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TO THE MEMORY OF I. S�HUR

1 . Introduction

1 . Let n >= 3, and let Q,1 denote the class of polynomials f (x) of degree n
satisfying the condition I f(x) 1 <_ 1 in the interval -1 <_ x _<_ +1 . Let Q~(xo)
denote the subclass of Qn characterized by the further restriction f"(x o ) = 0 .
A well-known theorem of A. Markoff1 states that I f' (x) I < n 2 for -1 _<

x 5 +1 provided that f(x) e Qn ; here I f'(x) I = n2 holds if and only if x = ±1
and f(x) = =LT.(x), where T. (x) denotes the nth Tchebycheff polynomial . We
observe that T0,(x) does not belong to the classes Q, (.±1) .
Some years ago I. Schur2 proved the following interesting theorem : Let

-1 5 xo <_ +1, and let f(x) belong to Q,(xo) . Then f'(x o) < 2n 2 . Moreover
he showed : Let m„ be the least positive constant (depending only on n) such that
f'(xo) 1 5 Mn •n2 for all f(x) e Q n(xo ), and x 0 in -1 < x < +1. If µ =
lim sup n_ mn , then

(1 .1)

	

0.217 . . . 5µ<0.465

	

• .

Obviously

(1.2)

	

m.-n2 = max

	

max

	

f'(x o ) ~ .
-1_<x u_+1 1(x) E Q„(x0)

The main purpose of the present note is to determine the constant µ and the
polynomial f(x) for which the extremism (1 .2) is attained . In terms of the con-
stant mn , we obtain a bound for the derivative f' (x) of a polynomial f (x) which
satisfies the condition that I f'(x) I has a relative maximum at the point x
considered .

2. Let u. (x) be the polynomial of the class Q n(+1) for which un (1) is a maximum .
This polynomial un(x) = un(x ; A .n) can be determined from the transcendental
equations (2.5), (2 .6) and (2.17) of §2 (see below) . It is a special case of a
remarkable class of polynomials un(x; A) considered first by G . Zolotareff3

1 A. Markoff, On a certain problem of D . I . Mendeleieff (in Russian), Zapiski Imperatorskoi
Akademii Nauk, vol . 62 (1889), pp . 1-24 .

z I . Schur, Über das Maximum des absoluten �etrages eines Polynoms in einem gegebenen
Intervall, Mathematische Zeitschrift, vol . 4 (1919), pp . 271-287 .

3G. Zolotareff, (a) On a question concerning a minimum value (in Russian), Dissertation
"pro venia legendi," published in lithographed form, 1868, Oeuvres, vol . 2 (1902), pp . 130-
166 ; (b) Application of elliptic functions to questions concerning functions which deviate the
least from zero (in Russian), Zapiski Imperatorskoi Akademii Nauk, vol . 30 (1877), Oeuvres,
vol . 2, pp . 1-59 ; (c) Sur l'application des fonctions elliptiques aux questions de maxima et
minima, �ulletin de l'Académie des Sciences de St .-Pétersbourg, series 3, vol . 24 (1878),
pp. 305-310, Mélanges, 5, pp . 419-426, Oeuvres, vol . 1 (1931), pp . 369-374 .

451



452

	

P. ERDÖS AND G. SZEGÖ

playing also a role in the important investigations of W . Markoff . 4 Recently
N. Achyeser5 used polynomials of the Zolotareff type in his investigations on
polynomials of least deviation in two disjoint intervals . With the previous
notation, our main result is :
THEOREM 1 . The extremum m n •n2 in (1 .2) is attained for xo = +1 and for the

Zolotareff polynomials ±un(x) [or for xo = -1 and for ±u,(-x)], provided n is
sufficiently large . Furthermore

(1 .3)

	

lim mn = µ
n-w

exists and

(1 .4)

	

µ = k-2(1 - E/K) 2 = 0.3124 • ,

where k2 is the only root of the transcendental equation

(1 .5)

	

(K-E)3+(1-k2)K-(1+k2)E=0

satisfying the condition 0 < k 2 < 1. Here K and E are the complete elliptic
integrals associated with the modulus k .

