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1 . Introduction . We restrict our consideration to symmetric random
walk, defined in the following way . Consider the lattice formed by the points
of d-dimensional Euclidean space whose coordinates are integers, and let a
pointSd(n)perform a move randomly on this lattice according to the rules:
at time zero it is at the origin and if at any time n-1 (n 1, 2, . . .) it is
at some point S of the lattice, then at time n it will be at one of the 2d
lattice points nearest S, the probability of it being at any specified one of

these being 12d '
In the present note we examine in some detail the structure of the path

formed by the points S,7 (0), Sa(l), . . ., S, j (n), . . . . We will sometimes be inter-
ested in the first n points of the path, and at others in some property of
the infinite path obtained as n oo . Our results will depend to a large
extent on those obtained in [2] ; for convenience we shall use a notation which
is consistent with that paper . In Section 2 we summarise the notations used
and obtain some preliminary results which will be needed in the sequel .

The paper of DVORETZKY and ERDÖS [2] was only incidentally interested
in the returns to the origin of a random walk, that is, the values of the
integer n for which S,,(n)-0 . We study these in detail in Sections 3 and 4 .
Since PÓLYA showed [8] as long ago as 1921 that a symmetric random walk
will, with probability 1, return infinitely often to the origin if d= 1, 2, while
if d > 2, it will wander off to infinity with probability 1, the study of returns
to the origin is only interesting for d- I or 2. In the case of plane random
walk we obtain the asymptotic distribution of the number of returns to the
origin in n steps and use these to deduce strong laws analogous to the law
of the iterated logarithm . The corresponding results for the case d= I were
previously obtained by CHUNG and HUNT [1] . In Section 4 we examine some
properties of the sequence of successive returns to the origin .

In Section 5 we consider two problems related to the behaviour of
p,jn), the distance from the origin of S 5 (n) . When d > 3, the result of PÓLYA
shows that 9,1 (n) , cc as n --> c, and DVORETZRY and ERDÖS obtained lower
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,(2 . 1)
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hounds for the rate at which ( (,(n) increases. Our first problem concerns the
average rate of increase : this is of interest for any value of d and we obtain
different results for the cases d - 1, d 2, and d 2f: 3 . The second problem
concerns a modified form of the law of the iterated logarithm for d ~ 3 .

Finally, in Section 6, we consider briefly the multiplicity of points on
the path. We are mainly interested in two questions : firstly, how many
points of the path are entered a specified finite number of times ; and se-
condly, how large is the maximum multiplicity occurring in a path of n steps .

We hope in a subsequent paper [5] to examine in detail the intersec-
tion properties of random walk paths .

2. Notation and preliminary results . For any fixed number of di-
mensions d 1,2 . . . . we will be considering the space 2 d of infinite random
walks in d-space with a probability measure P(E) defined for measurable
sets in 2d by extending the elementary definition of probabilities of single
steps. (The measure can be defined by mapping the space of paths onto a
q-adic (q 2d) representation of the real interval 0 - x - 1, and using Le-
besgue measure. Since measurability problems will not be important, we do
not need to go into this .) P{.1 will denote the probability that a path w in
2d satisfies the condition within the braces . If E, E, . . ., EA .., . . . is a se-
quence of sets, then we will write

P{E; i . o.}

for the probability that a path w is in infinitely many of the sets E,,
c1 , c 9 , . . ., c, 6 will denote finite positive real constants . [x] will denote

the largest integer not greater than the real number x .
1

l, (x) = loge x, 1,;,(x)

	

	log . . . log x

	

(k	1,2. . . . ),

where the logarithm is iterated k times .
~F will always denote a positive number .
If X is a vector in d-space, ~Xj denotes the distance from X to the

origin .
For paths in 2d , we denote by yd (n) the probability that in the first

n-1 steps, the path does not return to the origin . Clearly

1 ° yd (1) ? yd(2) - . . . = yd(n) ---- . . . > 0 .

In [1] it is proved that, for d - 3,

(2_ 2)

	

y<d(n)

	

yz > 0

as n

	

~, and

(2 . 3)

	

y,, < y a (n) < y,, + 0 (n 1- `''-') ;
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for d=2, y2(n)-- 0 and the estimate found is

(2.4)

	

y2 (n)

	

log n+
	 I 	(O l to

log n
g

	

( g )2

Let us first see that (2. 4) can be improved slightly to

(2.5)

	

y2(n)	log n + 0 ((1
09

n)2)*

Write u 2 (r) for the probability that S2(r)=0 . Then for odd integers r, u 2 (r)=0,
while

(2.6)

	

u 2 (2r) =1 +0(12 ) as r

	

~.
,rr

	

r

Counting the last return to the origin, we have
[„/2]

(2.7)

	

S y2(n-2k)u 2(2k) = 1
1-- 0

[rn/2]

By (2. 1) this gives y2(n) I u 2 (2k) < 1, which with (2. 6) gives
l;-o

(2 .8)

	

y.'(n)

	

log	
c1n

+ O ( (logn)2 ) .

Now if 1 < k1 < k2 < [ n/2], (2 . 1) and (2.7) give

kl

	

k2

	

1021

y2(n-2k)I U2 (2k) +y2(n-2k2) 1' it,(2k)+ 2; u2(2k) ~ 1 .
k=0

	

k=k1+l K,-k_+1

Now take k1 - [4 ]' k2 [ 2

	

log n, and apply (2. 6) and (2.8) to obtain

y2 ([n/2]) >	 O	log n

	

(log' n)" *
Replacing n by 2n gives

()
rc

	

1
l2 n > 1 og n -O log n

which, together with (2. 8) completes the proof of (2. 5) .
Now suppose that P is a lattice point in the plane whose distance from

the origin is p . Let u.-,(P, n) be the probability that S2 (n)	P. According to
the position of P, it can only be reached in either an even number of steps
or an odd number of steps . If it can be reached in an even number of
steps and
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(i) k >o2 , then

(2.9)

		

u2 (P, 2k) _k
+ ~

2

(ii) while if k < 92, then

u 2 (P, 2k)
[ick

+0
(

	 k,)] e k(2.10)
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The formulae (2 . 9) and (2 . 10) can be obtained by counting the number of
paths (out of 4k) which end at P and using Stirling's formula, or by using
the central limit theorem .

