ON SETS OF DISTANCES OF n POINTS IN EUCLIDEAN SPACE

by
P. ERDŐS

Let $\left[P_{n}^{(k)}\right]$ he the class of all subsets $P_{n}^{(k)}$ of the $k d$ dimensional space consisting of n distinct points and having diameter 1 . Denote by $g_{k}(n, r)$ the maximum number of times a given distance n can occur among n points of a set $P_{n}^{(k)} \mid$ Put

$$
\left.G_{k}(n)\right)=\max _{n} g_{k}(n, r), \quad g_{k}(n) \mid=g_{k}(n, \mid 1)
$$

(i. ef $g_{k}(n)$ denotes the maximum number of times the diameter can occur as a distanced among n points of k dimensional space and G,(n) denotes the maximum number of times the same distance can occur between n suitably chosen points in k dimensional space). It is well known [l] that $g_{2}(n)=\mathrm{n}$ and I [2] proved that

$$
\begin{equation*}
n^{1+c|\log \log n|} \triangleleft G_{2}(n)<n^{3 / थ} . \tag{1}
\end{equation*}
$$

Further I conjectured that $G_{2}(n)<n^{1-\{ }$ for every $a>0$ if $n>n_{0}(\varepsilon)$, VÁzsonyi conjectured that $\left.g_{3}(n)=2 n\right\rfloor-2$ and this was proved simultaneously and independently by Grënbauml [3], Heppes [4] and Straszewicz [5] (all using similar methods). I am going to prove

$$
\begin{equation*}
c_{1} \mid n^{43}<G_{3}(n)<c_{9} \cdot n^{5 / 3} . \tag{2}
\end{equation*}
$$

Perhaps G,(n) $<n^{4,3+\varepsilon}$ holds for all $\mathrm{n} \gg n(\varepsilon)$.
One could have expected that $G_{k}(n) \sqsupset o\left(n^{2}\right)$ and $g_{k}(n) \mid \triangleleft c_{k} \cdot n$ for every $k \downarrow$ In 1955 Lenz showed that this is not so. In fact Lenz showed that (Lenz's result is unpublished)

$$
\begin{equation*}
g^{*}(n) \geqq\left|\frac{n^{2}}{4}\right|, \tag{3}
\end{equation*}
$$

The proof of Lenz is very simple. Put st $\left.=\left[\frac{n}{2}\right] \right\rvert\,$ and consider the following n points in four-dimensional space:

$$
\left(x_{i}, y_{i,} 0,0\right), \mathbf{1} \leqq i \leqq s_{\lambda}\left(0,0, x_{j}, y_{j}\right), s+\mathbf{1} \leqq \lambda \leqq n
$$

where $\quad 0 \quad \mathbf{x},, x_{j,}, y_{i,}, y_{J} \triangleleft \frac{1}{\sqrt{2}},\left|x_{i}^{2}+\left|y_{i}^{2}=\frac{1}{2},\left|x_{j}^{2}\right| H y_{j}^{2}=\frac{1}{2}\right| \quad\right.$ Clearly all the
$s(\mathrm{n}-s)=\eta^{2}$ distances between the points $\left(x_{i}, y_{i}, 0,0\right)$ and $\left(0,0, x_{j}, y_{j}\right) \mid$ is $\mathbf{1}$ (and $\mathbf{1}$ is the diameter of the set $\left(x_{i}, y_{i}, 0,0\right) ;\left(0,0, \mathbf{x},, y_{j}\right)$.

By a slight modification of this method LENz in fact proved that $\mathrm{g},(\mathrm{n})>1 \frac{n^{2}}{4}+c_{3} \eta$ for a certain $c_{3}>0$. LENZ then asked: what is the limit of $g_{k}(n) / n^{2}$ as $n \rightarrow \infty$ 」 In this note I am going to prove the following

Theorem. For every $k \geqq 4$

$$
\lim _{n \rightarrow \infty} g_{k}(n) \left\lvert\, n^{2}=\lim _{n \rightarrow \infty} G_{k}(n) n^{2}=\frac{1}{2}-\frac{1}{2\left\lfloor\frac{k}{2}\right]}\right.
$$

Clearly $\mathrm{g},(\mathrm{n}) \leqq \mathrm{G},(\mathrm{n})$ and $g_{k}(n) \leqq \mathrm{g},+,(\mathrm{n}), \mathrm{G},(\mathrm{n}) \leqq \mathrm{G},,(\mathrm{n})$. Thus to prove our Theorem it a-ill suffice to show that for every $l \geqq 2$

$$
\begin{equation*}
\lim _{n \rightarrow \infty} g_{2\rfloor}(n) / n^{2} \geq \frac{1}{2}-\frac{1}{21} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} G_{2 l+1}(n) / n^{2} \leqq \frac{1}{2}-\frac{1}{2 l} \tag{5}
\end{equation*}
$$

