INTERSECTION THEOREMS FOR SYSTEMS OF SETS

P. ERDÖS and R. RADO[†]

A version of Dirichlet's box argument asserts that given a positive integer a and any a^2+1 objects $x_0, x_1, \ldots, x_{a^2}$, there are always a+1 distinct indices ν ($0 \leq \nu \leq a^2$) such that the corresponding a+1 objects x_{ν} are either all equal to each other or mutually different from each other. This proposition can be restated as follows. Let N be an index set of more than a^2 elements and let, for each element ν of N, X_{ν} be a one-element set. Then there is a subset N' of N having more than a elements, such that all intersections $X_{\mu}X_{\nu}$ corresponding to distinct elements μ , ν of N' have the same value. In this note we investigate extensions of this principle to cases when the sets X_{ν} are of any prescribed cardinal b. Both a and b are given cardinals, finite or infinite. In the case of finite a and b we obtain estimates for the number which corresponds to a^2 in Dirichlet's case, and we show that when at least one of a and b is infinite then a^{b+1} is the best possible value of that number.

We introduce some definitions[‡]. A system $\Sigma_1: Y_{\nu} (\nu \in N)$ of sets Y_{ν} , where ν ranges over the index set N, is said to *contain* the system $\Sigma_0: X_{\mu} (\mu \in M)$ if, for every μ_0 of M, the set X_{μ_0} occurs in Σ_1 at least as often as in Σ_0 , i.e. if

$$\{
u : \nu \in N; Y_{\nu} = X_{\mu_0}\} | \ge |\{\mu : \mu \in M; X_{\mu} = X_{\mu_0}\}|.$$

If Σ_1 contains Σ_0 and, at the same time, Σ_0 contains Σ_1 , then we do not distinguish between the systems Σ_0 and Σ_1 .

The system Σ_0 is called a (a, b)-system if it consists of a (not necessarily distinct) sets of cardinal b, i.e., if |M| = a and $|X_{\mu}| = b$ for $\mu \in M$. The system Σ_0 is called a Δ -system if it has the property that the intersections of any two of its sets have the same value, i.e. if for

$\mu_0,\,\mu_1,\,\mu_2,\,\mu_3\,\varepsilon\,M\,;\,\,\mu_0\neq\mu_1\,;\,\,\mu_2\neq\mu_3$

we always have $X_{\mu_0}X_{\mu_1} = X_{\mu_2}X_{\mu_3}$. More specifically, Σ_0 is a $\Delta(a)$ -system with kernel K if |M| = a and $X_{\mu_0}X_{\mu_1} = K$ whenever $\mu_0, \mu_1 \in M$; $\mu_0 \neq \mu_1$. In the special case when |M| = 1, say $M = \{\mu_0\}$, we stipulate that $K \subset X_{\mu_0}$, and the empty system Σ_0 , for which $M = \emptyset$, is considered as a $\Delta(0)$ -system with any arbitrary set K as kernel. Expressions such as

$$(>a, \leqslant b)$$
-system, $\Delta(>a)$ -system

have their obvious meaning. Trivially, every (>a, 0)-system is a Δ -system, and the box principle stated above asserts that every

[†] Received 5 December, 1958; read 18 December, 1958.

^{*} The cardinal of the set A is denoted by |A|, and set union by A+B or $\Sigma(\nu \in N) A_{\nu}$ and set intersection by AB or $\Pi(\nu \in N) A_{\nu}$. $A \subset B$ denotes inclusion, in the wide sense. We use the obliteration operator \uparrow whose effect consists in removing from a well-ordered series the term above which it is placed. Unless the contrary is stated all sets are allowed to be empty. § Not necessarily distinct sets but sets having distinct indices μ .

[[]JOURNAL LONDON MATH. Soc. 35 (1960), 85-90]

 $(>a^2, 1)$ -system contains a $\Delta(>a)$ -system. In what follows a and b denote arbitrary cardinals, and b^+ is the next larger cardinal to b.

THEOREM I.