A further analysis and discussion of a few special cases furnishes the more
informative
THEOREM 2 . If n > 3 the extremum Mn _ n2 in (1 .2) is attained in the cases

mentioned in Theorem 1, and only in these cases . If n = 3, it is attained for
xo = 0 and for the Tchebycheff polynomials ±T3(x), and only then .

In §§2 and 3 of the present paper we first study as a preparation the general
polynomials u, (x ; A) of Zolotareff and the special case u n(x) = u n(x; An) men-
tioned above . The proof of Theorem 1 is then given in §§4 and 5, and that of
Theorem 2 in §§6 and 7 . In §8 we consider two problems of Zolotareff in which
the polynomials un(x ; A) were first used ; §9 contains another application .
The polynomials of Zolotareff occur in numerous other related extremum

problems . They satisfy a simple differential equation by means of which they
can be brought in relationship with the multiplication problem of elliptic
integrals . In what follows we have tried to reduce the use of elliptic functions
to a minimum s

I W . Markoff, Über Polynome, die in einem gegebenen Intervalle möglichst wenig von Null
abweichen, Mathematische Annalen, vol . 77 (1916), pp . 213-258 . The Russian original
appeared,1892 .

5 N. Achyeser, (a) Über einige Funktionen, welche in zwei gegebenen Intervallen am wenig-
sten von Null abweichen, �ulletin de l'Académie des Sciences de l'URSS, �lasse des sciences
mathématiques et naturelles, series 7, 1932, pp . 1163-1202 ; (b) Über einige Funktionen, die in
gegebenen Intervallen am wenigsten von Null abweichen, �ulletin de la Société Physico-
Mathématique de Kazan, series 3, vol . 3 (1928), pp . 1-69 .

s Zolotareff and Achyeser make extensive use of the theory of elliptic functions ; however,
W. Markoff does not .
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2. On the polynomials of Zolotareff
1 . It is a classical fact that there is a unique polynomial T,. (x) of degree n

(the nth polynomial of Tchebycheff) having the following property : The curve
y = T n (x), -1 <- x < +1, consists of n monotonic arcs varying between +1
and -1 ; Tn (1) = 1, and T„(-1) _ (-1)' . This polynomial satisfies the
differential equation

(2 .1)

	

n2(1 - y2) _ (1 - x 2)yj2

from which follows

(2.2)

	

y = cos (n f
z
(1 - t2 ) -j dt > .

l

	

)))~
2. We show that there are infinitely many polynomials y of degree n possessing

the following property : The curve y, -1 <= x < + 1, consists of n - 1 monotonic
arcs varying between +1 and -1, y = I for x = 1, and y = (-1)' ' for x = -1 .
Such a curve necessarily has n - 1 roots in -1 <--_ x <-_ +1 and consequently
one more outside this interval . If this additional root is > 1, y satisfies a
differential equation of the form

(2.3)

	

n 2 (1 - y 2 ) = (1 - X2) 12 (� - x)(� - x)
(A - X)2

where y' = 0 for x = A, y = 1 for x = �, y = -1 for x = �, and 1 < A <
� < �. A similar differential equation holds if the additional root of y men-
tioned above is < -1 . (The second case can be obtained from the first one by
replacing x by -x.)

Solving the differential equation (2 .3), we obtain

(2.4)

	

y = cos { n f s
(A - t)(� - t)-'(� - t)-'(1 - t2 )-' dt} .l f

�y a well-known application of �auchy's theorem we see that the sum of the
integrals (2 .5) and (2.7) is 'Zr, so that (2.7) is a consequence of (2.5) .

�onversely, if (2 .5) and (2.6) hold, an easy discussion (encircling the singular
points -1, +1, �, �) shows that (2.4) is an analytic function single-valued and
regular in the whole finite x-plane . If x - * oc we find y = 0(j x I"), so that y

From the properties of y mentioned above we find

(2.5) f 1 1 (A - t)(� - t)-'(� - t) -1(1 - t 2 )-' dt = (n - 1),r/n,

(2.6) f+l (A - t) (� - t) '(� - t)-l (t2 - 1)- dt = 0,

(2.7) f o
(t - A)(t - �)-#(� - t)- '(t2 - 1)- ' dt = 2r/n .