The proof of (4) is trivial generalization of the proof of LENZ. For each $t \mid \mathrm{I} \leqq t \leqq d$ denote by $I \|$ the group of $\left.\left\lvert\, \frac{n}{l}\right.\right\}$ points whose first $2 t-2$ coordinates are 0 the $2 t$ - 1 -th and $2 t$-th coordinates are $x_{i}, y_{i}, 1 \leqq i \leq\left[\frac{n}{n_{1}}\right.$, $x_{i} y_{i}>10, x_{i}^{2}+y_{i}^{2}=\frac{1^{2}}{2}$ and the remaining $21-2 t$ coordinates are 0\rfloor Clearly for any $t_{1}|\neq| t_{2}$ the distance between any two points of $I_{t_{\mathrm{t}}} \mid$ and $I_{t_{\mathrm{l}}} \mid$ is 1 and the set U I, has diameter 1. Thus
$1 \leq t \leq 4$

$$
g_{2 l}(n) \geqq\binom{ l}{2}\left[\frac{n}{l}\right]^{2}=\frac{n^{2}}{2}\left(1-\frac{1}{l}\right)+O(n)
$$

which clearly implies (4).
Next we prove (5). If (5) is not true then there exists an $\varepsilon>0$ so that for a certain $l \geqq$ and infinitely many n_{s}

$$
G_{2 t+1}\left(n_{s}\right) \left\lvert\,>\left(\left|\frac{1}{2}-\frac{1}{2 l}+|\varepsilon| n_{s}^{2}=A\left(n_{s}\right)\right|\right.\right.
$$

In other words there exists a set $P_{n_{s}}^{(2 i+1)}$ in $2 l+1$ dimensional space and a distance r which occurs among at least $A\left(n_{s}\right)$ pairs of points of $P_{n_{s}}^{(2 t+1)}$ |, Connect any two points of $P_{n s}^{(2 l+1)} \mid$ whose distance is r. Thus we obtain a graph
of n_{s} vertices and $A\left(n_{s}\right)$ edges. By a theorem of A . HJ Stone and myself ${ }^{1}$ [6] this graph contains forl sufficiently large $n_{s} \sqsupset n_{s}(\varepsilon)$ a subgraph of $3(\bar{q}+1)$ vertices $x_{i}^{(t)} 1 \leq i \mid \leq 3,1 \leq t \leq l+1$ so that any twol vertices $x_{i_{1}}^{\left(t_{1}\right)} \mid$ and $x_{\left.i_{0}\right)}^{\left(t_{2}\right)}$ are connected by an edge if $t_{1}|\neq| t_{2}$ (in other words the distance between $x_{t_{1}}^{\left(t_{1}^{2}\right)}$ and $x_{t_{2}}^{\left(t_{2}\right)}$ is r if $\left.t_{1} \neq t_{2}\right)$, But, then a simple geometrical argument shows that the $\|^{2}+1$ planes $\left(x_{1}^{(t)}, \mid x_{2}^{(t)}, x_{3}^{(t)}\right) \mid 1 \leq t \leq l+1$ must be mutually perpendicular, which implies that the dimension of the space spanned by the $x_{i}^{(t)}$ is at least $2 l+H 2$. This contradiction proves (5) and thus the proof of our Theorem is complete.

By a sharpening which I recently obtained of the result of Stone and myself I can prove

$$
\begin{equation*}
G_{k}(n)<\left(\frac{1}{2}-\frac{1}{2\left[\frac{k}{2}\right]}\right) n^{2}+O\left(n^{2-\varepsilon_{k}}\right) \tag{6}
\end{equation*}
$$

where $\varepsilon_{k} \rightarrow 0$ as k--f ∞ J I do not know how close (6) is to the true order of magnitude of $G_{k}(n)$. Perhaps the result of Lenz

$$
\begin{equation*}
G_{k}(n)>\left(\frac{1}{2}-\frac{1}{2\left[\frac{l}{k}\right]}\right) n^{2}+c_{k} n \tag{7}
\end{equation*}
$$

gives the right order of magnitude.
Now we are going to prove (2) , First we prove the upper estimate. Let $x_{1}, x_{2}, \ldots, x_{n}$ be m points in three dimensional space, assume that there are a, points at distance n from x_{i}. Clearly to any three points $x_{j_{1}, ~} x_{j_{2}}, x_{j_{3}}$ there can be at most two points x_{\downarrow} at distance $r d$ Thus since the total number of triplets $\left(x_{j_{1}} \mid x_{j_{2}}, x_{j_{3}}\right)$ is $\binom{n}{3}$ a simple argument gives

$$
\sum_{i=1}^{n}\binom{\alpha_{i}}{3} \leqq 2\binom{n}{3}
$$

or

$$
\begin{equation*}
\sum_{i=1}^{n} \alpha_{i}^{3}<c_{4} n^{3} \tag{8}
\end{equation*}
$$

If $\sum_{i=\rrbracket}^{n} \alpha_{i}^{3}$ is given $\sum_{i=1}^{n} \alpha_{d}$ is maximal if all the α_{i} are equal. Thus (8) implies

$$
\sum_{i=1}^{n} \alpha_{i}<c_{2} n^{5} \cdot 2
$$

which proves the upper bound in (2).

