Remarks on number theory III
 On addition chains

by

P. Erdös (Budapest)

Consider a sequence $a_{0}=1<a_{1}<a_{2}<\ldots<a_{k}=n$ of integers such that every $a_{l}(l \geqslant 1)$ can be written as the sum $a_{i}+a_{j}$ of two preceding elements of the sequence. Such a sequence has been called by A. Scholz (${ }^{1}$) an addition chain. He defines $l(n)$ as the smallest k for which there exists an addition chain $1=a_{0}<a_{1}<\ldots<a_{k}=n$.

Clearly $l(n) \geqslant \log n / \log 2$, the equality occurring only if $n=2^{u}$. Scholz conjectured that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} l(n) \frac{\log 2}{\log n}=\mathbf{1} \tag{1}
\end{equation*}
$$

and A. Brauer ${ }^{(2)}$ proved (1). In fact Brauer proved that

$$
\begin{equation*}
l(n) \leqslant \min _{1 \leqslant r \leqslant m}\left\{\left(1+\frac{1}{r}\right) \frac{\log n}{\log 2}+2^{r}-2\right\} \tag{2}
\end{equation*}
$$

where $2^{m} \leqslant n<2^{m+1}$. From (2) by choosing $r=\left[(1-\varepsilon) \frac{\log \log n}{\log 2}\right]$ it follows that

$$
\begin{equation*}
l(n)<\frac{\log n}{\log 2}+\frac{\log n}{\log \log n}+o\left(\frac{\log n}{\log \log n}\right) \tag{3}
\end{equation*}
$$

In the present note I am going to prove that (3) is the best possible. In fact I shall prove the following

Theorem. For almost all n (i. e. for all n except a sequence of density 0)

$$
l(n)=\frac{\log n}{\log 2}+\frac{\log n}{\log \log n}+o\left(\frac{\log n}{\log \log n}\right)
$$

${ }^{(1)}$ Jahresbericht der Deutschen Math. Vereinigung 47 (1937), p. 41.
$\left(^{2}\right)$ Bull. Amer. Math. Soc. 45 (1939), p. 736-739.

In view of (3) it will suffice to prove that for every ε the number of integers m satisfying

$$
\begin{equation*}
\frac{n}{2}<m<n, \quad l(m)<\frac{\log n}{\log 2}-(1-\varepsilon) \frac{\log n}{\log \log n} \tag{4}
\end{equation*}
$$

is $o(n)$. In fact we shall prove that the number of integers satisfying (4) is less than $n^{1-\eta}$ for some $\eta=\eta(\varepsilon)>0$.

To prove our assertion we shall show (as the stronger result) that the number of addition chains $1=a_{0}<a_{1}<\ldots<a_{k}$ satisfying

$$
\begin{equation*}
\frac{n}{2}<a_{k}<n, \quad k<\frac{\log n}{\log 2}+(1-\varepsilon) \frac{\log n}{\log \log n} \tag{5}
\end{equation*}
$$

is less than $u^{1-\eta}$ for some $\eta>0(\eta=\eta(\varepsilon))$.
An addition chain is clearly determined by its length k and by a mapping $\psi(i), 1 \leqslant i \leqslant k-1$, which associates with i two indices $j_{1}^{(i)}$ and $j_{1}^{\prime(i)}$ not exceeding i. To such a mapping there corresponds an addition chain if and only if for every $i, a_{j_{1}^{(i)}}+a_{i_{1}^{\prime}}^{(i)}>a_{i}$.

We split the indices $i, 2 \leqslant i \leqslant k-1$, into three classes. In the first class are the indices i for which $a_{i+1}=2 a_{i}$. Til the second class are the is for which $a_{i+1}<2 a_{i}$ and $a_{i+1} \geqslant(1+\delta)^{r} a_{i+1-r}$ for every $r>0(\delta=\delta(\varepsilon)$ is a sufficiently small positive number). In the third class are the i 's for which $a_{i+1}<2 a_{i}$ and $a_{i+1}<(1+\delta)^{r} a_{i+1-r}$ for some $r>0$. Denote the number of i^{\prime} s in the classes by $u_{1}, u_{2}, u_{3}, u_{1}+u_{2}+u_{3}=k-1$.

