Distributions of the values of some arithmetical functions

by

P. ERDÖS (Budapest) and A. SCHINZEL (Warszawa)

§ 1. Y. Wang and A. Schinzel proved, by Brun's method, the following theorem ([3]):

For any given sequence of h non-negative numbers a_1, a_2, \ldots, a_h and $\varepsilon > 0$, there exist positive constants $c = c(a, \varepsilon)$ and $x_0 = x_0(a, \varepsilon)$ such that the number of positive integers $n \leq x$ satisfying

$$\left| rac{arphi(n+i)}{arphi(n+i-1)} - a_i
ight| < arepsilon \qquad (1\leqslant i\leqslant h)$$

is greater than $cx/\log^{h+1}x$, whenever $x > x_0$.

They also proved the analogous theorem for the function σ .

Shao Pin Tsung, also using Brun's method, extended this result to all multiplicative positive functions $f_s(n)$ satisfying the following conditions ([4]):

I. For any positive integer l and prime number p:

$$\lim_{p \to \infty} \left(f_s(p^l)/p^{ls} \right) = 1 \quad (p \ denotes \ primes).$$

II. There exists an interval $\langle a, b \rangle$, a = 0 or $b = \infty$, such that for any integer M > 0 the set of numbers $f_s(N)/N^s$, where (N, M) = 1, is dense in $\langle a, b \rangle$.

(This formulation is not the same but equivalent to the original one.)

In this paper we shall show without using Brun's method that if we replace the condition I by the condition

$$\sum rac{(f_s(p)-p^s)^2}{p^{2s+1}} < \infty$$

(but preserving condition II) then there exist more than $C(a, \varepsilon)x$ posi-

tive integers $n \leq x$ for which

$$\left|rac{f_s(n+i)}{f_s(n+i-1)}-a_i
ight|$$

This theorem follows easily from the following stronger theorem.

THEOREM 1. Let f(n) be an additive function, satisfying the following conditions

1. $\sum_{p} (\|f(p)\|^2/p)$ is convergent, where $\|f\|$ denotes f(p) for $|f(p)| \leq 1$ and 1 for |f(p)| > 1.

2. There exists a number c_1 such that, for any integer M > 0, the set of numbers f(N), where (N, M) = 1 is dense in (c_1, ∞) .

Then, for any given sequence of h real numbers $a_1, a_2, ..., a_h$ and $\varepsilon > 0$, there exist more than $C(a, \varepsilon)x$ positive integers $n \leq x$ for which

(1)
$$|f(n+i)-f(n+i-1)-a_i| < \varepsilon$$
 $(i = 1, 2, ..., h);$

 $C(a, \varepsilon)$ is a positive constant, depending on ε and a_i .

LEMMA. There exists an absolute constant c such that the number of the integers of the form pq > x for which one can find $n \leq x$ satisfying $n \equiv b \pmod{a}$, $n \equiv 0 \pmod{p}$ and $n+1 \equiv 0 \pmod{q}$ is for $x > x_0(a)$ less than cx/a.

Proof. Let e_1, e_2, \ldots denote absolute constants. Assume $p > x^{1/2}$ $(q > x^{1/2}$ can be dealt similarly). Denote by $A_1(x)$ the number of integers of the form pq satisfying

$$pq > x, \quad x^{1-1/2^l} \leqslant p < x^{1-1/2^{l+1}}, \quad n \equiv b \ (ext{mod} a), \quad p|n, \ q|n+1,$$
 for some $n, \ 1 \leqslant n \leqslant y,$

and by $A'_{l}(x)$ the number of integers pq for which

$$x^{1-1/2^{l}}\leqslant p < x^{1-1/2^{l-1}}, \hspace{1em} q > x^{1/2^{l+1}}, \hspace{1em} n \equiv b \;(ext{mod}\, a), \hspace{1em} p|n, \hspace{1em} q|n+1, \ ext{for some } n, \hspace{1em} 1\leqslant n\leqslant x.$$

Clearly $A'_{l}(x) \ge A_{l}(x)$ and it will suffice to prove that for $x > x_{0}(a)$, $\sum_{i=1}^{\infty} A'_{l}(x) < cx/a$.