�
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must be a polynomial of degree n . Of course it satisfies the differential equation

These values can be obtained from the differential equation (2.3) .
3 . LEMMA 1 . Of the three quantities A, �, � (1 < A < � < �) satisfying

the two transcendental equations (2 .5) and (2 .6), any one can be prescribed arbi-
trarily provided that

(2.10) A > 1, or � > 1, or � > cn = 1 + 2an = 1 + 2 tan g [ir/(2n)l

respectively ; the two others are then uniquely determined . As A increases mono-
tonically from 1 to + -, � and � increase likewise from 1 to + 00 and from c n
to + oo , respectively .

Furthermore the values of y, y',

	

, y ( ' ) for a fixed x not less than one, and the
values of (-1)'y, (-1)n-l y',

	

Y(n) for a fixed x not greater than -1, are in-
creasing functions of A .

The only exceptions are y = 1 for x = 1 and (-1) ny = - 1 for x = -1 .
In particular, the expressions (2.8) and (2.9) are respectively increasing and
decreasing functions of A .

In order to prove this Lemma, let � denote a fixed value, greater than 1,
and let � be variable, such that � > � ; we define A = A (�) by (2.6) so that
1 < A < �. Then

J1�

(d� - 2 � - t) (� - t)-'(� - t)-#(t 2 - 1)-' dt = 0 ;

hence

dA _ 1 A -to where 1 < t o < � .
d�

	

2 � - to '

Now consider the function X(�) defined by the left-hand member of (2 .5), where
A = A(�) . We find

XI(�) = f 1 1 (d�

	

2 � - t) (�
- t)-'(� - t)- (1 - t2 )- ' dt

'p+1 l A

	

to

	

1 A

	

t
= J 1 2 � - t o

	

2 � - t) (� - t)-t(� - t) -4(1 - t 2 )- ' dt < 0,

so that X(�) is decreasing . Let � -o � ; then from (2.6) we see that A --o �,
so that

(2.3), and it has all the properties mentioned above .
For later purposes we note that

(2.8) y' = n2

	

(A -
1)2

at x = 1,
(� - 1) (� - 1)

(2.9) (-1)n y' = n2

	

(A + 1)2 at x = -1 .
(� + 1) (� + 1)
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+1
A(�) __*

f
(I - t2 ) dt = 7r.

1

Since lin e.,. X(�) = 0, the equation X(�) = (n - 1)7r/n has precisely one
solution .'

4. Further let p(x) and q(x) be two special cases of (2 .4) corresponding to the
values A', �', �' and A", �", �" of A, �, �, respectively. First suppose that
p'(1) < q'(1) . �onsidering the polynomial 5(x) = p(x) - q(x) at the n points
in -1 <= x < +1 at which p(x) = ±1 and assuming that 5(x) ~Z 0, a familiar
argument furnishes the existence of n - 1 distinct points +1 > 7/1 > 7!2 >

> 'nn-1 > - 1 such that 5'(7 1 ) > 0, 5'(r7~) < 0, • • . Furthermore 5'(1) < 0,
so that 5'(x) has n - 1 roots (that is, all its roots) in -1 < x < +1 . The same
holds for 6"(x), S"'(x), • so that 5(x) < 0, 5'(x) < 0, V(x) < 0, • • • for x >= 1
[except that 5(1) = 0], and also (-1)"5(x) < 0, (-1)n-15'(x) < 0,
(-1)' 25"(x) < 0, for x <_ -1 [except that S(-1) = 0] . From this we
easily conclude that the relations A' < A", �' •< �", �' < �" hold for the
constants corresponding to p(x) and q(x) .