- (i) If $a, b \ge 1$ then every $(>b^+b^b a^{b+1}, \le b)$ -system contains $a \triangle (>a)$ -system.
- (ii) If $a \ge 2$; $b \ge 1$; $a+b \ge \aleph_0$ then every $(>a^b, \le b)$ -system contains $a \Delta(>a)$ -system.

THEOREM II. For every a, b such that $a, b \ge 1$ there exists a (a^{b+1}, b) -system which does not contain any $\Delta(>a)$ -system.

THEOREM III. If $1 \leq a, b < \aleph_0$ and

$$c = b! a^{b+1} \left(1 - \frac{1}{2!a} - \frac{2}{3!a^2} - \dots - \frac{b-1}{b!a^{b-1}} \right)$$
(1)

then every $(>c, \leqslant b)$ -system contains a $\Delta(>a)$ -system.

Remarks. 1. It follows from II that I(ii) is best possible, in the sense that, for $a \ge 2$; $b \ge 1$; $a+b \ge \aleph_0$ not every $(a^b, \le b)$ -system contains some $\Delta(>a)$ -system.

2. The (a^{b+1}, b) -system of Theorem II will be constructed explicitly.

3. For a = 2; b = 2 the result III is best possible. For we have c = 12, and the following (12, 2)-system does not contain any $\Delta(3)$ -system.

01, 01, 23, 23, 04, 04, 14, 14, 25, 25, 35, 35, where $xy = \{x, y\}$.

However, for a = 3; b = 2 Theorem III is not best possible. By II we see that III is best possible except for a factor between 1 and b!.

It is not improbable that in (1) the factor b! can be replaced by c_1^{b} , for some absolute positive constant c_1 . Such a sharpened version of III would have some applications in the theory of numbers, and in fact these applications originally gave rise to the present investigations.

Before proving Theorem I we establish a simple lemma which is at the root of a large number of combinatorial arguments.

RAMIFICATION LEMMA. Let α_0 be an ordinal, $c_0, c_1, ..., \hat{c}_{\alpha_0}$ be cardinals; let S be a set and $M(s_0, s_1, ..., \hat{s}_{\alpha})$ be a subset of S defined for $\alpha < \alpha_0$ and $s_0, ..., \hat{s}_{\alpha} \in S$, such that $|M(s_0, ..., \hat{s}_{\alpha})| \leq c_{\alpha}$. Let V be a set of "vectors" $(s_0, s_1, ..., \hat{s}_{\alpha_0})$ such that $s_0, ..., \hat{s}_{\alpha_0} \in S$ and

$$s_{\alpha} \in M (s_0, \dots, \hat{s}_{\alpha}) \text{ for } \alpha < \alpha_0.$$

$$|V| \leqslant c_0 c_1 \dots \hat{c}_{\alpha_0}.$$
(2)

Proof. For every subset S' of S choose a representation of the form $S' = \{t_0, t_1, ..., \hat{t}_k\}_{\neq}$, where k is the initial ordinal belonging to |S'|.

4

Then

Define $\phi(S', t)$ for $t \in S'$ by putting $\phi(S', t_{\kappa}) = \kappa$ ($\kappa < k$). Now let $s = (s_0, ..., \hat{s}_{\alpha_0}) \in V$. Then, by (2), we can define an ordinal $\kappa(\alpha, s)$ by putting

$$\begin{split} \kappa(\alpha, s) &= \phi \Big(M(s_0, \, \dots, \, \hat{s}_{\alpha}), \, s_{\alpha} \Big) \quad (\alpha < \alpha_0), \\ \psi(s) &= \Big(\kappa(0, \, s), \, \kappa(1, \, s), \, \dots, \, \hat{\kappa}(\alpha_0, \, s) \Big). \end{split}$$

and a vector y

Then $|\kappa(\alpha, s)| < c_{\alpha}$, and $s \neq s'$ implies $\psi(s) \neq \psi(s')$ as can be seen by considering the least α with $s_{\alpha} \neq s_{\alpha}'$. We conclude that

$$|V| = |\{s: s \in V\}| = |\{\psi(s): s \in V\}| \leq c_0 c_1 \dots c_{\alpha_0}.$$