[^0]To prove the lower bound in (2) consider the points (x, y, z) of integer coordinates $0 \leq x, y, z \leq\left[n^{1 / 3}\right]$. Clearly the number of these points is less than \mathbf{n} but is greater than $n(1-\varepsilon)$. The square of the distance between two of these points is of the form

$$
\begin{equation*}
u^{2}+v^{2}+w^{2} \downarrow 0 \leq u, \| \mathrm{v}, \mathrm{w} \leq n^{1 / 3} \tag{9}
\end{equation*}
$$

The numbers (9) are all less thand or equal $3 n^{2 / 3}$ and since there are more than $\binom{n(1-\varepsilon) \|}{ 2}$ such distances, clearly for some n the same distance must occur at least $1 / 7 n^{4 / 3}$ times, which completes the proof of (2). From deep number theoretic results it follows that for suitable r the same distance occurs more than $c_{5} n^{d} / 3 \log \log \left(n\right.$ times and this is the best lower bound I can get for $G_{3}(n)$ at the present time.
(Received December 18, 1959.)

RE FERENCES

[1] Aufgabel 167. Jahresbericht der Deutschen Math. Vereinigung 431 (1934) 114.
[2] Erdôs, \mid P. ,On| sets of distaneos of n points." A mer. Math.] Monthly 53 (1946) $248 / 250$.
[3-j Grünbaum, B. : "A proof of Vázsonyi's conjecture," Bull. Research Council of Israel 6A (1956) 77-78.
[4] HEppes, A . : ,Beweis eiaer Vermutung von A , Vázsonyi." Acta Math] Acad. Sci. Hung. 7 (1957) 463-466.
[5] Straszewicz, S. d "Sup un problèmed geometrique del P. Erdös.' Bull. Acad] Poll. Soi. Cl IIII 5 (1957) 39-40」
[6] Erdős, P. and Stone, A, H.: "On the structurel of linearl graphs." Bull. Amer.] Math Soc. 52 (1946) 1087-1091.

0 РАССТОЯНИЯХ МЕЖДУ| n ТОЧКАМИ| ЭВКЛИДОВА| ПРОСТРАНСТВА

P. ERDŐS

Резюме

Пусть $P_{n}^{(k)} \mid$ есть множество, состоящея из n точек k-мерного| пространства, диаметр| которого равен 1. Обозначим через $g_{k}(n, r)$ максимальное число пар точек (x_{i}, x_{j}), дляя которых| расстояние x_{i} и x_{j} равно гл

$$
\left.\mathrm{G},(\mathrm{n})=\max _{(r)} g_{k}(n, r)\right\rangle ; g_{k}(n) \mid=g_{k}(n, 1) .
$$

Раньше автор доказал, что

$$
n^{1-c_{1} / \log \text { log } n}<G_{2}(n)<n^{3 / 2} .
$$

Было известно, что $g_{2}(n)=n_{\lambda}$ Grünbaum, \downarrow Heppes и Straszewicz доказали гипотезу| vazsonyi, corласно которой $g_{3}(n)=2 n-2$. Lenz доказал, что

$$
\left.g_{(}(\mathrm{n})>\frac{n^{2}}{4} \right\rvert\, H c_{2} n
$$

В настоящейі статье автор| доказывает, что

$$
c_{3} n^{4 / 3} \triangleleft \mathrm{G},(\mathrm{n}) \triangleleft c_{4} n^{5 / 3}
$$

и, еслй $k \geq$ 4, то

$$
\lim _{n \rightarrow \infty} g_{k}(n) \left\lvert\, n^{2}=\lim _{n \rightarrow \infty} G_{k}(n) / n^{2}=\frac{1}{2}-\frac{1}{2 \| \frac{\|_{2}^{k}}{2}} .\right.
$$

[^0]: ${ }^{\Perp}$ The theorem in question states as follows: To every $\varepsilon, r \geq \mathcal{2}$ and \mathbb{d} there exists anı $n_{d}(\varepsilon, r, l)$ so that if $n \gg 1 n_{0}\left(\varepsilon, r_{l} l l\right)$ and G_{n} is a graph of n vertices and more than $n^{2}\left(\frac{1}{2}-\frac{1}{2(r-1)}+\varepsilon\right)$ edges then G_{n} contains $r \|$ vertices $x_{i}^{(t)} 1 \leqq i \leqq l, 1 \leq \mathrm{t} \leqq r$ sol that for every $\left.\mathrm{t}_{\|} \nRightarrow \mathrm{a}_{2}, x_{i_{1}}^{\left(t_{1}\right)}\right]_{\text {and }} x_{i_{2}}^{\left(t_{2}\right)}$ are connectedl by an edge for every $1 \leqq i_{1}, i_{2} \leqq 1$.