If p'(1) = q'(1) the previous argument still holds good [unless 5(x) _- 0],
except that 5'(1) = 0 so that the roots of 5'(x) are in -1 < x <_ +1 . �onse-
quently 5'(x) < 0 for x > 1 . Interchanging p(x) and q(x) we obtain 5'(x) > 0,
x > 1, which is a contradiction ; so that in this case p(x) _= q(x), A' = A",
�'=�", �l = �11 .
From the previous considerations we conclude that � and � are increasing

functions of A . It remains to calculate the limits of � and � as A -* 1 and
A --> + -o . In the former case, (2 .6) shows that � -> 1, and from (2.5) we
obtain � -- c" since the equation

f 1 1 (1 + t)-1(y - t)
_1

dt = (n - 1)7r/n

has the unique solution y = c . . If A - 4 + oc it is obvious that � --j + oo,

� - + x . This completes the proof of Lemma 1 .
5 . In what follows we denote the polynomial (2 .4) [for which (2.5) and (2 .6)

hold] by y = zi,(x ; A) . We note that, from (2 .4) and (2.10),

un(x ; +1) = lim un(x ; A)
A-1

(2.11)

	

x

	

1
= �os ; n f (1 + t)-~(c" - t) 3 dt~ _ -Tn

(
x - a„~ .

l 1

	

1 + a"

Hence un(+1 ; +1) = 0. Also

(2 .12)

	

'n'(+1; +1) _ -(1 + an)-2T''[cos (7r/n)] _ -4n 2 cot' [7r/(2n)] .

v These considerations require only slight modifications if we replace the right-hand
members in (2 .5) and (2 .6) by var/n and a - vir/n, 1 <_ v <__ n - 1 . The resulting polynomials
have been used for various purposes by Achyeser ; see loc. cit .
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Further, let A -~ + oo so that � ---> + oo and � -> + oo . From (2.5)

(A - t1)(� - tl)-'(� - t1 )- ' _ (n - 1)/n
where t 1 is a suitably chosen number between 0 and 1 . Hence A(��)_~ -~
1 - 1/n, so that, from (2 .4),

(2.13)

	

un(x; + °o) = lim un(x ; A) = T,,-I(x) .
A-oo

Hence

(2 .14)

	

u;, (+1 ; + 00) _ (n - 1) 2 ;

(2 .15)

	

u','(+1 ; +cc) = 3n(n - 1) 2(n - 2) .

Therefore, as A increases from 1 to +oo, u',(+1 ; A) increases from 0 to
(n - 1) 2 , and u,'(+1 ; A) increases from the negative value (2.12) to the positive
value (2.15), corresponding respectively to A = 1 and A = + oc . There is
precisely one value of A, A = An , for which 'n'(+1; An) = 0 . We denote the
corresponding values of � and � by �n and �n . In §§4 and 5 we shall prove
that the function un(x ; An) furnishes the solution of I. Schur's problem formu-
lated above, provided n is sufficiently large .

From the differential equation (2.3) we obtain

u;,'(+1 ; A) _ n2	(A - 1) 2	 n2	(A - 1) 2

(� - 1) (� - 1)

	

(� - 1) (� - 1)

-1-2(A 2
1
-
�

1
1
-

�
1 ~~

-

	

-

	

- 1 '
so that the condition un(+1 ; A) = 0 is equivalent to

2	(A - 1) 2

	

2
-

	

1

	

-

	

1(2.17) n (�-1)(�-1)=1 +2 (A-1 � - 1 �-1)'
The transcendental equations (2 .5), (2 .6) and (2.17) determine the constants
A = A n , � = �,l , � = �n uniquely . These constants depend only on n .

The polynomial y = un (x ; An) .is completely determined by the following
conditions : The curve y, - 1 < x <- +1, consists of n - 1 monotonic arcs
varying between +1 and -1,y = 1 for x = l, y = (-1)n-1 for x = -land
y"=0 for x = 1 .

3. The limiting process n -f GD

1 . First we prove the following
LEMMA 2 . The constants An , �n , �n defined by the transcendental equations

(2.5), (2 .6), (2.17) satisfy
lim n 2(An - 1) = a2/2,

	

lim n2(�„ - 1) = b2/2,

(2.16)

(3.1)
n +oo

	

new
lira n2(�n - 1) = c2/2
n-~m

where 0 < a < b < c . The numerical values of a, b, c are given in (3.17) .