Now let y2(P, n) be the probability that in the first n steps the path
does not pass through P. Again assuming that P can be reached in an even
number of steps we have [,q ;12]
(2 .11)

	

y2 (P, n)+2 u2(P, 2k)y2 (n-2k)1
k-t

on considering the last return to P .
Subtracting (2. 7) from (2 . 10) gives

w 2]

(2.12)

	

7"(p,
n)-y2(n)-~, {u s, (2k)-u2(P, 2k)} y2 (n-2k) .

Now suppose that

(2 . 13)

	

20 < Q < nti 3 .

We have, for 1 < k, < lqz < [n/2],
2

;"JP, n)-72(n) - y2 (n-k)

	

u.,(2k)+y2(n-k2)

	

{u2(2k)-u2(P, 2k)}+
7,-I

	

k=1;, +L

[, /2]

{u2(2k)-u2 (P, 2k)} .
k k2+ 1

Put k,

	

P 2 , k,= n1'5 and use (2. 1), (2 . 5), (2 . 6) and (2. 10) to give

)]
	 {log P2 + 0(1) }

+ 0(e- 1 ` 10 )
2(P'

n)-y2(n) c
log n + 0 log -

	

~Iub

or
O(1)

(2 .14)

	

y2(I'I

	

log
n) - Y2(n) -

	

log n
Similarly, for I < k3 < [n/2],

y2(P, n)- y°2(n) ? Y2(JI)
I

1`3

2(2k)-u 2 (P, 2k)} .
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On taking k3 = <.2/log log o this gives

(2.15)

	

y2 (P, n)-Y2 (n) - log ~2~1- 0	

The results (2 . 5), (2 . 14) and (2. 15) together show that under the conditions
of (2. 13)

(2.16)

	

y,-)(P, n) - 2 log P ~ 1 - - o
13(e )

It is trivial to show that if o - 20,

(2.17)

	

72(P,n) -= 0 (	1

	

) .log n

Each of the results (2. 16) and (2. 17) can also be proved for points P
which can only be reached in an odd number of steps from the origin : only
obvious modifications to the proof are needed .

A calculation similar to the one we have carried out will show that if

P = n i /2/yi and 20 < p < n"3 ,
then

	

1

(2.18)

	

y2(P,n) - 1- 2 lloagn L1+o l 12 (q)1
We omit the proofs of (2. 17) and (2. 18) as these will not be needed in the
sequel .

3. The number of returns to the origin . In the case d - 3, the
situation is very simple . Let V,j be the probability that the random walk
never returns to the origin . By (2 . 2), 0 < y, < 1, and if R is the total num-
ber of returns to the origin for an infinite path in d-space, the random
variable R must have the geometric distribution

(3. 1)

	

P{R=k}=1'((1(k	0, 1, 2, . . .) .
Let us now consider in detail the case d 2 of a random walk in the

plane. Let R,, be the number of returns to the origin in the first n steps .
Let W. denote the suffix of the rth return to the origin . That is, there are
r-1 returns to 0 among S2(1), S2 (2), . . ., S2 (n-1) and S2(n)-0 where
n - W. . It is clear that

(3.2)

	

Y2(n)-P{W, - n}-P{R,,_,-0} .

We shall see that R,, has the order of magnitude log n, so let us define
a new random variable T, by

(3.3)

	

T, - log
R,

	

(a 3, 4, . . .) .
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Let x > 0 be any real number; our aim now is to try to estimate P { T, < x} .
Define an integer q by
(3.4)

	

q = [ x log n] + 1 .

Then if W3 < n, we certainly have T,, - x . That is, we have

P{T x}-- P{W,<n}=jJPjWW-W- 1 <
9

	 IP~W< q
S=1

since the variables W,.-W , (s 	1, 2, . . ., q) are independent and all have

the same distributions as W . If p 	[ 12 ], it follows from (3.2) that

P{T" L~ x} _ [1-y2(p)]` .

Thus, provided x < (,log
n+£ , we have, on substituting the estimate (2. 5)

, (n))
for y 2 (p),

P{T, - x} - e - "x(1 +o(l)) as n--> o .

Note further that we have
(3.5)

	

P{T„ ~7 x} - e-" x (1 +o((log n)~ 1 ; '))

uniformly in x for x < (log n) 1 /1.
We will later also need an estimate for PIT,, - x} in the case x = k log n

where k is a constant. The method used above is not completely accurate
in this case, but it is still sufficient to give

e-k",og
(3.6)

	

P{T, - k log n}

	

-

	

~k,(1+E~(log n)2
for any positive number e.

Let us now try to obtain an upper bound corresponding to the lower
bound (3. 5) . Let E, (k 1, 2, . . ., q) be the event that precisely k of the
variables WS-W_1 are greater than or equal to n, while q-k of them are
less than n . Then clearly, since the events E;, are mutually exclusive,

1
(3.7)

	

P { T,, < x} 2: P (EL) .
k -l

By (3. 2), we have that

P(E,~) 	(k) {y2(n)}k(1-y2(n)), = 1-(1-y2(n))3 •k~l

	

k-1

Now, using the estimate (2. 5), it follows that, for x < (log n) 314 ,

(3.8)

	

PIT, < x} -- 1-e" x(1 + O(log n) -1 /4)

uniformly in x for that range .
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Thus (3. 5) and (3 . 8) together show that

(3.9)

	

P{T, - x}=e-"T[1+o (log n)_
.15 as n--*~,

uniformly for x < (log n) 3'4 .