Proof of Theorem I. We suppose that the system

$$\Sigma: X_{\nu} \quad (\nu \in N)$$

is a $(|N|, \leq b)$ -system which does not contain any $\Delta(>a)$ -system, and our aim is to deduce that

$$|N| \leqslant b + b^b a^{b+1}.\tag{3}$$

Throughout the proof the letters α , β denote ordinals such that $|\alpha|, |\beta| \leq b$, and μ, ν denote elements of N. A subset N' of N is called a Δ -set with kernel K if the system $X_{\nu}(\nu \in N')$ is a Δ -system with kernel K. Put $X = \Sigma (\nu \in N) X_{\nu}$ and choose an object θ such that $\theta \notin X$. Well-order the sets X and N as well as the set of all subsets of N.

We define elements $f_{\alpha}(\nu)$ as follows. Let α_0 be fixed, and suppose that $f_{\alpha}(\nu)$ has already been defined for $\alpha < \alpha_0$ and for all ν , and that

$$f_{\alpha}(\nu) \in X_{\nu} + \{\theta\} \quad (\alpha < \alpha_0; \nu \in N).$$

Let $\nu_0 \in N$. We now proceed to define $f_{\alpha_0}(\nu_0)$. Put, for any functions $g_0(\nu), \ldots, \hat{g}_{\alpha_0}(\nu)$ defined for $\nu \in N$ and for any $x_0, \ldots, \hat{x}_{\alpha_0} \in X + \{\theta\}$

$$F(g_0, ..., \hat{g}_{\alpha_0}; x_0, ., \hat{x}_{\alpha_0}) = N \prod (\alpha < \alpha) \{ \nu : g_\alpha(\nu) = x_\alpha \}.$$

Let $N' \subset N$; $K \subset X + \{\theta\}$. Put

$$H(N') = \Sigma(\nu \in N') X_{\nu}$$

and define $\Gamma(N', K)$ to be the first subset N'' of N such that (i) $N'' \subset N'$, (ii) N'' is a Δ -set with kernel K, (iii) N'' is maximal such that (i), (ii) hold. Then, by hypothesis about Σ ,

 $|\Gamma(N', K)| \leq a.$

Put

$$\begin{split} N(\alpha_0, \nu_0) &= F\left(f_0, \dots, f_{\alpha_0}; f_0(\nu_0), \dots, f_{\alpha_0}(\nu_0)\right), \\ K(\alpha_0, \nu_0) &= \{f_\alpha(\nu_0) : \alpha < \alpha_0\}, \\ N^*(\alpha_0, \nu_0) &= \Gamma\left(N(\alpha_0, \nu_0), K(\alpha_0, \nu_0)\right). \end{split}$$

Then $\nu_0 \in N(\alpha_0, \nu_0); N^*(\alpha_0, \nu_0) \subset N(\alpha_0, \nu_0); |N^*(\alpha_0, \nu_0)| \leq s.$

Case 1. $\theta \in K(\alpha_0, \nu_0)$. Then put $f_{\alpha_0}(\nu_0) = \theta$.

Case 2. $\theta \notin K(\alpha_0, \nu_0)$.

Case 2a. $\nu_0 \in N^*(\alpha_0, \nu)$. Then put $f_{\alpha_0}(\nu_0) = \theta$.

Case 2b. $v_0 \notin N^*(\alpha_0, v_0)$. Then, by (iii) above, $N^*(\alpha_0, v_0) + \{v_0\}$ is not a Δ -set with kernel $K(\alpha, v_0)$. If we now assume that $N^*(\alpha_0, v_0) = \emptyset$ then this last fact implies that $K(\alpha_0, v_0) \notin X_{v_0}$ which, however, is false. Hence $N^*(\alpha_0, v_0) \neq \emptyset$, and there is a first element v_1 of $N^*(\alpha_0, v_0)$ such that $X_{v_0}X_{v_1} \neq K(\alpha_0, v_0)$. Since we are in Case 2, we have $K(\alpha_0, v_0) \subset X_{v_0}$. Since $v_1 \in N^*(\alpha_0, v_0)$ we have $K(\alpha_0, v_0) \subset X_{v_1}$. Hence $K(\alpha_0, v_0) \subset \neq X_{v_0}X_{v_1}$, and we may define $f_{\alpha_0}(v_0)$ to be the first element of the set $X_{v_0}X_{v_1} - K(\alpha_0, v_0)$. This completes the definition of $f_{\alpha}(v)$. We have, in Case 2b,

$$f_{\alpha_0}(\nu_0) \in X_{\nu_1} \subset H\left(N^*(\alpha_0, \nu_0)\right). \tag{4}$$