�y Lemma 1

and from (2.17)

2An - 1 >	2 _ 2
n �n -1 - An -1 �n -1'

(3 .2)

	

n4(A n - 1) 2 + 2n2(An - 1) >= 2n2(�n - 1),

so that

(3 .3)

	

lim inf n2(An - 1) >_ (1 + 2r2) ' - 1 .
n-~oo

The same inequality holds if we replace A n by �, .
On the other hand, let us assume that n2(�n - 1) - -f + oo for a proper sub-

sequence n = n, as v --> oo ; then, from (3.2), n2(An - 1) -p + x, so that
n 2 (� n - 1) -~ + -o . Therefore, by (2.17), for the same subsequence n = n,. ,

(3 .4)

	

(An - 1 )2

0(�n - 1) (�n - 1)

	

'

Now let w be a fixed positive number ; for large n, from (2.5),

a = n f+1 (1 - t2 )- ' dt{1 - (An - t)(�n - t)-'(� n - t)- '}
-1

ON A PRO�LEM OF I . S�HUR

lim inf n2(� n - 1) >_ 7r2 /2

/n

(3 .5) > n f dip { 1 - (An - cos ~p)(�, - cos gyp)-'(�n - cos cp)- ' }
0

I,
,
d,~{1 - (An - cos (¢/n))(� n - cos (¢/n))-'(�, - cos

0

Since

(An - cos (%/n))(� n - cos (,I'/n))-'(�n - cos (4,/n))- '

<__ (A n - 1)(�n - 1)-'(� n - 1)-'(1

	

1 - cos (~/n)~
l

	

An 1

and since for n = n,. , as v -* oo,

n2(1 - cos (¢/n))

	

0
n2 (An - 1)

uniformly in 4, , for 0 < V, <_ w, we find it >= w. This is a contradiction if we
choose w > 7r . Thus we have proved that the points of accumulation of the
sequences n2(An - 1), n2(�n - 1), n 2(�n - 1) are positive and finite .

2 . Now let n = n, be a subsequence for which the limits (3 .1) exist, where.

457
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0 < a 5 b <= c < + c . From (2.5), (2 .6) and (2.7) we shall derive a < b <
and

(3.6)

	

fm
{1 - (a 2 + u2)(b 2 + u2 )- '( c2 + u2 )-4 } du

0

b

(3 .7)

	

f (a 2 - u2)(b 2 - u2 ) -} ( � 2 - u2 ) -# du = 0,

(3.8)

	

f
o
(u 2 - a2)(u2 - b 2 )-'(c2 - u2 )- du = a.

b

Also from (2.17) by the same limiting process (n = n, , v - oo),

a4

	

2

	

1

	

1
(3.9)

	

b2�2 - 4~a2 -
b2
-

c2) = 0 .

Instead of (3 .7) we can show more precisely

( n f
An

(An - t)(�„ - t) -i(�„ - t) -J (t 2 - 1)- ' dt

(3.10) fa
n

A

-~ f a
(a 2 - u2 ) (b2 - u2 ) -j (c 2 - u2 )

-1
du,

0

- An)(�n - t)-'(�n - t)-j (t 2 - 1)_1 dt

f
b
(u2 - a2 ) (b 2 - u2 )-#(c 2 - u2)- ' du,

a

the two limits being the same .
First, (3 .9) is obvious and this equation shows that a = b = c is impossible .

In case a < b = c both formulas (3 .10) follow easily [writing t = 1 + u2/(2n 2)] ;
but the first limit is finite and the second one turns out to be + 2 , which is a
contradiction . In case a = b < c the same formulas can be easily established
again, but the first limit is positive whereas the second one is 0 [since
max{(t - A,)(�, - t) -I (t 2 - 1)-z }, A n < t 5 �, , is bounded] . Therefore
a < b < c .
Now (3 .7) and (3 .8) follow directly, and (3.6) can also be easily obtained .