Assume now that (5) is satisfied, we are going to estimate the number of addition chains satisfying (5). First we show that (5) implies

$$
\begin{equation*}
\dot{u}_{2}+u_{3}=o(k) . \tag{6}
\end{equation*}
$$

To prove (6) observe that if $a_{i+1} \neq 2 a_{i}$ then $a_{i+1} \leqslant a_{i}+a_{i-1}$. Thus from $a_{i} \leqslant 2 a_{i-1}$ we obtain

$$
\begin{equation*}
a_{i+1} \leqslant 3 a_{i-1} \tag{7}
\end{equation*}
$$

Thus from (5) and (5), since there are at least $\frac{1}{2}\left[\left(u_{2}+u_{3}\right)\right]=\left[\frac{1}{2}\left(k-u_{1}\right.\right.$ $-1)$]-1 intervals $(i-1, i+1), 1 \leqslant i \leqslant k-1$, which are disjoint halfopen (i. e. open to the left) and for which i is in the second or third class, we have

$$
\frac{n}{2}<a_{k}<2^{u_{1}+1} 3^{\left(k-u_{1}\right) / 2}=2^{k} \cdot \frac{2}{\left(\frac{4}{3}\right)^{\left(k-u_{1}\right) / 2}}<2^{k-\left(u_{2}+u_{3}\right) / 100}
$$

or $k>\frac{\log n}{\log 2}\left(1+\frac{u_{2}+u_{3}}{100}\right)-1$, which contradicts (4) if (6) is not satisfied.

The number of ways in which we can split the indices i into three classes having u_{1}, u_{2}, u_{3} elements ($u_{1}+u_{2}+u_{3}=k-1$) equals $\binom{k-1}{u_{2}+u_{3}} \times$ $\times\binom{ u_{2}+u_{3}}{u_{2}}$. Now since $u_{2}+u_{3}=o(k),\binom{u_{2}+u_{3}}{u_{2}}<2^{u_{2}+u_{3}}=(1+o(1))^{k}$, also $\binom{k}{u_{2}+u_{3}}\binom{k}{u_{2}+u_{3}}=\binom{k}{o(k)}=(1+o(1))^{k}$. Further for u_{2} and u_{3} we have at most k^{2} choices. Thus the total number of ways of splitting the indices into three classes is $(1+o(1))^{k}$. Henceforth we consider a fixed splitting of the indices into three classes.

For the i 's of the first class $a_{i+1}=2 a_{i}$, and thus a_{i+1} is uniquely determined. If i belongs to the second class then from $a_{i+1} \geqslant(1+\delta)^{r} a_{i+r-1}$ it clearly follows that there are at most $c_{1}=c_{1}(\delta) a$'s in the interval $\left(\delta a_{i}, a_{i}\right)$. From $a_{i+1} \geqslant(1-\delta) a_{i}$ it follows that only the a_{j} 's of the interval ($\delta a_{i}, a_{i}$) have to be considered in defining a_{i+1}. Thus there are at most c_{1}^{2} choices for a_{i+1}, and hence for the number of addition chains satisfying (5) the contribution of the i 's of the second class it at most $c_{1}^{2 u_{2}}=(1+o(1))^{k}$.

The number of possible choices given by the u_{3} indices of the third class is less than $\binom{k^{2}}{u_{3}}$. To see this observe that the indices $i_{1}, i_{2}, \ldots, i_{u_{3}}$ which belong to the third class have already been fixed and our sequence is completely determined if we fix the indices $j_{1}^{\left(i_{1}\right)}, j_{1}^{\prime\left(i_{1}\right)} ; j_{2}^{\left(i_{2}\right)}, j_{2}^{\prime \prime}\left(i_{2}\right), \ldots, j_{u_{3}}^{\left(i_{u_{3}}\right)}, j_{u_{3}}^{\prime\left(i_{u_{3}}\right)}$ which define $a_{i_{1}+1}, a_{i_{2}+1}, \ldots, a_{i_{u_{3}+1}}$. Because of $a_{i_{1} \div 1}<a_{i_{2}+1}<\ldots<a_{i_{u_{3}}+1}$ their order is determined uniquely (this is easy to see by induction). The total number of pairs $(u, v), 1 \leqslant u \leqslant v \leqslant k$, equals $\binom{k}{2}+k<k^{2}$, whence the result.

Thus we have proved that the number of addition chains satisfying (5) is less than

$$
\begin{equation*}
\sum_{k}(1 \div o(1))^{k} \sum_{u_{3}}\binom{k^{2}}{u_{3}} \tag{8}
\end{equation*}
$$

where the summation is extended over all possible choices of k and u_{3}, satisfying (5). Now we show

$$
\begin{equation*}
u_{3}<\left(1-\frac{\varepsilon}{2}\right) \frac{\log n}{\log \log n} . \tag{9}
\end{equation*}
$$

To prove (9) observe that if i is in the third class then for some $r_{i}>0$

$$
\begin{equation*}
a_{i+1}<a_{i+1-r_{i}}(1+\delta)^{r_{i}} . \tag{10}
\end{equation*}
$$

The intervals $\left(i+1-r_{i}, i+1\right)$ cover all the i 's of the third class. From these intervals we form (in a unique way) a set of non-overlapping
intervals $\left(u_{s}, v_{s}\right), s=1,2, \ldots, t$, which contain all the intervals $\left(i+1-r_{i}, i+1\right)$, where i is in the third class.

