,, x > x, (a),

A; (x) < c8x /ah

and in view of (3) we have for x > x0 (a)

e; x

	

e8 x

	

ex
X ' (x) <

	

<J

	

a

	

al`

	

a

which proves the Lemma .

Proof of the theorem. Let E be a positive number and let
a sequence a t (i = 1, 2, . . ., h) be given .

By condition 2 we can find positive integers -A711 1N1, . . . , lrh such
that

(6) (1 . ,(h-+1)+.) = 1 (i = 0, 1, . . . . h), (1-;,1';) = 1 (0 < i < j < h),

f(Y0) >c,+max{f(i + 1) - y'
1,-i h

and

hence

(7)

	

1) 1- ) -f( 2.1 z 1) - ar

such that

(8)

f(Xi)-If(-V0)-f(?
i=1

J)

vfil , ., i-I , p

<4e (1<i<h) ;<

<2
1 11

	

(1<i<h,) .

Let k, be the greatest prime factor of 1 0 1', . . . I-V I, . Put ,u =
E/1'96he (c is the constant of the Lemma) . By condition 1,

	

1 (1/p)

is convergent . Since ~ (1 /p 2 ) is also convergent, there exists a k_

Finally by condition 1 there exists a k 3 such that

(9 )
f(p)`

	

E

G p

	

4811
If(P)'<j,
2)>l,'3



Let us put

k = max(ki . k, . k3) .

	

N = N,1, . .-

and let us consider the following system of congruences

ai - 1 (mod (la-1)!P) . it - -i+Ni. (mod-V,). 0 < i C It .

By (6) and the Chinese Remainder Theorem there exists a number no
satisfying these congruences.

It is easy to see that
(10) for every -integer t the numbers (Qty u,, { i)i(i,~ 1) 1 (i = 1, 2, . . ., h)

are integers which are not divisible by any prime -:-,, k ;

(11) the number of terms not exceeding x of the arithmetical progression
Qt- n, is x ;Q--O(1) .
In order to prove Theorem 1 we shall estimate the number of inte-

gers n of the progression Qt-, '- ate, which satisfy the inequalities

(12) is

	

.e .

	

V ~ f(aa

	

i)-f(i
i-1
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P = 1 1 p, Q = (h. 1)!N2P

vr,1V

--'i-1)-.fj(i-L1)N,)-.f('i

	

2

We divide the set of integers as- - no (modQ) for which the inequalities
(12) hold into two classes . Integers as such that aa .(r.-1) . . . (n+ h) is
divisible by a prime p > k with 't(p) ,a, or by p2 , p > k, are in the
first class and all other integers are in the second class .

(1_3) The number of integers as < x, a - -r (modQ) -which, are divisible by
a given integer d > 0 is egual to a, ldQ-0 (1) for (d, Q) = 1,

hence the number of integers ai

	

x, n = it,, (modQ) of the first class is
less than

1

	

1 Loi

111a~) -~ ','
By the inequality (8) and the definition of k this number is less than
3x,'Q--0G2') .

For the integers of the second class, by remark (10) we have

(f (aaL.r to f(i~-i_,))

h

Y f (p) - V 'f(p)
>k

	

i»k
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where T" means that the summation runs through the integers of the
second class. In view of remark (13), since (Q, p) = 1 we have

h

n=n0(modQ) i=1

	

VIn+a
?a<x

	

p>k, if(p)I <u

S <

y fy(p)
21l,x
Qp +4( 1 )

x+h->p>k
11(p)1 <u

P. Erdös and A. Schinzel

f(p)-
V

f(p)} n

In

l2

	

G f(P)f(q)T
n-n0(modQ) i=1

	

p!Ifa--i .q>p>k,
It-<X

	

If(p)I<u>!t(q)I<u

1=1

+2

2hx

	

f2 (p)

Q p>k,lflp)I<u p

Y

	

f(p)f(q)-2
pgl~a+i-l,q>p>k
I1(p)I<u,If(q) <i

V
?=RC, (mod Q)

n<x

P111-i-1
p>1,If(p)I<u

h

V

pjn--a, q1n, i-1,q>k
p>k, If(p)I«, If(q)I<u

p In-i, qI n+i-1
pq>_x,p>k.q>k
If(p)I<u, If(q)I<u

'f(p)f(q)sin +

+o (

	

fy(p)+

	

if(p)f(q)sin) -
p<x+h
1(p) I <u

p>q>k,pq<x-h
I1(p)I <u, I1(q)I <u

f(p)f(q)}

Thus finally from (9), Lemma, the equality u" = e2/96he and from the
fact that the number of integers of the form pq not exceeding x+ h is
0(x), we get

a 2 x
S <

1
•
Q

J-0(x) .