If x is restricted to a fixed range, say
C.,<X<C3,

then a better estimate can be obtained . We have, instead of (3 . 8),
r

	

1P{T,<x}e-'1x}~1-+-O llogn ~'
In this case the estimate (3 . 5) can be improved to

P { T, x} - e- mix 1 + 0
(log lognl .(log	

Jn

Thus we have

(3.10)

	

P{T, x}=e_„x 1+O (loglognl
l log

	

Jn
uniformly for c2 < x < c 3 .

We need (3 . 10) to allow us to obtain a satisfactory upper bound cor-
responding to (3 . 6) .

Put s = [k(log n) 2], t = [k log n] . Then
[log n]

	

)

P{T,-klogn}-P{W-n}-P n {Wrt-Wr_1)t-n}}-[P{Wt-n}]['°9111,
r=1

since Wt-W(r-1)t are independent and all have the same distribution as W, .
Now P{W - n} =P{R,,. < t} . Using the estimate (3 . 10), this shows

that there exists a constant c4i depending on k such that
1

P{T, - k log n} e-11 l og" (log n)°4(3. 11)
for large enough values of n .

The detailed results obtained in this section will be needed in the se-
quel. Let us summarise the picture in the following

THEOREM 1 . If R,, denotes the number of returns to the origin in the
first n steps of a plane random walk, then

lim P {R,, < x log n} = 1-e -
11-CO

for x < (log n)31 , and the limit is approached uniformly in this range .

Thus the asymptotic value of the mean of the random variable
D1z

	

is 1 . This ties up with one of the main results of [2] wherelog n

	

Tc
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it is shown that the number of lattice points entered in n steps is
Tcn

	

1

	

0 1

	

with

	

1 . Thus the average multiplicity of pointslog n

	

+( ))

	

probability

entered must be	 I log n .
5C

REMARK. CHUNG and HUNT [1] found the result corresponding to Theo-
rem I for random walk on the line . They showed that if N, denotes the

number of returns to the origin in the first n steps, then	 N°; has a distrib-
11

ution which tends to that of Y where
l
Y is a normally distributed variable

with mean 0 and variance l .
We now go on to consider laws of the type of the iterated logarithm

for the random variable T, . Since the methods required are complicated and
not essentially new, we will not always give complete proofs . First let us
consider the small values of T .

THEOREM 2. If (f (x) decreases to zero, (f, (x) log x increases to -f C'C as
x-+ oo, and RT, is the number of returns to the origin in the first n steps
of a plane random walk, then

P{R,T < (f (n) log n i. o .}	0 or 1,
co

.according as f x log x
dx converges or diverges .

PROOF . The integral converges or diverges with the series

	

Tk where

(pk=cp(nk ) and nk -2 (k=1,2, . . .) .
Suppose first that Zkpk converges. We may assume that (f (x) -- (log x)-" 10

since otherwise we can replace (p by

p(x) = max {(f (x), (log x) -'' u)

without upsetting the convergence of the integral . Hence by Theorem 1, for
k large we have

P{R,,,. < 2cp k log nk } < c1 pk .

By the Borel-Cantelli lemma, there exists with probability I an integer k 0
such that R,,,, - 2cp k log Ilk for k - ko . Now if nk+1 > n z Ilk,

Hence

R,T

	

I

	

R,T,

p̀ '

n ~ nk,, .

log n

	

2 log n k

R,, - forcc (n)log 11



Now suppose that > (p,; diverges . We need to be a little more careful
as the events considered above are not independent . The conditions of The-
orem 1 are satisfied so that

(3. l 2) P ( W

	

W,, 1 > e2 ~) - P (W,, _, > - T ) -_ P (R,, . < 2" - ~)

where t, _ [e"Now
R

P(R,,. < 2' ~) = P log t, . < 2' >

for r - r,-„ by Theorem 1, since t, . -- - . The events

	

> e'
(r- 1, 2, . . .) are independent . Hence again appealing to the Borel-Cantelli
lemma, there are infinitely many integers r for which

W.,, > e 'ror

and so
Rt, .

log t, . <
for infinitely many integers t1 . This completes the proof of the theorem .

COROLLARY . There is probability I that, for any constant k, R„ <

< k loggog n
infinitely often ; but for any O' > 0, there is probability 1 that

R" >

		

log n
(log log 17) 1 +11

for all large enough n .

Now let us go on to consider the unusually large values of R„ . For
this purpose we shall find it . useful to look at the sequence at the points

(3.13)

	

m,,. _ [ee' Iog']

	

(k= 2, 3, . . .) .

Suppose V(x) is a monotonic function of x which increases to + - as
x ->+ oo,

Write

(3. 14)

	

?b,,.-'p(nIk)

	

(k = 2, 3, . . .),

P ; log	Mk > 1p,, = p'. .

THEOREM 3. If p(x) is a monotonic function which increases to + a

as x + - and > .e- Vk converges, where Y '; is given by (3 . 13), (3 . 14), then

P laR, > tp(n) i . o. =0 .
1'g

10 Acta Mathematica XI/1-2
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PROOF. We may assume that tp(n) - 2 log ;; n, since otherwise replacing
y,(n) by yp,(n) - min }'p(n), 2 log :.; n} will not effect the convergence of fe-,J''°

and will only strengthen the result of the theorem .
Then by (3. 13), (3 . 14) and (3. 9), a simple computation shows that,

for large enough k,

	

I

1TRm .9 +1

	

3P

	

log
	 > 1pk } < e . e w,, ;

M/,7

Applying the Borel-Cantelli lemma we have, since Ze_
l7, converges, that

there exists with probability 1, an integer k, such that

7TRn'7:+1 gyp, for k - k„ .log m,,.

Then if m F+j > n - ni l , and k k,,,

r R,

	

; c R,, ti + i
log n - log m,, c

and therefore there is probability l that

(n)

loRa > P(n) only finitely often .
log

To prove the converse of Theorem 3 requires a great deal more trouble due
to the independence difficulties in the application of the Borel-Cantelli
lemma. We state two forms of the theorem which are almost equivalent .