Define positive integer l_x by the inequality

$$2^{l_x} \geqslant \frac{1}{a} \log x > 2^{l_{x^{-1}}}.$$

The number k of integers n satisfying

(2) $n \leqslant x, \quad n \equiv b \pmod{a}, \quad n \equiv 0 \pmod{p}, \quad x^{1 - 1/2^l}$

for an $l \ge l_x$ does not exceed $\sum_{x \ge p > x^{1-2} - lx} \left(\left[\frac{x}{pa} \right] + 1 \right)$, thus by theorems of

Mertens and Chebyshev

$$k < \frac{c_1 x}{a 2^{l_x}} + \frac{c_2 x}{\log x}$$

and by the definition of l_x

$$k < \frac{c_3 x}{\log x}.$$

Denote the numbers satisfying (2) for an $l \ge l_x$ by $a_1 < a_2 < \ldots < a_k \le x$. Since for all $y \le x$, $v(y) < c_4 \log x / \log \log x$ (from the prime number theorem or from more elementary results), we have

(3)
$$\sum_{l \ge l_x} A'_l(x) \leqslant \sum_{i=1}^{\kappa} \nu(a_i) < \frac{c_3 x}{\log x} \cdot \frac{c_4 \log x}{\log \log x} < \frac{c_5 x}{a}$$

for $x > x_1(a)$.

For $l < l_x$ denote numbers satisfying (2) by $a_1^{(l)} < a_2^{(l)} < \ldots < a_{k_l}^{(l)}$. Similarly as for k we have for k_l the inequality

$$k_l < rac{c_6 x}{a 2^{l-1}} + rac{c_2 x}{\log x}$$

hence by $l < l_x$

$$(4) k_l < \frac{e_7 x}{a \cdot 2^l}$$

We shall prove that for $l < l_x$ and sufficiently large x

(5)
$$A'_{l}(x) = \sum_{i=1}^{n_{l}} v_{l}(a_{i}^{(l)} + 1) < \frac{c_{8}x}{a \cdot l^{2}}$$

where $v_l(m)$ denotes the number of prime factors $> x^{1/2^{l+1}}$ of m.

For this purpose, we split the summands of the sum (5) into two classes. In the first class are the integers $a_i^{(l)}$ for which $v_l(a_i^{(l)}+1) \leq 2^l/l^2$. From (4) it follows that the contribution of these integers $a_i^{(l)}$ to (5) is less than $c_7 x/al^2$. The integer in the second class satisfy $v_l(a_i^{(l)}+1) > 2^l/l^2$. Thus these integers are divisible by more than $2^l/l^2$ primes $q > x^{1/2^{l+1}}$. Thus the number of integers of the second class is less than

$$\begin{aligned} \frac{x \Big(\sum\limits_{x^{1/2^{l+1}}$$

for $l > c_{10}$, $x > x_2(a)$. By definition, $v_l(a_l^{(l)}+1) < 2^{l+1}$. Thus, for $l > c_{10}$, the contribution of the numbers of the second class to (5) is $< x/a \cdot 2^{l-1}$; for $l \leq c_{10}$ the contribution is clearly $< 2^{c_{10}+1}x$. Thus, for $l < l_x$, $x > x_2(a)$,

$$A_l'(x) < c_8 x/al^2$$

and in view of (3) we have for $x > x_0(a)$

$$\sum_{l=1}^{\infty} A_{l}'(x) < \frac{c_{5}x}{a} + \sum_{l < l_{x}} \frac{c_{8}x}{al^{2}} < \frac{c_{x}}{a}$$

which proves the Lemma.

Proof of the theorem. Let ε be a positive number and let a sequence a_i (i = 1, 2, ..., h) be given.

By condition 2 we can find positive integers N_0, N_1, \ldots, N_h such that

(6)
$$(N_i, (h+1)!) = 1$$
 $(i = 0, 1, ..., h), (N_i, N_j) = 1$ $(0 \le i < j \le h),$
 $f(N_0) > c_1 + \max_{1 \le i \le h} \{f(i+1) - \sum_{j=1}^i a_j\}$

and

$$\left|f(N_i)-\left\{f(N_0)-f(i+1)+\sum_{j=1}^i a_j\right\}\right|<rac{1}{4}arepsilon$$
 $(1\leqslant i\leqslant h);$

hence

(7)
$$|f((i+1)N_i)-f(iN_{i-1})-a_i| < \frac{1}{2}\varepsilon \quad (1 \leq i \leq h).$$