Thus the number of integers of the second class is less than 3 x /Q + o (x) .
Hence there exist less than

-3
xIQ_ o (x) positive integers a < x,

n - no (modQ) for which

(f(I +i)-f(n+i-1)-f((i 1 )i)-f
=1

Therefore by (11) there exist more than
n < x, for which

3 .8 ;~Q - 0 (x)

-f(11+ -f((

	

1)lt)-f(i•A i--

> 4
82 .

positive integers



and then

If (v, i)- f(n4- i- 1)-f((i± 1 )1'ill-f(iY1_i)I C E

In view of (7), the proof is complete .
THEOREM 2. Let f(n) be an additive function satisfying the Condi-
tions of Theorem, 1 and such that partial sums of lp) are bound-
ed :

(14)

	

A > I$1,1,

	

A j =
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V
1

< Clog
log Z

v<z p

	

logy

If (p)11

for all z > y > 1 .

(i.=1 .2, . . . . h)

p<k p

Then- for any given, natural number h there exists a number c h, such that
for any e > 0 and every sequence of h numbers : a„ a 27 . . ., ah > c'A , there
exist more than C(a, s)x positive integers n < x, for which

(15 )

	

f(n,i)-a1<e

	

(i=1,2, . . .,h) .

C(a, e) is a positive constant, depending on s and a i .
Proof . Let e be a positive number, CA = c,+maxf(i) and let a se-

quence a .i > e5 (i = 1, 2, . . . , h) be given .
By condition 2 we can find positive integers N 1 , A 2 7 . . . , ?1 A such

that

(16) (~',it!)=1

	

(i =	 ,h),

	

(2V1,V.)=1

	

(1<i<j<h)

and

(17)

	

f(~~',)- ai i`f(i)sin < 2s

	

(i = 1, 2, . . ., h) .
Let k, be the greatest prime factor of l", 7 2 . . . Xh . Let C be an absolute
constant such that

Put a = e/7CV h . By condition 1, ~' (1/p) is convergent . Since I (1/p 2 )
I t(p) I %o

is also convergent, there exists a k 2 such that

1

	

1

	

1

<p

	

p 31a
11(P)I>-F,v>n2

	

p>k2

By condition 1 there exists also a k 3 such that

(19)

	

f(.P) 2
p

	

24h,p>k3 . if(p)1 <i{

Put ?I = e/1/96h, B = A 1/3k and denote by I,,, the interval

[vrl- '2 2 1, vn- '2 111,

	

v = 0, -1, -!-2,	L [Blr=1]
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and let k,, be the least integer k > max(k11 k„ k3 ) such that S (f(p) i 'p)
,~ .; r;,~i(~~~k(,

E 1,, if such integers k exist, otherwise let k,, = 1 .
Now if

	

X

	

(.f(p)lp) E1 -by the condition (14) and by (18) such
2~<~'-hai{n)I ~ ~ :

v,. certainly exists-we put k, . = k and then we get

(20)

	

V, f(P)
I < rl,

	

k n max
vi<[B,q] 1

Let V' denote that the summation runs through all princes

p . q satisfying conditions p :> q > k. pq < i - h, if (p) . < It, if (q)I < ,a, .
From (2+ .)) we get

~,' .f (~ ) .f ( q )

	

\
-I f (p )

	

-`

	

V

	

P

pq

	

1, t' 7, p
'

	

p s'--~

	

';-7a q
i7

	

i ) ! -_h
(2)

	

4

Let us put

"

	

I'T I

	

7 >k
I1(n)

R"

966

(24)

	

1? ~ i .

p J q
(

	

(ae--la=1)1-1 .=7
.
;2 yi .r 7? -i) -1 .rah>q>

:--

1)

2(f( -~'

	

~) -.f(. fir)) ? > s-
i=1

2)

E 2

	

y
v

I

	

F-

	

Q

	

82

90h

	

,' .
-2'
=

9611
- t2f' 2

	

21h
.

7==

A, = l"l"_ . . . . A-h,

	

P =

	

II p,
2p<k .2j'Y N

(22 )

	

Q = It.'12P -
11
! V"2 1 1 p = Q

2 <k,2) N

and let us consider the following system of congruences :
a( - 0 (mod h'P) .