Let $\nu \in N$. If for some α , we have $f_{\alpha}(\nu) \neq \theta$ then Case 2b applies to α , and hence also to each $\beta \leq \alpha$; the elements $f_{\beta}(\nu)$ ($\beta \leq \alpha$) are therefore distinct elements of X_{ν} . Hence, in view of $|X_{\nu}| \leq b$, there is β_{ν} such that $f_{\alpha}(\nu) \in X_{\nu}$ for $\alpha < \beta_{\nu}$, and $f_{\beta_{\nu}}(\nu) = \theta$. Then Case 2a applies to β_{ν} , and we have $\nu \in N^*(\beta_{\nu}, \nu)$. This shows that[†]

$$N = \Sigma(\nu \in N) N^*(\beta_\nu, \nu), |N| \leq a | \{N^*(\beta_\nu, \nu) : \nu \in N\} |.$$

We now prove that on the right hand side N^* may be replaced by N. Let $N(\beta_{\mu}, \mu) = N(\beta_{\nu}, \nu)$. Then $\mu \in N(\beta_{\mu}, \mu) = N(\beta_{\nu}, \nu)$; $f_{\alpha}(\mu) = f_{\alpha}(\nu) \in X_{\nu}$ for $\alpha < \beta_{\nu}$; $\beta_{\mu} \ge \beta_{\nu}$ and hence, by symmetry, $\beta_{\nu} \ge \beta_{\mu}$. Therefore $\beta_{\mu} = \beta_{\nu}$,

$$K(\beta_{\mu}, \mu) = K(\beta_{\nu}, \nu) ; \ N^{*}(\beta_{\mu}, \mu) = N^{*}(\beta_{\nu}, \nu).$$

Thus

$$| \{ N^*(eta_
u,
u) :
u \in N \} | \leqslant | \{ N(eta_
u,
u) :
u \in N \} |.$$

For any α and any $x_0, \ldots, \hat{x}_{\alpha} \in X$ put

$$\begin{split} G(x_0, \, \dots, \, \hat{x}_{\alpha}) &= F(f_0, \, \dots, \, \hat{f}_{\alpha} \; ; \; x_0, \, \dots, \, \hat{x}_{\alpha}), \\ M(x_0, \, \dots, \, \hat{x}_{\alpha}) &= H\Big(\Gamma\Big(G(x_0, \, \dots, \, \hat{x}_{\alpha}), \; \{x_0, \, \dots, \, \hat{x}_{\alpha}\}\Big)\Big) \, . \\ N(\alpha, \, \nu) &= G\Big(f_0(\nu), \, \dots, \, \hat{f}_{\alpha}(\nu)\Big) \, . \end{split}$$

Then

Let α_0 be fixed such that $\alpha_0 \in \{\beta_\nu : \nu \in N\}$. Choose any ν with $\beta_\nu = \alpha_0$.

t

Then
$$N(\beta_{\nu}, \nu) = G\left(f_0(\nu), ..., \hat{f}_{\alpha_0}(\nu)\right).$$

Hence $N(\beta_{\nu}, \nu)$ is determined if the vector $s = (f_0(\nu), ..., \hat{f}_{\alpha_0}(\nu))$ is known. Denote by S the set of all such vectors s, i.e. the set of all s which correspond to choices of ν such that $\beta_{\nu} = \alpha_0$. Let now $s = (s_0, ..., \hat{s}_{\alpha_0}) \in S$; $\alpha < \alpha_0$. We proceed to show that $s_{\alpha} \in M(s_0, ..., \hat{s}_{\alpha})$.

[†] We remind the reader that $|\{N^*(\beta_{\nu}, \nu) : \nu \in N\}|$ denotes the number of distinct sets $N^*(\beta_{\nu}, \nu)$.