Let k_1 be the greatest prime factor of $N_0 N_1 \dots N_h$. Put $\mu = \varepsilon/\sqrt{96hc}$ (c is the constant of the Lemma). By condition 1, $\sum_{|f(p)| \ge \mu} (1/p)$ is convergent. Since $\sum_{\nu} (1/p^2)$ is also convergent, there exists a k_2 such that

(8)
$$\sum_{\substack{|f(p)| \ge \mu \\ p > k_2}} \frac{1}{p} + \sum_{p > k_2} \frac{1}{p^2} < \frac{1}{3(h+1)}.$$

Finally by condition 1 there exists a k_3 such that

(9)
$$\sum_{\substack{|f(p)| < \mu \\ p > k_3}} \frac{f(p)^2}{p} < \frac{\varepsilon^2}{48h}.$$

Let us put

$$k = \max(k_1, k_2, k_3), \quad N = N_1 N_2 \dots N_h, \quad P = \prod_{\substack{p \leq k \\ p \neq N}} p, \; Q = (h+1)! N^2 P$$

and let us consider the following system of congruences

 $n\equiv 1\ (\mathrm{mod}\,(h\!-\!1)!P), \quad n\equiv -i\!+\!N_i\ (\mathrm{mod}\,N_i^2), \quad 0\leqslant i\leqslant h.$

By (6) and the Chinese Remainder Theorem there exists a number n_0 satisfying these congruences.

It is easy to see that

- (10) for every integer t the numbers $(Qt+n_0+i)/(i+1)Ni$ (i = 1, 2, ..., h)are integers which are not divisible by any prime $\leq k$;
- (11) the number of terms not exceeding x of the arithmetical progression $Qt + n_0$ is x/Q + O(1).

In order to prove Theorem 1 we shall estimate the number of integers n of the progression $Qt + n_0$ which satisfy the inequalities

(12)
$$n \leq x$$
, $\sum_{i=1}^{h} \left(f(n-i) - f(n+i-1) - f((i+1)N_i) + f(iN_{i-1}) \right)^2 > \frac{1}{4}\varepsilon^2$.

We divide the set of integers $n \equiv n_0 \pmod{Q}$ for which the inequalities (12) hold into two classes. Integers n such that $n(n+1)\dots(n+h)$ is divisible by a prime p > k with $|f(p)| \ge \mu$, or by p^2 , p > k, are in the first class and all other integers are in the second class.

(13) The number of integers $n \leq x$, $n \equiv r \pmod{Q}$ which are divisible by a given integer d > 0 is equal to x/dQ + O(1) for (d, Q) = 1,

hence the number of integers $n \leqslant x, \ n \equiv n_0 \pmod{Q}$ of the first class is less than

$$(h+1)\frac{x}{Q}\Big(\sum_{\substack{p>k\\|f(p)|\geqslant\mu}}\frac{1}{p}-\sum_{p>k}\frac{1}{p^2}\Big)+O\Big(\sum_{\substack{p\leqslant x+h}}1+\sum_{p^2\leqslant x+h}1\Big).$$

By the inequality (8) and the definition of k this number is less than $\frac{1}{3}x/Q + o(x)$.

For the integers of the second class, by remark (10) we have

$$\begin{split} \sum_{n}^{\prime\prime} \sum_{i=1}^{h} \left(f(n+i) - f(n+i-1) - f((i-1)N_i) + f(iN_{i-1}) \right)^2 \\ &= S = \sum_{n}^{\prime\prime} \sum_{i=1}^{h} \left\{ \sum_{\substack{p \mid n+i \\ p > k}} f(p) - \sum_{\substack{p \mid n+i-1 \\ p > k}} f(p) \right\}^2, \end{split}$$

where \sum'' means that the summation runs through the integers of the second class. In view of remark (13), since (Q, p) = 1 we have