THEOREM 4A . If 3p(x) is a monotonic function satisfying ip(x) > c 3 13 (x)
for some c, > 0, then

P I ~ log n > I
'll (11) i. 0 .

	

0 or 1,

according as 7 e-q'k converges or diverges, where Vf,; is given by (3 . 13), (3 . 14).

THEOREM 4B . If q)(x) is a monotonic function increasing to + - such
that 1p (x)/log x decreases to zero as x -*+ o, then

P
~zR ,

, log n > ip(n) i . o. = 0 or 1,

w

according as	 ,'(x) e -wc-J converges or diverges .
J xlogx
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COROLLARY. If r > 4 is a positive integer, and
'tp (x) = 1;,(x)+214(x)+1,(x)+ . . . + 1,' (x) + t 1r+1 (x),

then

P log n > `p (n) i. o. = 0 or 1,

according as t > 1 or t ~-- 1 .

It is clear that for functions p(x) which satisfy the conditions of both
theorems, the two Theorems 4A, 4B are equivalent . The corollary can be
deduced from either. It seems likely that the condition &p(x) > c,-,l.3(x) of
Theorem 4A could be relaxed, but some sort of lower bound to the rate of
growth of w(x) is necessary . A proof of Theorem 4A can be obtained
by making suitable modifications to the proof of ERDÖS [4] ; and a proof of
Theorem 4B can be obtained by modifying the proof of CHUNG and HUNT [1] .
By either method the details are extremely formidable, and we do not pro-
pose to write them down as there is only one idea needed which could be
described as new . This idea will be illustrated if we give a proof for the
first term only of the asymptotic expansion of the critical p(x) . This is given by

THEOREM 4C . If 4p (x) = c log log log x, and R,, is the number of returns
to the origin in the first n steps of a plane random walk, then

P ~ log	 > -& (n) i . o .}	0 or 1,
'g

according as c > I or c ~-- 1 .

PROOF. With c > 1, and 'tp,, defined by (3 . 13), (3 . 14) the series Ze-'h
converges . By Theorem 3 it follows immediately that

P -dog n > 1 p(n) i. 0. = 0 .

For the case c :f~- 1, it is sufficient to prove that

1rRs
(3.15)

	

P log n > l;(n) i. o. = l .

Put

(3.16)

	

s' _ [e,;'"'og'E]

	

(k = 2, 3, . . .) .

Let E1, be the event
T

El,

		

RS',,

	

,= ~ logs  >1,(s1)
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Then, by (3 . 9), we have

(3. 17)

	

P (E,,

P (E,,

P . ERDÖS AND S . J . TAYLOR

P(E'`)

	

k log k (1
+o(1)),

so certainly f-P(E,,) diverges. The points s,, are sufficiently far apart to use
the simplest form of argument for overcoming independence difficulties . We
can show the existence of c6; such that

E2' E3 . . . E'-1) > c1 P (E,.) .

g

At the end of s,,-, steps the random walk path is certainly at a distance
< sk_ 1 from O. If T,li is the event that there is at least one return to the ori-
in 1 between S1-, and slog'- : , it follows form (2. 16) that

(3.18)

	

P (T; E,_>' E3 . . . E'-1) > I -
2

log k

for large k. If T, occurs, the path can be started from the first return to the
origin after s1_ 1 and t,; - (s,; -s;°g''') steps taken. Hence

(3. 19)

	

P(E,~I Ti„) - P(Q;)

where Q; is the event that in t, ; steps starting from 0 the number of returns

is not less than 1 13 (s1) log s,1 .

Now it is clear that
t,; > s,,,-s

so that log t,,, > log s,;(1-s,,1'2) .
It follows from (3 .

9)
and (3. 16) that

P(Q'')-klog
k (1+0(l)) .

Combining this with (3 . 18) and (3. 19) is sufficient to prove (3 . 17) . This
shows that

E2'E3 . . . E,,'-1) diverges,

so that, with probability 1, the event E, occurs infinitely often . This com-
pletes the proof of the theorem .

4. The distribution of the returns to the origin . We have seen that
11

	

R itL

nn1,

	

in the cases d = 1 2 respectively, each have an asymptotic dis-

tribution as n

	

cc . As a result these ratios do not approach a limit as

1 This is where we introduce an idea not needed in [1] or [4].
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n --,. x . We first show that a suitable averaging process leads to a limit,
and then show that if one only counts returns at a suitably sparse subse-
quence, then the number of returns has an asymptotic value .

THEOREM 5 . Suppose W., denotes the suffix of the sth return to the origin .
Then there are constants c,, c F such that

(i) if the random walk is on the line, then

lim	1 2

	

-- c, with probability l ;"
_~Co log n 71

(ii) if the random walk is in the plane, then

lim ;	1 Z	1 	c, with probability 1 .-p log n s , log W

PROOF OF (ii) . For a random walk in the plane define a sequence of
random variables by

1
u
(k) _ logk if S(k)	0,

	

(k-- 2, 3, . . .) .
0

	

otherwise
Using (2. 6) we see that

{,u(2 k)}

	

icklogk +O (k~)'b

6{«(2k+1)}-0

	

(k--1,2, . .) .

Hence, if we put v (n) _ 2:y(k), we obtain
1, -2

{n(n)}

	

,c
log log n+0(1) .(4 . 1)

The variance a2 {v(n)} may be estimated since

1

	

1
0 2 _ 2 2:	 (P {S(i) = 0}) .

log i logJ

Using (2. 6),

(4.2)

	 (P{S(j)-0 SJi) 0}-P{S,(J) 0}) .

a simple computation shows that

a2 {w(n)} < c, log log n

for a suitable positive number c,, .
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Let
(4.3)

	

q,,	 [e''''"]

	

(k = 1, 2, . . .) ;

then log log q,	+ 0(l)) .
By Chebyshev's inequality, using (4. 1) and (4. 2), for any E > 0,

for a suitable constant c1 0 . Using the Borel-Cantelli lemma, we see that

lim	 1,W) = I with probability 1 .
k-aco log log q,1 .

