ON SETS OF DISTANCES OF m POINTS IN EUCLIDEAN SPACE

by P. ERDŐS

Let $[P_n^{(k)}]$ he the class of all subsets $P_n^{(k)}$ of the k dimensional space consisting of m distinct points and having diameter 1. Denote by $g_k(n, r)$ the maximum

number of times a given distance n can occur among n points of a set $P_n^{(k)}$. Put

$$G_k(n) = \max_n g_k(n, r), \quad g_k(n) = g_k(n, 1)$$

(i. e. $g_k(n)$ denotes the maximum number of times the diameter can occur as a distance among n points of k dimensional space and G,(n) denotes the maximum number of times the same distance can occur between n suitably chosen points in k dimensional space). It is well known [1] that $g_2(n) = n$ and I [2] proved that

(1)
$$n^{1+c/\log\log n} \triangleleft G_2(n) < n^{3/2}$$

Further I conjectured that $G_2(n) < n^{1-4}$ for every a > 0 if $m > n_0(\varepsilon)$. Vázsonyi conjectured that $g_3(n) = 2n - 2$ and this was proved simultaneously and independently by GRÜNBAUM [3], HEPPES [4] and STRASZEWICZ [5] (all using similar methods). I am going to prove

(2)
$$c_1 + n^{4/3} < G_3(n) < c_2 + n^{5/3}$$
.

Perhaps G_(n) < $n^{4/3+\epsilon}$ holds for all $n > n(\epsilon)$.

One could have expected that $G_k(n) = o(n^2)$ and $g_k(n) \lhd c_k \cdot n$ for every k. In 1955 LENZ showed that this is not so. In fact LENZ showed that (LENZ's result is unpublished)

$$(3) G^*(\mathsf{n}) \ge \frac{n^2}{4}$$

The proof of L_{ENZ} is very **simple**. Put $\mathfrak{s} = \left[\frac{n}{2}\right]$ and consider the following *n* points in four-dimensional space:

$$(x_i, y_i, 0, 0), \mathbf{1} \leq i \leq s_i (0, 0, x_j, y_j)$$
 , $s + \mathbf{1} \leq j \leq n$

where $0 < \mathbf{x}_{i}, x_{j}, y_{i}, y_{j} < \frac{1}{\sqrt{2}}, x_{i}^{2} + y_{i}^{2} = \frac{1}{2}, x_{j}^{2} + y_{j}^{2} = \frac{1}{2}$ Clearly all the

ERDŐS

s $(n - s) = \prod_{i=1}^{n} distances between the points <math>(x_i, y_i, 0, 0)$ and $(0, 0, x_j, y_j)$ is 1 (and 1 is the diameter of the set $(x_i, y_i, 0, 0)$; $(0, 0, x_i, y_j)$] By a slight modification of this method LENZ in fact proved that

By a slight modification of this method LENZ in fact proved that $g_{n}(n) > \frac{n^{4}}{4} + c_{3}n$ for a certain $c_{3} > 0$. LENZ then asked: what is the limit of $g_{k}(n)/n^{2}$ as $n \to \infty$. In this note I am going to prove the following

Theorem. For every $k \ge 4$

$$\lim_{n \to \infty} g_k(n)/n^2 = \lim_{n \to \infty} G_k(n)/n^2 = \frac{1}{2} - \frac{1}{2\left\lfloor \frac{k}{2} \right\rfloor}$$

Clearly g,(n) $\leq G$,(n) and $g_k(n) \leq g_{k+1}(n)$, $G_{k+1}(n) \leq G_{k+1}(n)$. Thus to prove our Theorem it a-ill suffice to show that for every $l \geq 2$

(4)
$$\lim_{n \to \infty} g_{2\delta}(n)/n^2 \ge \frac{1}{2} - \frac{1}{21}$$

and

(5)
$$\lim_{n \to \infty} G_{2l+1}(n)/n^2 \leq \frac{1}{2} - \frac{1}{2l}.$$

The proof of (4) is trivial generalization of the proof of **LENZ**. For each $t \mid I \leq t \leq l$ denote by I_{l} the group of $\left\lfloor \frac{|n|}{|l|} \right\rfloor$ points whose first 2t - 2 coordiants are 0 the 2t - 1-th and 2t-th coordinates are $x_{i} \mid y_{i}$, $1 \leq l \leq \left\lfloor \frac{n}{l} \right\rfloor$, $x_{i} \mid y_{i} > 0 \mid x_{l}^{2} + y_{l}^{2} = \frac{1}{2}$ and the remaining 21 - 2t coordinates are 0. Clearly for any $t_{1} \neq t_{2}$ the distance between any two points of $I_{t_{1}}$ and $I_{t_{2}}$ is 1 and the set $\bigcup_{1 \leq t \leq 4}$.