We can choose $\nu \in N$ such that $\beta_{\nu} = \alpha_0$, and $s_{\beta} = f_{\beta}(\nu)$ for all $\beta < \alpha_0$. Then

$$\begin{split} s_{\alpha} &= f_{\alpha}(\nu) \in H\left(N^{*}(\alpha, \nu)\right) = H\left(\Gamma\left(N(\alpha, \nu), K(\alpha, \nu)\right)\right) \\ &= H\left(\Gamma\left(G\left(f_{0}(\nu), \dots, \hat{f}_{\alpha}(\nu)\right), \{f_{0}(\nu), \dots, \hat{f}_{\alpha}(\nu)\}\right)\right) \\ &= M(s_{0}, \dots, \hat{s}_{\alpha}). \end{split}$$

In addition, we have

$$|M(s_0, \ldots, \hat{s}_{\alpha})| = |H(N^*(\alpha, \nu))| \leq b |N^*(\alpha, \nu)| \leq ba.$$

Hence, by the ramification lemma, when ν ranges through all values for which β_{ν} has the fixed value α_0 , there arise at most $(ba)^{|\alpha_0|}$ distinct vectors $(f_0(\nu), \ldots, \hat{f}_{\alpha_0}(\nu))$. We deduce that

$$\begin{split} |N| &\leqslant a \left| \{ N^*(\beta_{\nu}, \nu) : \nu \in N \} \right| \leqslant a \left| \{ N(\beta_{\nu}, \nu) : \nu \in N \} \right| \\ &= a \Sigma(|\alpha_0| \leqslant b) \left| \{ N(\beta_{\nu}, \nu) : \nu \in N ; \beta_{\nu} = \alpha_0 \} \right| \\ &\leqslant a \Sigma(|\alpha_0| \leqslant b) (ba)^{|\alpha_0|} \leqslant a (ba)^b b^+, \end{split}$$

which proves (3) and so establishes I(i).

Part (ii) of Theorem I follows from (i). For if $a \ge 2$; $b \ge 1$; $a+b \ge \aleph_0$; then $b+b^b a^{b+1} = a^b$.

Proof of Theorem II. Choose sets A, B such that |A| = a; |B| = b, and let F be the set of all mappings of B into A. Consider the system

$$\Sigma: X(t, f) = (x, f(x)): x \in B$$
 $(t \in A; f \in F).$

We consider the members of Σ as indexed by the pairs (t, f). In fact, they do not depend on t. Then Σ is a (a^{b+1}, b) -system. Let us assume that Σ contains a $\Delta(>a)$ -system Σ' with kernel K, say the system

$$\Sigma': X_{\rho} = X(t_{\rho}, f_{\rho}) \quad (\rho \in R).$$

Then |R| > a and

 $(t_{\rho}, f_{\rho}) \neq (t_{\sigma}, f_{\sigma}) \text{ for } \{\rho, \sigma\}_{\neq} \subset \mathbb{R}.$ (5)

Let $x \in B$. Then $|\{f_{\rho}(x) : \rho \in R\}| \leq |A| = a < |R|$, and hence there is $\{\rho_x, \sigma_x\}_{\neq} \subset R$ with $f_{\rho_x}(x) = f_{\sigma_x}(x)$. Then, for any $\rho \in R$,

$$(x, f_{\rho_x}(x)) \in X_{\rho_x} X_{\sigma_x} = K \subset X_{\rho} = \{(y, f_{\rho}(y)) : y \in B\},\$$

 $f_{\rho_x}(x) = f_{\rho}(x)$, so that f_{ρ} is independent of ρ . Since $|\{t_{\rho} : \rho \in R\}| \leq |A| < |R|$ there is $\{\rho_1, \sigma_1\}_{\neq} \subset R$ with $t_{\rho_1} = t_{\sigma_1}$. But then $(t_{\rho_1}, f_{\rho_1}) = (t_{\sigma_1}, f_{\sigma_1})$ which contradicts (5). This proves Theorem II.

Proof of Theorem III. Let $1 \leq a, b < \aleph_0$. By Theorem I there exists a least number d, where $d < \aleph_0$, such that every $(>d, \leq b)$ -system contains

a $\Delta(>a)$ -system. Denote this number by f(a, b). We have to show that $f(a, b) \leqslant c$,

where c is defined by (1).