	

7r

Now if qk+1 > n ~ q,,.,

	 v(qk+l)	v(n)	'1'(qk)	
log log q, - log log n

	

log log q,+1

By (4.3)
log log q,,+1

, I as k ~ .log log q,;
ability 1,

(4.4)

	

lim	1,(n)
_, ' log log n

	

T

We now show that the result (4 . 4) is equivalent to (ii) . By Theorem 2, we
know that, with probability 1, R„ > log n(log log n) -1 '2 for large n . Hence

(4.5)

	

W, < e" ( 10g~''2 for large n.

Similarly from Theorem 3 we can deduce that

(4.6)

	

W„ > e7009 , ? for large n .

Now	 I 	v(W), so that, by (4 . 5) and (4 . 6),
S-1 log W

(4. 7)

P ~ v(q,;) -- I
log log q,;

	

i

1 	v(e,r/log r!\ <	I
109 11

	

/

	

log n

P . ERDÖS AND S . J . TAYLOR

> ~ c",
k`,

It follows immediately that, with prob-

1

	

<	 I	 i(e'z(log)`)J)
-1 log W, log

	

\n

for large n, with probability 1 .
Since, with probability 1, both sides of (4 . 7) approach the limit 1/yr,

this completes the proof that

P lim I 2:.1

	

- 1 .
~~ log n r log W$.

	

7T
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PROOF OF (i) . Precisely the same method will work in this case, using
the results of CHUNG and HUNT [1] instead of Theorems 2 and 3 .

THEOREM 6. (i) For a random walk on the line, let Rn(2k 2 ) be the num-
ber of integers k for which S, (2k) = 0 (1 - k :f:-~ n). Then there is a posi-
tive number c„ such that

P{ bin R(2k)logn - c„ } 1 .
I? - co

(ii) For a random walk in the plane, let R, (2 [k log k]) be the number of
integers k for which S,(2 [k log k]) = 0 (1 _- :E~ k ~ n). Then there is a positive
number c, such that

P lim R,,g[logk])
log n

The proof of this theorem is very similar to that of Theorem 5, so we
omit it .

Let us now ask the following question about random walks in the plane .
We know that the walk returns to the origin infinitely often . However, there
will be some long "gaps" when the walk does not return . How long can
these gaps be? To make this precise, if g(n) is a monotonic function, let us
ask whether or not there are only finitely many integers n for which the path
(n, n +g(n)) does not contain at least one return to the origin . We have
succeeded in answering this question in the following form :

THEOREM 7 . Suppose f(n) is a monotonic function which increases to
+ oc as x -> o, and let E„ be the event that the plane random walk path
does not return to the origin between n and 011) : P {E„ i. o,} = 0 or 1,

co

	

1
according as the series Z,

	

,,) converges or diverges .
I;-> f (2- ')

PROOF . Let F,, be the event S0(n) > n14 . Then P(F,) > 1-n-''1, and
an application of (2 . 16) will give

P(F, n E„) > (1-n-1-4) 2 log n' 4
( 1 o( 1 ))f(n) log n

since the behaviour of the random walk after n depends only on its posi-
tion at the nth step. Hence, for large n,

(4.8)

	

P(E„) > 3 ' f(12) .
Similarly, since S.,(n)! = n, we can apply (2. 16) to give, again for large n,

(4.9)

	

P(E„)
< f(n9
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Now suppose first that ? 1 	converges where n,. =2''' . Put f (n)=
f(n~~)

=
2

f(n), and let Q,, be the event that there is no return to the origin be-

tween n,, and By (4. 9), . P(Q,) converges, so, with probability 1,
there is an integer K such that there is a return between n,, and nl,<<"i-i) for
all k - K. Since nt( ,, ) n;:("I) -n, ,','J, this will imply that for n,; n < n,,+, ,
k ~ K there is at least one return between n and nt(°'

Conversely suppose that v I 	diverges . Because of the law of zero
f(nk)

or one, it is sufficient to show that there exists an r > 0 such that for every
integer k, there is an integer k., with

(4.10)

	

P ~ , U I > 1 ; .

Since f(n) is monotonic the series 2	1 	must also diverge. Thus if k,
, ; ; An-,I)

is given and sufficiently large, we can certainly find k_, such that

I

	

I

	

I
20 <

	 < - f-0 .

We will show that this choice of k ., satisfies (4. 10) with i	1
40

(4.11)

the events

(4. 12)

	

D,;

	

E„

The sets D,,, for k an integer satisfying k, - 5k - k, are clearly disjoint and

U E

	

U Dr,
k -1.1

so that (4 . 10) will immediately follow if we can prove that, for k, .-5k=-k.,,

(4.13)

	

P(D,,.) >
2
P(E,

There are two cases to
r-k large.

(i) If r is
tween nf~' F> and

P. ERDÖS AND S . J . TAYLOR

Consider

consider in estimating P(D,;) : (i) r-k small, (ii)

such that n ( ' i)k) > n,,., then the probability of no return be-
n',,',-0 is, on using (2 . 16),

< (2+~) logno,, f(n:,;)
log n .,, . f(n .-„ )

'
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since we know that 'S.>(n((`ok)) < nt("oo . Thus we have in this case that

(4.14)

	

P(E, ,,, n E, -,,.) < 2 .,3 ,,, P(E_,,,) .

(ii) On the other hand, if nt(:'5k> - n,, , we have by (4. 9) that

(4.15)

	

P (E ,, 5,, n E,, ,,, .) < f(n ~r) P (E" s,,) .

The two cases (4 . 14), (4 . 15) together show that
1

	

1
P (E,, :,r: n E, - :,) < 3 (f(n,-),) -+2 '""-': ) P (E'+ .;,, )

for any r > k. This result applied to (4 . 11) and (4 . 12) immediately gives
(4 . 13) . This completes the proof of the theorem .