$$g_{2l}(n) \geq \binom{l}{2} \left\lfloor \frac{n}{l} \right\rfloor^2 = \frac{n^2}{2} \left(1 - \frac{1}{l} \right) + O(n)$$

which clearly implies (4).

Next we prove (5). If (5) is not true then there exists an $\varepsilon > 0 = 0$ so that for a certain $l \ge 2$ and infinitely many n_s

$$\left|G_{2l+1}\left(n_{s}\right)\right| > \left|\frac{1}{2} - \frac{1}{2l} + \varepsilon\right| \left|n_{s}^{2} - A(n_{s})\right|$$

In other words there exists a set $P_{n_s}^{(2l+1)}$ in 2l + 1 dimensional space and a distance r which occurs among at least $A(n_s)$ pairs of points of $P_{n_s}^{(2l+1)}$ Connect any two points of $P_{n_s}^{(2l+1)}$ whose distance is r. Thus we obtain a graph of n_s vertices and $A(n_s)$ edges. By a theorem of A. H. STONE and myself¹ [6] this graph contains for sufficiently large $n_s = n_s(\varepsilon)$ a subgraph of 3 (l + 1) vertices $x_l^{(l)} = 1 \leq |l| \leq 3$, $1 \leq |l| \leq |l| + 1$ so that any two vertices $x_{l_1}^{(l)}$ and $x_{l_2}^{(l)}$ are connected by an edge if $|t_1| \neq |t_2|$ (in other words the distance between $x_{l_1}^{(l)}$ and $x_{l_2}^{(l)}$ is r if $t_1 \neq t_2$). But, then a simple geometrical argument shows that the |l| + 1 planes $(x_1^{(l)}, x_2^{(l)}, x_3^{(l)}) \mid 1 \leq |t| \leq |t| + 1$ must be mutually perpendicular, which implies that the dimension of the space spanned by the $x^{(j)}$ is at least 2l + 2l This contradiction proves (5) and thus the proof of our Theorem is complete.

By a sharpening which I recently obtained of the result of **STONE** and myself I can prove

(6)
$$G_{k}(n) < \left(\frac{1}{2} - \frac{1}{2\left[\frac{k}{2}\right]}\right)n^{2} + O(n^{2-\epsilon_{k}})$$

where $\varepsilon_k\to 0$ as k-f $\infty 1$ I do not know how close (6) is to the true order of magnitude of $G_k(n)|$ Perhaps the result of Lenz

(7)
$$G_k(n) > \left(\frac{1}{2} - \frac{1}{2\left\lfloor \frac{l}{k} \right\rfloor}\right) n^2 + c_k n$$

gives the right order of magnitude.

Now we are going to prove (2). First we prove the upper estimate. Let x_1, x_2, \ldots, x_n be n points in three dimensional space, assume that there are a, points at distance n from x_i . Clearly to any three points $x_{j_1}, x_{j_2}, x_{j_3}$ there can be at most two points x_i at distance r_i Thus since the total number of x_{j_1} and x_{j_2} at distance r_i Thus since the total number of x_{j_1} and x_{j_2} at distance r_i Thus since the total number of x_{j_1} at distance r_i Thus since the total number of x_{j_1} at distance r_i Thus since the total number of x_{j_1} at distance x_{j_1} at distance x_{j_1} at distance x_{j_2} at dist triplets $(x_{j_1}, x_{j_2}, x_{j_3})$ is $\binom{n}{3}$ a simple argument gives

$$\sum_{i=1}^{n} \binom{\alpha_i}{3} \leq 2\binom{n}{3}$$

or

$$(8) \qquad \qquad \sum_{i=1}^n \alpha_i^3 < c_4 n^3$$

If $\sum_{i=1}^{n} \alpha_i^3$ is given $\sum_{i=1}^{n} \alpha_i$ is maximal if all the α_i are equal. Thus (8) implies

$$\sum_{i=1}^{n} a_i < c_2 n^{5/2}$$

which proves the upper bound in (2).