	

n = - i- _Vi ( ;;nod _A,2 ) .

By (16) and the Chinese Remainder Theorem there exists a number 1 -( 0
satisfying these congruences .

It is east to see, that

(23) for every integer t the numbers	 .

	

(i = 1, 2, . . ., h) are

integers . which are not divisible by,( any prime < k .
Analogously, as in the proof of Theorem 1, we shall estimate the num-

ber of integers n) of the progression (fit-- oo,'which satisfy the inequalities



We divide the set of integers n- - in, (modQ), for which the inequal-
ities (24) hold, into two classes . Integers n, such that (-n+i)(n=2) . . .
(n-j-h) is divisible by a prime p > k with if (p)'', >, y or by p 2 , p > k,
are in the first class and all others integers are in the second class .

By remark (1-3) the number of integers n , < X, P _ e (modQ) of
the first class is less than

t ~

	

T
p

	

pp>k, J(' I%P

	

p>P

	

i)<~-tQ

i-=t
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-f

P'' " h

By the inequality (18) and the definition of 7c this number is less
1ar/Q+0(x) .

For the integers of the second class, by remark (23), we have

and

(p),

h

I ( f f(.p)I,
-I pi,,.- j,p>a.

h

n

	

t=I

than

where

	

means that the summation runs through the integers of the

second class. In view of remark (13), we have
h

	

h

V-

	

(pi-+i)_f(ijV,i))2 <

	

V

	

f(p))2

fe .

	

i=1

	

fl0(moiiQ)a = 1 pa-7,p>k
v x

~~ f2 (p)
(
hx 0j)+2 , f(p)f(q)~ Qp

IIX
q

	

0( 1)I
>~-

If) <a

h.x (

	

v
f2 (p)

p~

	 (p)

	

, ~' f(p)f(y))
T

AQ

	

n>k, , tlE) < f,

o

	

f2 (p) Y f(p)f(q)I) .
p<-x-hJ(P)I<!,

Thus, finally from (1 .9) . (21) and from the fact that the number
of integers of the form pq riot exceeding x-17h is o(x) we get

h.
E' x

2

	

1,
Q

	

o(.r) .

Acta Arithmetica VI

	

31
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Thus the number of integers of the second class is less than sx/Q o(x) .
Hence, there exist less than sx/Q=o (v) positive integers n < x,

n - H.o (mod Q) for which
Ta

~ If(vn

	

)-f(i_yi))2 > e2 .
L=1

By (11) and (22) there exist, therefore . more than 3x!Q±o(x) positive
integers n < a?, for which

V (f( y

	

-f(z. ~- i ))2

and then
f(n, i) -f(t l i)i < 2 (i,=1,2, . . .,h) .

In view of (16) and (17) . this completes the proof .
Theorem 2 is best possible . Assume only that there exists an a and

a c > 0 so that the number of integers u < x satisfyng if (t.) . < a is
greater than cx .

Then	 f )'i2 converges awl	 ' f (p) has hounded Partial sums .
P

In the paper [2], P . Erdös proved(1 ) the following theorem :
If there exist two constants c 1 and c 2 and an infinite sequence ask; -~ o0

so that for every x k there are at least c 1xk integers :

for which

If(ai) -f(a?)I < C 2 .

	

1 r i < j < 1 .

then

f(n) = alogn=g(rr),

	

where

	

sing(20 !12
< o0

In our case the conditions of this theorem are clearly satisfied and,
in fact, we clearly must have a = 0 . This implies that

'f(P) 1 2
p

( 1 ) The proof of Lemma 8 [2] is not clear and on p . 15 needs more details
similar to these given above .
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Assume now that Dsinsinf (p)] /p) does not have bounded partial sums .
Let e.g . S (sinJ(p)sinsin lp) = A, A large. Then by the method of Turán

p<x
([5], cf. also [2]) we obtain

x

(f ('n) - A)2 < c 3x
n=1

which implies that sin f ()i,,)-A < A - a for all but ix integers n < x,
where rt = c3/(A -a)2 . For sufficiently large A, it contradicts the assump-
tion that sinf (n)sin < a has ex solutions n < x, thus the proof is complete .

In Theorem 1 one can replace X(sinlf (p)si n
I2/p) < cc by : there is an

a so that if eve put f(n)-alogrn = g(n) then j(sinlg(p)sinI2/p) < cc . We think
that here we again have a necessary and sufficient condition, but we
cannot prove this . In fact, we conjecture that if there exist an a and an
c > 0 such that the number of integers < x satisfying sin f (n 1) - f (z) sin < a

is > ex, then

f(n) = alog n+g(n.)