$$\begin{split} S &\leqslant \sum_{\substack{n = n_0 \pmod{Q} \\ n \leqslant x}} \sum_{i=1}^h \Big\{ \sum_{\substack{p \mid n+i \\ p > k, |f(p)| < \mu}} f(p) - \sum_{\substack{p \mid n-i-1 \\ p > k, |f(p)| < \mu}} f(p) \Big\}^2 \\ &= \sum_{\substack{x+h \geqslant p > k \\ |f(p)| < \mu}} f^2(p) \Big(\frac{2hx}{Qp} + O(1) \Big) + \\ &+ \sum_{\substack{n = n_0 \pmod{Q} \\ n \leqslant x}} \sum_{i=1}^h \Big\{ 2 \sum_{\substack{pq \mid n-i, q > p > k, \\ |f(p)| < \mu, |f(q)| < \mu}} f(p) f(q) + \\ &+ 2 \sum_{\substack{pq \mid n+i-1, q > p > k \\ |f(p)| < \mu, |f(q)| < \mu}} f(p) f(q) - 2 \sum_{\substack{p \mid n+i, q \mid n+i-1, q > k \\ p > k, |f(p)| < \mu, |f(q)| < \mu}} f(p) f(q) \Big\} \\ &\leqslant \frac{2hx}{Q} \sum_{p > k, |f(p)| < \mu} \frac{f^2(p)}{p} + \sum_{\substack{n = n_0 \pmod{Q} \\ n \leqslant x}} \sum_{i=1}^h 2 \sum_{\substack{p \mid n+i, q \mid n+i-1 \\ p > k, |f(p)| < \mu, |f(q)| < \mu}} |f(p) f(q)| + \\ &+ O\Big(\sum_{\substack{p \leqslant x+h \\ |f(p)| < \mu, |f(q)| < \mu}} f^2(p) + \sum_{\substack{p \mid n+i, q \mid n+i-1 \\ p \geq x, p > k, q > k \\ |f(p)| < \mu, |f(q)| < \mu}} |f(p) f(q)| \Big). \end{split}$$

Thus finally from (9), Lemma, the equality $\mu^2 = \varepsilon^2/96hc$ and from the fact that the number of integers of the form pq not exceeding x+h is o(x), we get

$$S < \frac{\varepsilon^2}{12} \cdot \frac{x}{Q} + o(x).$$

Thus the number of integers of the second class is less than $\frac{1}{3}x/Q + o(x)$.

Hence there exist less than $\frac{2}{3}x/Q + o(x)$ positive integers $n \leq x$, $n \equiv n_0 \pmod{Q}$ for which

$$\sum_{i=1}^{h} \left(f(n+i) - f(n+i-1) - f((i+1)N_i) + f(iN_{i-1}) \right)^2 > \frac{1}{4} \varepsilon^2$$

Therefore by (11) there exist more than $\frac{1}{3}x/Q + o(x)$ positive integers $n \leq x$, for which

$$\sum_{i=1}^{h} \left(f(n+i) - f(n+i-1) - fig((i+1)\,N_iig) - f(iN_{i-1})ig)^2 \leqslant rac{1}{4}arepsilon^2$$

and then

$$\begin{split} \left|f(n+i)-f(n+i-1)-f((i+1)N_i)+f(iN_{i-1})\right| &\leq \frac{1}{2}\varepsilon \quad (i=1,2,\ldots,h).\\ \text{In view of (7), the proof is complete.} \end{split}$$

THEOREM 2. Let f(n) be an additive function satisfying the conditions of Theorem 1 and such that partial sums of $\sum(||f(p)||/p)$ are bounded:

(14)
$$A > |S_k|, \quad S_k = \sum_{p \leqslant k} \frac{\|f(p)\|}{p}.$$

Then for any given natural number h there exists a number c_h such that for any $\varepsilon > 0$ and every sequence of h numbers: $a_1, a_2, \ldots, a_h \ge c_h$, there exist more than $C(a, \varepsilon)x$ positive integers $n \le x$, for which

(15)
$$|f(n+i)-a_i| < \varepsilon \quad (i = 1, 2, ..., h).$$

 $C(a, \varepsilon)$ is a positive constant, depending on ε and a_i .

Proof. Let ε be a positive number, $c_h = c_1 + \max f(i)$ and let a sequence $a_i \ge c_h$ (i = 1, 2, ..., h) be given.