There is a least number $\phi(a, b)$ such that every $(>\phi, \leqslant b)$ -system

 $\Sigma: X_{\phi} \quad (\mu \in M)$

which satisfies $X_{\mu} \neq X_{\nu}$ for $\{\mu, \nu\}_{\neq} \subset M$, contains a $\Delta(>a)$ -system. Clearly, $\phi \leqslant f$. Also, $\phi(a, 1) = a$. We first show that

$$f(a, b) \leqslant a\phi(a, b).$$

$$\Sigma' : X_{\nu} \quad (\nu \in N)$$
(6)

Let

be a $(>a\phi(a, b), \leqslant b)$ -system which does not contain any $\Delta(>a)$ -system. We have to deduce a contradiction. Let

$$\nu_0 \in N; K(\nu_0) = \{\nu : \nu \in N; X_{\nu} = X_{\nu_0}\}.$$

Then $X_{\nu} \left(\nu \in K(\nu_0) \right)$ is a Δ -system, and therefore $|K(\nu_0)| \leq a$. Hence, if $\{X_{\nu} : \nu \in N\} = \{X_{\mu} : \mu \in M\}, \quad X_{\mu} \neq X_{\nu}$ for $\{\mu, \nu\}_{\neq} \subset M$,

then $|M| > \phi(a, b)$, and it follows from the definition of ϕ that the system $X_{\mu}(\mu \in M)$ contains a $\Delta(>a)$ -system. This is the required contradiction.

There is a $(\phi(a, b), \leq b)$ -system

$$\Sigma: X_{\nu} \quad (\nu \in N),$$

where $X_{\mu} \neq X_{\nu}$ for $\mu \neq \nu$, which does not contain any $\Delta(>a)$ -system. Let N_0 be a maximal subset of N such that $X_{\mu}X_{\nu} = \emptyset$ for $\{\mu, \nu\}_{\neq} \subset N_0$. Then $|N_0| \leq a$, since X_{ν} ($\nu \in N_0$) is a Δ -system. Put $X^* = \Sigma(\nu \in N_0) X_{\nu}$. Then we can choose elements

$$x_{\mu} \in X_{\mu} X^* \quad (\mu \in N - N_0).$$

Let $\xi \in X^*$. Then there is $\nu_0(\xi) \in N_0$ with $\xi \in X_{\nu_0(\xi)}$. Then the system (of sets of at most b-1 elements)

$$X_{\mu_0(\xi)} - \{\xi\} ; X_{\mu} - \{\xi\} \quad (\mu \in N - N_0; x_{\mu} = \xi)$$

does not contain any $\Lambda(>a)$ -system since any such system Σ'' would yield a $\Delta(>a)$ -system contained in Σ if we add to each member of Σ'' the element ξ . Hence $1 + |\{\mu : \mu \in N - N_0; x_\mu = \xi\}| \leq \phi(a, b-1)$,

$$\begin{split} \phi(a,b) &= |N| = |N_0| + |N - N_0| \leqslant a + \Sigma(\xi \in X^*) |\{\mu : \mu \in N - N_0; x_\mu = \xi\}| \\ &\leqslant a + \left(\phi(a,b-1) - 1\right) ba = -a(b-1) + ab\phi(a,b-1), \\ &\frac{\phi(a,b)}{b! \, a^b} \leqslant -\frac{b-1}{b! \, a^{b-1}} + \frac{\phi(a,b-1)}{(b-1)! \, a^{b-1}}. \end{split}$$

By means of b-1 successive applications of this inequality we obtain

$$\frac{\phi(a, b)}{b! a^b} \leqslant -\frac{b-1}{b! a^{b-1}} - \frac{b-2}{(b-1)! a^{b-2}} - \dots - \frac{1}{2! a} + \frac{\phi(a, 1)}{1! a}.$$

In view of (6) and $\phi(a, 1) = a$ this is the desired result.

The University,

Reading.

C. F. Hodgson & Son, Ltd., Pakenham Street, London, W.C.1.