We state without proof the result for a one-dimensional walk which
corresponds to Theorem 7. It can be proved by similar methods .

THEOREM 7A . Suppose f(n) is a monotonic function which increases to
+ - as x - c, and E, is the event that a random walk path on the line
does not return to the origin between n and n l f(1)12, then

P (E,, i0o.) _- 0 or 1,

according as the series Z f. ( 2,,) converges or diverges .

We end this section by mentioning a related problem which we have
been unable to solve completely. Clearly the lattice points in any given
square will eventually all be entered by a plane random walk. How quickly
does this happen? More precisely we have

PROBLEM. How quickly does the function f(n) need to increase so that
in an infinite plane random walk, with probability 1, all the lattice points
within a distance n of the origin will be entered by the walk before f(n)
steps except for finitely many values of n?

We can show using the methods we have discussed above that
f(n)	009 11)' + ' is large enough, but we have failed to get a satisfactory lower
estimate and have no plausible conjecture regarding a necessary and suffi-
cient condition for the rate of increase of f(n) .

5. Behaviour of the distance from the origin . For a random walk
in d-space we put P,,(n) = Sa(n) . Then for d= 1, the celebrated law of the
iterated logarithm gives an upper bound to e,,(n) for large n. The corre-
sponding theorem in d-space is

153
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THEOREM 8 . For random walk in d-space

P o,(n)
> c V / 2

	 n 100, 100, /1 i . 0 .

	

0 or 1,

according as c > 1 or c

	

1 .

This result must be well-known though we have not found it stated
explicitly in the literature . It can be proved by modifying the proof for the
case d - 1 .

This form of the theorem deals with the unusually large values of
We may ask : how large can a sphere be for S,(n) to remain outside it for
n i_ n o? This is equivalent to obtaining an upper bound for the rate of escape
of S,(n) . The lower bound was obtained in [2] . We will need to use

LEMMA 1 . If d - 3, then for a random walk in d-space

P {o,,(n) < n '/2 (log n) i . o.{ -0 .

This is a special case of the rate . of escape result of [2] .

LEMMA 2 . If d = 3 and we start a random walk in d-space at a dis-
tance R from 0, then it will enter a sphere of centre 0 and radius Z . R (0 < ). < 1)
with probability

p

	

(%,)`' (1 + 0(1))
as R-* c x-, .

This is proved for Brownian motion by DVORETZKY [3] . The random
walk case follows immediately from the relationship connecting them (see [7]) .

Because of the result of PÓLYA, the problem of rate of escape is only
meaningful for d - 3 .

THEOREM 9. Suppose c < 1, ojn) is the distance from 0 at the ntf' step
of a random walk in d-space, d - 3, and •r a(n)--inf 9,,(n), then

P ; r, (n) > c

	

2
~l d n log log n i . o . ; - 1 .

REMARK . Since -r,, (n)

	

P,(n), it follows from Theorem 8 that for c>i
we must have

f
P ; •r 1 (n) > c l d n log log n i . o .	0.

The case c= 1 can also be decided : in fact, by taking a great deal more
care one canprove that, for any a < 1,

	

I,2

P •r,, (n) > d (2 log log a+al.:;(n))

	

i. o . - 1 .



SOME PROBLEMS CONCERNING THE STRUCTURE OF RANDOM WALK PATHS

	

1 5 5

We have been unable to obtain necessary and sufficient conditions for upper
bounds to the function c,,(n) which would correspond to the results of
ERDÖS [4] and FELLER [6] .

PROOF OF THEOREM 9 . Let c, 3 , c„ satisfy

(5.1)

	

O<c<c,1;<c,4< 1 .

Consider a single axis in d-space and let q(n) be the number of steps which
are taken in the direction of this axis. Let

Q - ~q(n) :4
n l .

Then, since steps along the direction of each of the d axes are equally likely,
we have

(5.2)

	

P (Q1) = 2

Now, by considering only the distance from the origin in the direction of
this one specified axis, we have

(5.3)

	

P Q 'I (n) > c,, 2 n log log n 1 1 Q,	 I
l

	

(log n)
Further, by Lemma 2,

`

	

2

	

2

	

l1 ,,
(5.4)

	

P Sc„ (n) > c, ;; d n log log n
J

	

o d (n) > c14	 d n log log n

.

l ~ >
(((

	

,,
> 1-		(1 0(1)) ;

l cc74 ,

since the required probability is that of not entering a sphere of radius c, .-;x
if you start from a distance c„x from its centre . By (5.1), (5 . 2), (5. 3) and
(5. 4) it follows that for a suitable c, 4, we have

(5.5)

	

P -r ,7 (n) > c, :j
2

	 n log log a
j

2>	c'''	
(log n)''

In order to apply the Borel-Cantelli lemma we must replace the events in
(5.5) by suitable independent ones . Let

(5.6)

	

nti. _ [e ' 1+s]

	

(k = 1, 2, . . .)

where

(5.7)

	

1 < 1 + d' < c -14
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Now put
(5.8)

	

,u,;

	

inf

	

S;,(n)-S,,(n, ;)

Putting	 t,;, we clearly have
P{,u,; > 7} = P{r,,(t,) > ;} for any , = 0.

Hence if we put
2

E,;	 ;F~,,:>c13(d-t,; log log t,;I ~,

we have by (5. 5) and (5. 6) that

P (E,) >	c'' where 0 < c,, < l .
k' , ~

But, by (5. 8), the events E,, E4 , . . ., E> ,;, . . . are independent .
Borel-Cantelli,
(5.9)

	

P {E,; i . o .} = 1 .

Now, by Theorem 8, there exists with probability I an integer k, such that
for k = k„

l 1

'?a(m) ,(n) < 2 l n, .
d

' log log n,, l

Using (5. 6) this shows that

(5 .10)

	

k+1 -

Finally, by Lemma 1, there exists with probability 1 an integer k1 such that
if k

	

k, ,
n',;+(log

111-2 )2
.