By condition 2 we can find positive integers N_1, N_2, \ldots, N_h such that

(16)
$$(N_i, h!) = 1$$
 $(i = 1, 2, ..., h),$ $(N_i, N_j) = 1$ $(1 \le i < j \le h)$
and

(17)
$$|f(N_i) - a_i + f(i)| < \frac{1}{2}\varepsilon$$
 $(i = 1, 2, ..., h).$

Let k_1 be the greatest prime factor of $N_1 N_2 \dots N_h$. Let C be an absolute constant such that

$$\sum_{y \leqslant p < z} rac{1}{p} < C \mathrm{log} rac{\mathrm{log} z}{\mathrm{log} y} \quad ext{ for all } \quad z > y > 1 \,.$$

Put $\mu = \varepsilon/7C\sqrt{h}$. By condition 1, $\sum_{|t(p)| \ge \mu} (1/p)$ is convergent. Since $\sum (1/p^2)$ is also convergent, there exists a k_2 such that

(18)
$$\sum_{|I(p)| \ge \mu, p > k_2} \frac{1}{p} + \sum_{p > k_2} \frac{1}{p^2} < \frac{1}{3h}.$$

By condition 1 there exists also a k_3 such that

(19)
$$\sum_{p>k_3, |f(p)|<\mu} \frac{f(p)^2}{p} < \frac{\varepsilon^2}{24h}$$

Put $\eta = \varepsilon/\sqrt{96h}$, $B = A \pm 1/3h$ and denote by I_r the interval $[\nu\eta - \frac{1}{2}\eta, \nu\eta \pm \frac{1}{2}\eta]$, $\nu = 0, \pm 1, \pm 2, \dots, \pm [B/\eta \pm 1]$

and let k_r be the least integer $k > \max(k_1, k_2, k_3)$ such that $\sum_{p \le k, |f(p)| \le \mu} (f(p)/p) \in I_r$ if such integers k exist, otherwise let $k_r = 1$.

Now if $\sum_{p \leqslant x+k, |f(p)| < \mu} (f(p)/p) \epsilon I_{\nu_x}$ —by the condition (14) and by (18) such ν_x certainly exists—we put $k_{\nu_x} = k$ and then we get

(20)
$$\sum_{\substack{x+\bar{h} \gg p > k \\ |f(p)| \le n}} \frac{f(p)}{p} < \eta, \quad k \le \max_{\substack{|r| \le |B/\eta| + 1 \\ |r| \le |B/\eta| + 1}} k_r = \bar{k}.$$

Let \sum' denote that the summation runs through all primes p, q satisfying conditions $p > q > k, pq \leq x-h, |f(p)| < \mu, |f(q)| < \mu$. From (20) we get

$$(21) \quad 2 \sum_{x+h \ge p+k} \frac{f(p)f(q)}{pq} \leqslant \left(\sum_{\substack{x+h \ge p+k \\ |l(0)| \le u}} \frac{f(p)}{p}\right)^2 + \sum_{x-h \ge p > 1, \overline{x+h}} \frac{\mu}{p} \sum_{x+h \ge q > \frac{x+h}{p}} \frac{\mu}{q}$$
$$\leqslant \frac{\varepsilon^2}{96h} + \sum_{l=2}^{\infty} \sum_{(x+h+1)^{1-1/2l} > p \ge (x-h+1)^{1-1/2l-1}} \frac{\mu}{p} \sum_{x+h \ge q > \frac{x+h}{p}} \frac{\mu}{q}$$
$$\leqslant \frac{\varepsilon^2}{96h} + \mu^2 C^2 \sum_{l=2}^{\infty} \frac{l}{2^l} = \frac{\varepsilon^2}{96h} + \mu^2 C^2 \frac{3}{2} < \frac{\varepsilon^2}{24h}.$$
Let us put $N = N_1 N_2 \dots N_h, \quad P = \prod_{p \le k, p \neq N} p,$

(22)
$$Q = h! N^2 P \leqslant h! N^2 \prod_{p \leqslant \bar{k}, p \notin N} p = \bar{Q}$$

and let us consider the following system of congruences:

$$n\equiv 0\ (\mathrm{mod}\,h\,!P), \quad n\equiv -\,i\!+N_i\ (\mathrm{mod}\,N_i^2).$$

By (16) and the Chinese Remainder Theorem there exists a number n_0 satisfying these congruences.

It is easy to see, that

(23) for every integer t the numbers $\frac{Qt+n_0+i}{iN_i}$ (i = 1, 2, ..., h) are integers, which are not divisible by any prime $\leq k$.