However (3 .6) follows also from (3.8) by applying �auchy's theorem to

f(z) = 1 - (a 2 - z2) (b 2 - z 2 ) -} ( c 2 - x' 2 )-j
integrated along the half-circle I z = R, 92z >_ 0 and along the segment Rz = 0,
-R < z <_ +R, R -4 + cc .

3. Substituting u2 = b 2 sin2 ~, in (3 .7) and u2 = c 2 - (c 2 - b 2 ) sin 2 (P in (3 .8)
we find

,r/2

(3.11)

	

f

	

(a 2 - b 2 sin 2 'p)(c2 - b2 sin 2 <p) -'dip = 0,
0

�
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A/2

f {c2 - a2 - (c2 - b 2 ) sin gyp} {c2 - (c2 - b 2 ) sin 2 gyp} 1 d~
0

Using the standard notation these equations can be written in the form

(3 .13)

	

(1 - a 2/c2)K = E,

	

cE' - (a2/c)K' = 7r

where the complete elliptic integrals K and E belong to the modulus k = b/c .
Eliminating a2/c2 we find

(3 .14)

	

E/K + (E' - 7r/c)/K' = 1 .

�omparing this with the classical equation s

(3 .15)

	

EK' + E'K - KK' = it/2

we obtain c = 2K. Hence

(3 .16)

	

a2 = 4K(K - E),

	

b = 2kK,

	

c = 2K.

The relation (3 .9) furnishes the transcendental equation (1 .5) of Theorem 1
(see §1) for the modulus k. This equation has precisely one root as k2 goes
from 0 to 1 [which shows that the limits (3 .1) exist as n -> unrestrictedly] .
Indeed, differentiating the left-hand member of (1.5) with respect to k 2 , 9 we have

ZE{k'-2 (K - E) 2 - 1},

where k' is the complementary modulus . The expression in the curly bracket
increases with k 2 , as the well-known power series expansion of K and E shows;
it is negative for small k2 and positive as k2 approaches 1 . Therefore the left-
hand member of (1.5) first decreases and then increases ; but for k2 = 0 it is
zero and for k2 - 1 - 0 it tends to + oo . This establishes Lemma 2 .
Using the tables of Milne-Thomson 10 we find

k2 =0.84 •a2 =11.4055b=4.3245 • ,
(3 .17)

c = 4.7185 . . . , a4/b2c2 = 0.3124

We also note that (2.4) implies that

(3 .18) lim u n(cos (z/n) ; A„) = cos ~f
L

(a 2 + u 2)(b2 fu2)-l(c 2 + U2)_
l du

ne 0o
}

uniformly in z, for all complex z such that I z 1 _< R .
4. Another limiting formula important for the proof of Theorem 1, is
LEMMA 3 . Let A = A',, be a sequence of values such that A,, - 1 = o(n2 ) .

8 See for instance, E . T. Whittaker and G . N . Watson, A course of Modern Analysis,
Fourth edition, 1935, p . 520 .

s See Whittaker-Watson, loc . cit . p . 521 .
10 L. M . Milne-Thomson, Ten-figure table of the complete elliptic integrals K, K', E, E' and
a table of 1/w ; (0 ; r), 1/0 :(0 r ' ), Proceedings of the London Mathematical Society, series 2,
vol . 33 (1932), pp . 160-164 .
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Denoting the corresponding values of � and � determined from the equations (2.5)
and (2.6) by �n and �n , respectively, we have

(3.19)

	

lim u n(cos (z/n) ; An) = -cos {(,r2 + z2 )'} .

n-*00

The last equation holds uniformly in z, for all complex z such that I z 1 <--_ R .
We note that (3 .19) arises from (3.18) on writing a = b = 0, c = 7r .
For the proof we use an argument similar to that of Part 1 . Let w be fixed,

w > 0 ; we find [see (3 .5)]

(3 .20) Tr > f, d,,{1 - (An - cos (~/n))(�n - cos (~/n))-'(�n - cos (,~,ln))-'} .
0