Again using (5 . 6), this shows that

(5. 11)

	

'cr, (ni r2) ? (n1 41 log log n, 1) 1j2.

Now suppose k = Max(k0 , k) is such that E, ; occurs. Then, by (5 . 8) and
(5.10),

'inf

	

S,(n)' > c,:; 2 t,; log log t,; l - n'1' 21 > c 2 m;+1 log log
a

	

d

	

d

Hence, by

for large enough k, by (5 . 1), (5 . 5). Now using (5 . 11) we see that for such
values of k we have

z-,,(n,;+j) > c 2
	 nc+1 log log n,;+1)

This completes the proof of the theorem .
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I

	

V

	

n
-,

log N„-T
1 with probability 1,

with probability 1,

(5.12)

	

P{Y(P,n)}--0 or 2
,zn 1+0(1)),

IPI-

	

,,
log,,

which gives

2
(log n-log log n) < 6, (1 + {1~,(n)}') (1 +0(1)) <	 2 (log n + log log n)

(	1	
1

	

2logn
(5.14)

	

1-F{o,,(n)}~

	

n

	

0+00)).
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We now state a theorem regarding the average rate of growth of o, j (n) .

This is relevant for d 	1, 2 as well as d - 3.

THEOREM 10 . For a random walk in d-space, if Q d (n) denotes the distance
from the origin of S,, (n), then there are constants , such that

	1	
X

21(log N)' L~ 1 + {p> (n))'

	

~'

(iii)

	

1	
1	1 ,

	

£

	

with probability 1, for d = 3, 4, . . . .log N„-T 1

PROOF . The method of proof is very similar to that used in Theorem 5 .
The three cases are also very similar, so we consider only the plane case (ii) .

Suppose P is a lattice point in the plane . Let Y(P, n) be the probabil-
ity that Sz ( n) - P. Then

(a) If 1 P < nI 2/log n,

according as P cannot or can be reached in n steps. Note that for fixed n
half the points can be reached and the other half cannot .

(b) If P >n'2 log n,

(5.13)

	

P {Y (P, n)} = O
( n) .

Thus t
	 1 1	i		P{Y(P, n)} Using (5. 12) and (5. 13) we have1

	

i o d(n)}'

	

1 + ,P

P 1 +PPn)}

	

; L {P (n)}

	

nI-

	

1 o ;,, P 1 + Pn)
j
+O(1)
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Hence we have
1

	

1

	

_

	

2

	

~ log n (I +0(1)) 1+0(1)
(log N) - ,71 1 + {Pa(n) t-

	

(log N)' =, n
as N-* c .

A similar computation will show that the variance is small. It can be shown
that

ti
rT'

1

	

_

	

1O
(log N)2 „=1 1 +

	

(n) I"

	

log N
The argument of Theorem 5 can be applied, proving first that the

limit exists as n through the sequence r;; -_ = [e'l ] and then deducing the
general result .

6. Multiplicity of points on a random walk. A point P of the lat-
tice is of multiplicity m(P, n) if the random walk of n steps is at P pre-
cisely m(P, n) times in the first n steps. Let us first consider how many points
there are which are entered once and only once . For d- 1, there will be
0, 1, or 2 of these, while for d - 2 there will clearly be many. Let us con-
sider the case d 2 in some detail . In a plane random walk of n steps how
many points have multiplicity one?

In [2] it is shown that the probability that the ktt" step of a random
walk brings it to a point not previously entered is y 2 (k), the same is the
probability of no return to the origin in the first k-I steps. It is clear there-
fore that the probability that at the kt", step a plane random walk enters a
new point to which it does not return before the nt" step is y2(k)y2 (n-k) .

Let M, (n) be the number of points of multiplicity I on a plane random
walk of n steps. Then clearly

(6.1)

	

{M,(n)} 	. y2 (k) y.> (n - k) .

By (2 . 1), CS {M, (n)} - (n+ 1) {;An )12 .

Using the estimate (2 . 5), we have

(6.2)

	

C'O{M,(n)} - n ( ( log n)`'	 + O ((log	n)' 1J .

Again using (2. 1) and (2 .5) we have, if k,	n

	

11
that(log n)-

t,{M,(n)) -- 2,:f /jn-k)+ ;,2(k) _Y 72 (k)h-h,

0	n

	

+n

	

Tc2
+ 0

log log n
(log n)' )

	

(log n)2

	

(log	
n)' )
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This together with (6 . 2) shows that

(6.3)

	

tM 1 (n)} = n	
;r'

+ O
log log nt

(log n)=

	

(log	
n)

In order to estimate the variance we need

LEMMA 3 . Let r(n) be the probability that a plane random walk path (i)
does not return to the origin in the first n steps and (ii) enters a new point
at the nth step. Then

7(11>c ; ;2

	

2 ))~
REMARK . It is clear that i'(n),., ;t (n)}' as n

	

o, but we need only
an upper bound .

PROOF . Let q	L*i ; then the probability that a random walk path has

not returned to the origin in the first q-1 steps is t (q) . Start a path from
Sjq) of length n-q+ I steps. The probability that the last of these steps
brings the path to a point not entered since S,(q) is 72(n-q+ 1) - ; _(q),
by (2 . 1). Now if the path is to satisfy both conditions (i) and (ii) it clearly
must not return to the origin in first q-1 steps, and the nt'' point must
certainly be a point not entered since the qt" step. Thus v(n) = ;'2 (q)} - , as
required .

Now let p, be the probability that in a random walk of n steps, the
ith step leads to a new point of multiplicity one, and let p, be the proba-
bility that at both the it" and jt ], steps points of multiplicity one are entered .
By splitting the path into three parts it follows that

(6.4)

	

p0J = Y , (i) r' (j- i) Yz (n -j)
for O :i~ i < j - n . Now

6? (M,(n)} - } (pt,-pip) 2 2(p%-pip1) .J---j-)l

Using Lemma 3 and (6 . 4), this gives

(6.5)

	

a2 {M, (n)}--.2 2: y2(i) :"2 (11-j) ;[Yzl 2

The double sum in (6 . 5) can be estimated by splitting it into 4 parts . Let

k, -	n(_(log n)
Since all the terms are positive and less than 1,

' .