Analogously, as in the proof of Theorem 1, we shall estimate the number of integers n of the progression $Qt + n_0$, which satisfy the inequalities

(24)
$$n \leqslant x, \quad \sum_{i=1}^{h} (f(n+i) - f(iN_i))^2 > \frac{1}{4}\varepsilon^2.$$

We divide the set of integers $n \equiv n_0 \pmod{Q}$, for which the inequalities (24) hold, into two classes. Integers n such that (n+1)(n+2)...(n+h) is divisible by a prime p > k with $|f(p)| \ge \mu$ or by p^2 , p > k, are in the first class and all others integers are in the second class.

By remark (13) the number of integers $n \leq x$, $n \equiv n_0 \pmod{Q}$ of the first class is less than

$$h \, rac{x}{Q} igg(\sum_{p > k, \, |f(p)| \geqslant \mu} rac{1}{p} + \sum_{p > k} rac{1}{p^2} igg) + O igg(\sum_{p \leqslant x+h} 1 + \sum_{p^2 \leqslant x+h} 1 igg).$$

By the inequality (18) and the definition of k this number is less than $\frac{1}{3}x/Q + o(x)$.

For the integers of the second class, by remark (23), we have

$$\sum_{i=1}^{h} (f(n+i) - f(iN_i))^2 = \sum_{i=1}^{h} \left(\sum_{p \mid n+i, p > k} f(p) \right)^2$$

and

$$\sum_{n}^{\prime\prime} \sum_{i=1}^{h} \left(f(n+i) - f(iN_i) \right)^2 = \sum_{n}^{\prime\prime} \sum_{i=1}^{h} \left(\sum_{p \mid n+i, p > k} f(p) \right),$$

where $\sum_{n}^{\prime\prime}$ means that the summation runs through the integers of the second class. In view of remark (13), we have

$$\begin{split} \sum_{n}^{\prime\prime} \sum_{i=1}^{h} (f(n+i) - f(iN_{i}))^{2} &\leqslant \sum_{\substack{n \equiv n_{0} \pmod{Q} \\ n \leqslant x}} \sum_{i=1}^{h} \left(\sum_{\substack{p \mid n-i, p > k}} f(p) \right)^{2} \\ &= \sum_{\substack{x+h \geqslant p > k \\ |f(p)| \leqslant \mu}} f^{2}(p) \left(\frac{hx}{Qp} + O(1) \right) + 2 \sum_{i}^{\prime} f(p) f(q) \left(\frac{hx}{Qpq} + O(1) \right) \\ &\leqslant \frac{hx}{Q} \left(\sum_{\substack{p > k, |f(p)| \leqslant \mu}} \frac{f^{2}(p)}{p} + 2 \sum_{i}^{\prime} \frac{f(p) f(q)}{pq} \right) + \\ &+ O\left(\sum_{\substack{p \leqslant x+h \\ |f(p)| \leqslant \mu}} f^{2}(p) + \sum_{i}^{\prime} |f(p) f(q)| \right). \end{split}$$

Thus, finally from (19), (21) and from the fact that the number of integers of the form pq not exceeding x+h is o(x) we get

$$\sum^{\prime\prime}\sum_{i=1}^{n}{(f(n+i)-f(iN_i))^2} < rac{arepsilon^2}{12}\cdotrac{x}{Q}+o(x)$$

Acta Arithmetica VI

Thus the number of integers of the second class is less than $\frac{1}{3}x/Q + o(x)$.

Hence, there exist less than $\frac{2}{3}x/Q + o(x)$ positive integers $n \leq x$, $n \equiv n_0 \pmod{Q}$ for which

$$\sum_{i=1}^{h} (f(bn+i) - f(iN_i))^2 > \frac{1}{4} \varepsilon^2.$$

By (11) and (22) there exist, therefore, more than $\frac{1}{3}x/\bar{Q} + o(x)$ positive integers $n \leq x$, for which

$$\sum_{i=1}^{h} \left(f(n+i) - f(iN_i)
ight)^2 \leqslant rac{1}{4}arepsilon^2,$$

and then

$$|f(n+i)-f(iN_i)| \leqslant \frac{1}{2}\varepsilon \quad (i=1,2,\ldots,h).$$

In view of (16) and (17), this completes the proof.

Theorem 2 is best possible. Assume only that there exists an a and a c > 0 so that the number of integers $n \leq x$ satisfying |f(n)| < a is greater than cx.