	

with

	

]g(P)sinsin < cc .
p

§ 2. The proof of Theorem 2 is very similar to the proof of Lemma 1
of P. Erdös' paper [1] . Using ideas and results from that paper we can
prove the following theorem .

THEOREM 3. Let f (n) be an additive function satisfying condition 1

of Theorem 1 and let

	

(1/p) be divergent, ~,'(sinlf(p)II/p) convergent,
tfp) o

then the distribution function of h-tuples If (m +1), f(7n+2), . . ., f(m+h)}
exists, awl it is a continuous function .

Proof. We denote by N (f ; c 1 , c 2 , . . . , Ch) the number of positive
integers m not exceeding n, for which

f(rn.+i) >c1 ,

	

i=1,2, . . .,h,

where e 1 are given constants .
It is sufficient to consider, as in [1] . the special case in which, for

any a, f (p°) = f (p), so that

f(7n) =

	

f(P) .
P1m

Let us also consider the function fk (m) =

	

' f(p) . We are going
pl in,p<k

to show that the sequence N (fk ; c 1 , c 27 . . ., c h)/n is convergent. For, if
we denote by -4 j 'j (j < j0 , 1,) the squarefree integers whose prime factors
are not greater than k, and for which fh ,(4 t ) > c 1 , we can see that the
integers m. for which

fh(ryr I i)> c1

	

(i=1,2, . . .,h,)
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are distributed periodically with the period f] A i ; . Hence 1 (fa ; cl ,
1ih

02, . . . , ch ) jn- has a limit .
To prove the existence of a limit of l (f ; c, . c	c1) i n it is suffi-

cient to show that for arbitrary E > 0 there exists k o such that for every
k>ko and n>n(a)

IN(f ; c 1 , c 27 . . ., ch)-l (fk ; c l , c z} . . ., c,

	

< s .
To show this, it is enough to prove that the number of integers in ~ n
for which there exists i <_ h such that fz; (inn- i) < ci and f(rn.-i) > ci
or fl, (m+i) > c. i and f(m,+1) < ci is less than shnr . But it is an immediate
consequence of the analogous theorem for h = 1 proved in [1] . p . 123 .

In order to prove that the distribution function is continuous we
must show that for every s > 0, there exists a b > 0, such that

c2 -b, . ., Ch-b)-- (f ; C I -6, c2 - b, . . ., eh -b) < s .

Now
h

4 =

	

{i (f ; c 1- b, . . ., c 1 _ 1 b .

	

b	e h - b)-
z-1

-l (f ; c 1 -, b, . . ., ci- b, c i, 1 - b, . . ., Ch-6 ))

and by Lemma 2 of [1] each term of this sum is less than a/h for suitably
chosen 6. This completes the proof .

We conclude from Theorems 2 and 3 that if an additive function f
satisfies conditions 1, 2 , 7 (111p) is divergent and J ( ; f (p)! I /p) conver-

t(P) r o
gent, then the distribution function of { f (in, -1), . . ., f (iu h)} exists,
is continuous and strictly decreasing on some half straight-line, thus
the sequence of integers a for which inequality (15) holds has a posi-
tive density. Similarly we can prove the following :

1

	

I 2
THEOREM 4 . Assume that

	

ti=

	

and that

	

f(p)
< 00

t(nJo p

	

P
then If(n--1) -f(n), f(n. 2)-f()t !, 1), . . ., f(n k)-f(n±k-1)) has
a continuous distribution function .

It is easy to see that condition 2 can be replaced by the conditions

lim f(p) = 0 and G if (p)I = no .
P-m

	

p

§ 3. Y. Wang proved in [6] that the number S of primes p < x
satisfying

y(p-vH-1 )
-a, • <a. 1<v<k

9%(p-v)



is greater than
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c(a, e)

By our methods we can obtain in that case

x
> e, (.a, e)

logx

After having passed to the additive function log (c, (n) /n) the proof is simi-
lar to the proof of Theorem 1. We use the fact, that log (g (-n?) /7t.) is always
negative, and apply the asymptotic formula for the number of primes in
arithmetical progression instead of (11) and the Brun-Titchmarsh theo-
rem instead of (13) .

We can also prove that there exists distribution function X ((' l , c 2 , . . . , et.)
defined as

lim- 1 N(p <x; 9~1(P+v)
X-CQ 7c(x)

	

p-v
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