A simple argument shows by (10) and the construction of the intervals $\left(u_{s}, v_{s}\right)$ that

$$
\begin{equation*}
a_{v_{s}} \leqslant a_{u_{s}}(1+\delta)^{2\left(v_{s}-u_{s}\right)} \tag{11}
\end{equation*}
$$

The intervals $u_{s}<x \leqslant v_{s}, 1 \leqslant s \leqslant t$ cover all the i 's of the third class. Thus

$$
\begin{equation*}
\sum_{s=1}^{t}\left(v_{s}-u_{s}\right) \geqslant u_{3} \tag{12}
\end{equation*}
$$

From (5), (11), (12) and $a_{i+1} \leqslant 2 a_{i}$ we infer that

$$
\begin{equation*}
\frac{n}{2} \leqslant a_{k} \leqslant 2^{k-u_{3}}(1+\delta)^{2 u_{3}}<2^{k-u_{3}(1-\varepsilon / 2)} \tag{13}
\end{equation*}
$$

for sufficiently small $\delta=\delta(\varepsilon)$. Thus from (13)

$$
\begin{equation*}
k-u_{3}\left(1-\frac{\varepsilon}{2}\right)>\frac{\log n}{\log 2}-1 \tag{14}
\end{equation*}
$$

(14) and (5) clearly implies (9).

From (5), (9) and (8) we infer that the number of addition chains satisfying (5) is less than

$$
\begin{equation*}
(1+o(1))^{\log n}\binom{A}{B} \tag{15}
\end{equation*}
$$

where

$$
A=\left[\left(\frac{\log n}{\log 2}+(1-\varepsilon) \frac{\log n}{\log \log n}\right)^{2}\right], \quad B=\left[\left(1-\frac{\varepsilon}{2}\right) \frac{\log n}{\log \log n}\right]
$$

Now

$$
\begin{align*}
\binom{A}{B}<\left(\frac{A}{B}\right)^{B} e^{B} & =(1+o(1))^{\log n}\left(\frac{A}{B}\right)^{B} \tag{16}\\
& =(1+o(1))^{\log n}(\log n)^{B(1+o(1))}=n^{1-\varepsilon / 2+o(1)}
\end{align*}
$$

From (15) and (16) we finally infer that the number of addition chains satisfying (5) is less than $n^{1-\varepsilon / 2+o(1)}<n^{1-\eta}$ for $\eta<\varepsilon / 2$, which completes the proof of our Theorem.

It would be of interest to obtain a more accurate estimation of $l(n)$ and in particular to try to obtain an asymptotic distribution function for $l(n)$, but I have not succeeded in making any progress in this direction.

We can modify the definition of an addition chain as follows: a sequence $1=a_{1}<a_{2}<\ldots<a_{k}=n$ is said to be an addition chain of
order r if each a_{j} is the sum of r or fewer a_{i} 's where the indices do not exceed j. Denote by $l_{r}(n)$ the length of the shortest addition chain of order r with $a_{k}=n$. Using a modification of the method of Brauer and of this note we can prove that for all n

$$
l_{r}(n)<\frac{\log n}{\log r}+\frac{\log n}{(r-1) \log \log n}+o\left(\frac{\log n}{\log \log n}\right)
$$

and that for almost all n

$$
l_{r}(n)=\frac{\log n}{\log r}+\frac{\log n}{(r-1) \log \log n}+o\left(\frac{\log n}{\log \log n}\right)
$$

Peter Ungár in a letter has asked me the followig question: Define $l^{\prime}(n)$ as the smallest k for which there exists a sequence $a_{0}=1, a_{1}, a_{2}, \ldots$, $a_{k}=n$ where for each $j, a_{j}=a_{u} \pm a_{v}, u \leqslant j, v \leqslant j\left(a_{1}<a_{2}<\ldots\right.$ is not assumed here). The problem has arisen in trying to compute x^{n} with the smallest number of multiplications and divisions. Clearly $l^{\prime}(n) \leqslant l(n)$ and it can be shown that our Theorem holds for $l^{\prime}(n)$ too.

Reģ par la Rédaction le 20. 8. 1959