Then $\sum \frac{\|f(p)\|^2}{p}$ converges and $\sum \frac{\|f(p)\|}{p}$ has bounded partial sums. In the paper [2], P. Erdös proved (¹) the following theorem:

If there exist two constants c_1 and c_2 and an infinite sequence $x_k \to \infty$ so that for every x_k there are at least $c_1 x_k$ integers:

$$1 \leqslant a_1 < a_2 < \ldots < a_l \leqslant x_k, \quad l \geqslant c_1 x_k,$$

for which

$$|f(a_i) - f(a_j)| < c_2, \quad 1 \leqslant i < j \leqslant l,$$

then

$$f(n) = a \log n + g(n), \quad where \quad \sum \frac{\|g(p)\|^2}{p} < \infty.$$

In our case the conditions of this theorem are clearly satisfied and, in fact, we clearly must have $\alpha = 0$. This implies that

$$\sum \frac{\|f(p)\|^2}{p} < \infty.$$

^{(&}lt;sup>1</sup>) The proof of Lemma 8 [2] is not clear and on p. 15 needs more details similar to these given above.

Assume now that $\sum (||f(p)||/p)$ does not have bounded partial sums. Let e.g. $\sum_{p < x} (||f(p)||/p) = A$, A large. Then by the method of Turán ([5], cf. also [2]) we obtain

$$\sum_{n=1}^x \big(f(n)-A\big)^2 < c_3 x$$

which implies that |f(n)-A| < A-a for all but ηx integers $n \leq x$, where $\eta = c_3/(A-a)^2$. For sufficiently large A, it contradicts the assumption that |f(n)| < a has cx solutions $n \leq x$, thus the proof is complete.

In Theorem 1 one can replace $\sum (||f(p)||^2/p) < \infty$ by: there is an a so that if we put $f(n) - a\log n = g(n)$ then $\sum (||g(p)||^2/p) < \infty$. We think that here we again have a necessary and sufficient condition, but we cannot prove this. In fact, we conjecture that if there exist an a and an c > 0 such that the number of integers $n \leq x$ satisfying |f(n+1)-f(n)| < a is > cx, then

$$f(n) = a \log n + g(n)$$
 with $\sum \frac{\|g(p)\|^2}{p} < \infty$

§ 2. The proof of Theorem 2 is very similar to the proof of Lemma 1 of P. Erdös' paper [1]. Using ideas and results from that paper we can prove the following theorem.

THEOREM 3. Let f(n) be an additive function satisfying condition 1 of Theorem 1 and let $\sum_{f(p)\neq 0} (1/p)$ be divergent, $\sum (||f(p)||/p)$ convergent, then the distribution function of h-tuples $\{f(m+1), f(m+2), \ldots, f(m+h)\}$ exists, and it is a continuous function.

Proof. We denote by $N(f; c_1, c_2, ..., c_h)$ the number of positive integers *m* not exceeding *n*, for which

$$f(m\!+\!i) \geqslant c_i, \quad i=1,2,...,h,$$

where c_i are given constants.

It is sufficient to consider, as in [1], the special case in which, for any $a, f(p^a) = f(p)$, so that

$$f(m) = \sum_{p|m} f(p).$$

Let us also consider the function $f_k(m) = \sum_{\substack{p \mid m, p \leq k}} f(p)$. We are going to show that the sequence $N(f_k; c_1, c_2, \ldots, c_h)/n$ is convergent. For, if we denote by $A_{i,j}$ $(j \leq j_{0,i})$ the squarefree integers whose prime factors are not greater than k, and for which $f_k(A_{i,j}) \geq c_i$, we can see that the integers m for which

$$f_k(m\!+\!i) \geqslant c_i \quad (i=1,2,...,h)$$

are distributed periodically with the period $\prod_{\substack{1 \leq i \leq h \\ 1 \leq j \leq j_0, i}} A_{i,j}$. Hence $N(f_k; c_1, d_k)$.

 $c_2, \ldots, c_h)/n$ has a limit.

To prove the existence of a limit of $N(f; c_1, c_2, ..., c_h)/n$ it is sufficient to show that for arbitrary $\varepsilon > 0$ there exists k_0 such that for every $k > k_0$ and $n > n(\varepsilon)$

$$|N(f; c_1, c_2, \ldots, c_h) - N(f_k; c_1, c_2, \ldots, c_h)|/n < \varepsilon.$$

To show this, it is enough to prove that the number of integers $m \leq n$ for which there exists $i \leq h$ such that $f_k(m+i) < c_i$ and $f(m+i) \geq c_i$ or $f_k(m+i) \geq c_i$ and $f(m+i) < c_i$ is less than ϵhn . But it is an immediate consequence of the analogous theorem for h = 1 proved in [1], p. 123.