¹ The theorem in question states as follows: To every ε , $r \ge 2$ and 1 there exists and $n_0(\varepsilon, r, l)$ so that if $n \ge n_0(\varepsilon, r, l)$ and G_{rl} is a graph of n vertices and more than $n^3\left(\frac{1}{2}-\frac{1}{2(r-1)}+\varepsilon\right)$ edges then G_n contains r_1 vertices $x_l^{(i)} \ge l, 1 \le i \le r$ so that for every $i_1 \neq i_2$, $x_{i_1}^{(i_1)}$ and $x_{i_2}^{(i_2)}$ are connected by an edge for every $1 \leq i_1, i_2 \leq 1$.

To prove the lower bound in (2) consider the points $(x \mid y \mid z)$ of integer coordinates $0 \le x_1 y_1 z \le [n^{1/3}]$ Clearly the number of these points is less than **n** but is greater than $n(1 - \varepsilon)$. The square of the distance between two of these points is of the form

(9)
$$u^2 + v^2 + w^2 \downarrow 0 \le u_{\downarrow} v, w \le n^{1/3}$$

The numbers (9) are all less than or equal $3n^{2/3}$ and since there are more than $\binom{n\ (1-\varepsilon)}{1-\varepsilon}$ such distances, clearly for some n the same distance must occur

at least $1/7n^{4/3}$ times, which completes the proof of (2). From deep number theoretic results it follows that for suitable r the same distance occurs more than $c_n n^{4/3} \log \log n$ times and this is the **best** lower bound I can get for $G_a(n)$ at the present time.

(Received December 18, 1959.)

RE FERENCES

- [1] Aufgabe 167. Jahresbericht der Deutschen Math. Vereinigung 43 (1934) 114.
 [2] ERDÖS, P. , On sets of distances of n points." A mer. Math. Monthly 53 (1946) 250.
- [3-j GRÜNBAUM, B. : "A proof of Vázsonvi's conjecture," Bull. Research Council of Israel 6A (1956) 77-78.
- [4] HEPPES A.: , Beweis einer Vermutung von A , Vázsonyi." Acta Mathl Acad. Sci. Hung, 7 (1957) 463-466.
 [5] STRASZEWICZ S. 1 "SUP un problème geometrique de P. Erdős." Bull. Acad. Poll. Sci. Cl 111 5 (1957) 39-404
 [6] ERDŐS, P. and STONE, A. H.: "On the structure of linear graphs." Bull. Amer.
- Math. Soc. 52 (1946) 1087-1091.

о РАССТОЯНИЯХ МЕЖДУ n ТОЧКАМИ ЭВКЛИДОВА ПРОСТРАНСТВА

P. ERDŐS

Резюме

Пусть Р^(k) есть множество, состоящее из *n* точек *k*-мерного пространства, диаметр которого равен 1. Обозначим через $g_k(n, r)$ максимальное число пар точек (x_i, x_i) , для которых расстояние x, и x, равно r.

G,(n) =
$$\max_{(r)} g_k(n, r)$$
; $g_k(n) = g_k(n)$ 1).

Раньше автор доказал, что

$$n^{1-c_1/\log\log n} < G_2(n) < n^{3/2}$$
.

Было известно, что $g_2(n) = n$, Grünbaum, Heppes и Straszewicz доказали гипотезу vazsonyi, согласно которой $g_3(n) = 2n - 2$. Lenz доказал, что

$$|\mathsf{g},(\mathsf{n})>rac{n^2}{4}+|c_2 n|$$
 .

В настоящей статье автор доказывает, что

$$c_3 n^{4/3} \lhd \texttt{G},(\texttt{n}) \lhd c_4 n^{5/3}$$

и, если k ≥ 4, то

$$\lim_{n \to \infty} g_k(n) | n^2 = \lim_{n \to \infty} G_k(n) / n^2 = \frac{1}{2} - \frac{1}{2 \left[\frac{k}{2} \right]}.$$