I- i 7~j-a
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The first 3 terms are
0(112 log log n

	

Thus(log n)'

(i ' {M,(n)) = O n-' log log n
( (log n)° ) -

This variance is not quite small enough for a straightforward application of
Chebyshev's inequality . However, the method used in Section 5 of [2] can be
applied here with only minor modifications to show that

P ~
5Z 11

M, (n - (log n) =

P. ERDÖS AND S . 1 . TAYLOR

O	11 -'
((log n)

	

and the fourth, by using (2 . 5), is

I

rn

	

1
(log n)2

	

O (log n)1+° ) (o > 0),

and the strong law can be deduced, as in [2], by using the sequence
ti, _ [e' .01 for

1 < 0 < 1 .1+ r}

For details of the method the reader is referred to [2] . Thus we have
proved

THEOREM 11 . If M,(n) is the number of points of the lattice entered once
and only once in the first n steps of a plane random walk, then

p ! urn M1 (n)(log n)2	1 = 1 .
(,

	

,z2 n

REMARK . For a fixed positive integer t, a modified version of the above
proof will show that the number of points of multiplicity t in the first n steps
of a plane random walk is given asymptotically by the same formula

-n
(log n) 2

A much simplified version of the same argument suffices to prove

THEOREM 12. If t is a positive integer, and d ~ : 3, then the number
Q,(t, n) of points which are entered by a random walk in d-space precisely t
times in the first n steps is such that

p lim Q, (t, n) 	y (1-, ,)t-1 _ 1
-.M

	

n
where y,, is the probability that the path will never return to the origin .

REMARK . This means that in d - 3 dimensions the proportion of points
entered by a random walk of n steps which have a given multiplicity agrees
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with the distribution (3 . 1) for the number of returns to the origin . We feel
sure that this result must also be true for the plane random walk, though
we have not attempted to prove it .

The result of Theorem 12 shows that, for d ~ 3, most of the points
entered will have small multiplicity . Let us now ask what is the largest mul-
tiplicity occurring in the first n steps of a random walk .

THEOREM 13 . Let Ti(n) be the upper bound of the multiplicity of points
entered in the first n steps of a d-dimensional random walk (d -_ 3). Then

p lim Td (n)
logn

where

1 1
=- log('1 i'a)

	

(d 	3,4, . . .) .

PROOF . Suppose first that 7 > £ . a ; then by (3 . 1),

P{Ra(n) > £ log n} < (1-yI)x'09" .

There are at most n points entered : hence

P {Ta (n) > £ log n} < n(1-y,,)lOg" -- n L

Using Borel-Cantelli it follows that the event {T5 (n) > (47+r) log n} happens
only finitely often for the sequence n, = 2k (k -- 1, 2, . . .) and as a result
happens for only finitely many integers n with probability 1 .

There are independence difficulties in obtaining the result in the oppo-
site direction. This time we avoid these by splitting the path into a large
number of small pieces .

Let

u - [log n],

	

?7- [ (iogn)2 ]

Consider a piece of the path containing u 2 steps. The probability that
the first point of this piece is returned to in the first u steps is

1- Y,1 +0

	

	1((log n) L ~2

by (2 . 3) . Hence the probability that this first point is entered 7 log n times
in the u2 steps is at least

1

	

Ik Iog,z]
Y (n) -, 1- ya+ 0 ((log n)1/ 2 )

11 Acta Mathematica X1!1-2
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There are at least v such pieces which are now independent . It follows that

P{Td(n) > f log n} = 1-{I -it (n)j',

so that
P(Td (n) ~ ). log n} < {1-,u(n)} ° < e-''6

for a suitable o > 0, provided ~ < 7d . Hence, if - 7, z , by Borel-Cantelli,
there are, with probability 1, only finitely many n for which

Td (n) - ) log n .

This completes the proof of the theorem .
The problem of maximum multiplicity also has a meaning in the case

d=2. The method used in the proof of Theorem 13, using pieces of length
[n 1 i 2 J and the estimates (3 . 6) and (3. 11) is good enough to prove that

P ~	 I , lim inf T2(n)2 - Jim sup 102(2)2 = 	= 1 .
4'c

	

,I- oD (log n)= - ,,. ( g )' -

We think it likely that in fact

P lim T2(n) .,
„'. (log n)-

though we have not succeeded in proving this .

(Received 6 October 1959)

References

[1] K . L. CHUNG and C. A . HUNT, On the zeros of

	

+ 1, Annals of Math., 50 (1949), pp .
T

385-400.
[21 A . DVORETZKY and P . ERDÖS, Some problems on random walk in space, Proceedings of

second Berkeley Symposium on Stochastic Processes, (1950), pp. 353-367 .
[3] A . DVORETZKY, Brownian motion in space and subharmonic functions (under press) .
[4] P . ERDÖS, On the law of the iterated logarithm, Annals of Math ., 43 (1942), pp . 419 - 436 .
[5] P . ERDÖS and S . J . TAYLOR, Some intersection properties of random walk paths, Acta

Math. Acad. Sci. Hung., 11 (1960) (under press) .
[6] W. FELLER, The general form of the so-called law of the iterated logarithm, Trans .

Amer. Math. Soc., 54 (1943), pp . 373-402 .
[7] M . KAC, Random walk and Brownian motion, Amer. Math. Monthly, 54 (1947), pp.

369-391 .
[81 G . PÓLYA, Über eine Aufgabe der . Wahrscheinlichkeitsrechnung betreffend der lrrfahrt im

StraBennetz, Math. Annalen, 84 (1921), pp . 149-160 .


	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26