In order to prove that the distribution function is continuous we must show that for every $\varepsilon > 0$, there exists a $\delta > 0$, such that

$$\Delta = N(f; c_1 - \delta, c_2 - \delta, \dots, c_h - \delta) - N(f; c_1 + \delta, c_2 + \delta, \dots, c_h + \delta) < \varepsilon.$$

Now

$$\Delta = \sum_{i=1}^{h} \{ N(f; c_1 + \delta, \dots, c_{i-1} + \delta, c_i - \delta, \dots, c_h - \delta) - N(f; c_1 + \delta, \dots, c_i + \delta, c_{i+1} - \delta, \dots, c_h - \delta) \}$$

and by Lemma 2 of [1] each term of this sum is less than ε/h for suitably chosen δ . This completes the proof.

We conclude from Theorems 2 and 3 that if an additive function f satisfies conditions 1, 2, $\sum_{f(p)\neq 0} (1/p)$ is divergent and $\sum (||f(p)||/p)$ convergent, then the distribution function of $\{f(m+1), \ldots, f(m+h)\}$ exists, is continuous and strictly decreasing on some half straight-line, thus the sequence of integers n for which inequality (15) holds has a positive density. Similarly we can prove the following:

THEOREM 4. Assume that $\sum_{f(p)\neq 0} \frac{1}{p} = \infty$ and that $\sum \frac{\|f(p)\|^2}{p} < \infty$ then $\{f(n+1)-f(n), f(n+2)-f(n+1), \dots, f(n+k)-f(n+k-1)\}$ has a continuous distribution function.

It is easy to see that condition 2 can be replaced by the conditions

$$\lim_{p \to \infty} f(p) = 0$$
 and $\sum_p |f(p)| = \infty$.

§ 3. Y. Wang proved in [6] that the number N of primes p < x satisfying

$$\left| rac{arphi(p+
u+1)}{arphi(p+
u)} - a_{_{r}}
ight| < arepsilon, \quad 1 \leqslant
u \leqslant k$$

is greater than

$$e(a, \varepsilon) \frac{x}{(\log x)^{k+2} \log \log x}$$
.

By our methods we can obtain in that case

$$N > c_1(a, \varepsilon) \frac{x}{\log x}.$$

After having passed to the additive function $\log(\varphi(n)/n)$ the proof is similar to the proof of Theorem 1. We use the fact, that $\log(\varphi(n)/n)$ is always negative, and apply the asymptotic formula for the number of primes in arithmetical progression instead of (11) and the Brun-Titchmarsh theorem instead of (13).

We can also prove that there exists distribution function $N(c_1, c_2, ..., c_k)$ defined as

$$\lim_{x o \infty} rac{1}{\pi(x)} \, N(p < x; rac{arphi(p+
u)}{p+
u} \geqslant c_
u, \quad
u=1,\,2,\ldots,\,k).$$

References

[1] P. Erdös, On the density of some sequences of numbers, III, J. London Math. Soc. 13 (1938), pp. 119-127.

[2] P. Erdös, On the distribution function of additive functions, Ann. of Math. 47 (1946), pp. 4-20.

[3] A. Schinzel and Y. Wang, A Note on some properties of the functions $\varphi(n)$, $\sigma(n)$ and $\theta(n)$, Bull. Acad. Polon. Sci. Cl. III 4 (1956), 207-209 and Ann. Pol. Math. 4 (1958), pp. 201-213.

[4] Shao Pin Tsung, On the distribution of the values of a class of arithmetical functions, Bull. Acad. Polon. Sci., Cl. III 4 (1956), pp. 569-572.

[5] P. Turán, On a theorem of Hardy and Ramanujan, J. London Math. Soc. 9 (1934), pp. 274-276.

[6] Y. Wang, A note on some properties of the arithmetical functions $\varphi(n)$, $\sigma(n)$ and d(n), Acta Math. Sinica, 8 (1958), pp. 1-11.

Reçu par la Rédaction le 1.10.1960