Assuming for a certain subsequence n = n, , v - -o, that the limits

exist, we have $ ? 0, y -> ,r2/2 . Thus we conclude from (3 .20)

>_ f d¢{1 - (¢ 2/2)($ + ~ 2/2)- '(y + X2/2)- '},
0

so that

(3.21)

Now

(3.22)

lim n 2(�n1 - 1) = 0, lim n2(�n - 1) = y

,r >= fm 411 - ( 2/2)(0 + 4,2/2)-'(y + X2/2)-1 } .

f-~a

	

d,k{ 1 - W (r2 + ,p 2 )- 3 }
;

0

consequently (3 .21) and (3 .22) involve a contradiction, unless a = 0, y = ?r2/2 .
Further

un(cos (z/n) ; An)

(3.23)

	

= cos { f
Z

(A' - cos ('/n))(�n - cos ('/n))- (�n - cos (¢/n))- d,~? .
l

	

))0

Now let 0 < e < 7r < R and I z l = R. Then

ff (An - cos (4,/n))(�n - cos (,,/n))-'(�n

	

cos (~/n))-'dk
0

f
f

(A n - cos (~/n))'(�n - cos (~/n))-' d~

	

f f

41(7r + Y 2)-' d¢
0

	

0

as n -> oo ; the last integral is arbitrarily small with e . Integrating from e to
z, we can assume that V, 5x5 0, ± 7r on the path of integration ; and the assertion
follows immediately from (3 .23) for n ---- x .
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4. Pry of of Theorem 1

In what follows, the symbols Q n , Q..(xo) defined in §1 are used .
1 . LEMMA 4 . Suppose -1 _<_ xo :5 + 1, and let fo(x) be a polynomial of the

class Q~(xo) for which max I f'(xo ) 1, f (x) e Q„ (xo), is attained . Then I fo(x) I as-
sumes its maximum 1 at least n times in -1 <- x <_ +1 .

The proof follows the usual lines . Let fo(xo) > 0 and let us suppose that
the assertion of Lemma 4 does not hold . Denote by xi , x2 , • • • , x1 ; 1 < n,
the distinct values in -1 <_ x <_ +1 for which I fo(x,) I = 1 and write w(x) _
ri (x - x,) . If -1 < xo < + 1 we have xo 5-~ x, [otherwise fo(xo) would
be 0] . However if xo = ± 1 we may have xo = x,, in which case w(xo) = 0
but w'(xo) /- 0 .

We form the polynomial

(4.1)

	

r(x) _ -

	

sgn fox y )	 , w(x)
(xv ) (x

	

x')
+ w(x){a(x - xo) + b}

and want to determine the constants a and b such that r'(xo) > 0, r"(xo) = 0;

this can certainly be done provided the linear equations

aw(xo) + bw'(xo) = G,

2aw'(xo) + bw"(xo) = H

have a determinant ~0 . Now w(xo)w"(xo) - 2{w'(xo)} 2 ~ 0 is obvious if
w(xo) = 0 (cf . above) ; but if , (xo) X 0,

w"(xo) - 2 w'(xo) 2 = - E (xo
- xY)-2 - {w'(xo)}2

< 0.
W (xo)

	

w (xo)

	

v= 1

	

w(x0

) Obviouslyr(x) is of degree 1 +1 <= n and we find for sufficiently small e > 0
that I fo(x) + er(x) I <--_ 1 in -1 <-_ x _5 +1 ; hence fo(x) + er(x) belongs to

Qn(xo) . On the other hand fo(xo) + er'(xo) > fo(xo) which is a contradiction .
This proves Lemma 4 .

2. Let the extremum (1 .2) be attained for the value x o and for f(x) = fo (x),
fo(x) e Q„(xo) . Then fo(xo) = 0, and fo(x) possesses the property formulated in
Lemma 4 . Further we show that fo"(xo) ~ 0 . �y Lemma 4, 1 fo(x) I attains
its relative maximum 1 in -1 < x < +1 for at least n - 2 distinct points for
which fo(x) = 0 . Since fo(x) vanishes an odd number of times between two
consecutive roots of fo(x), we find that fo(x) has precisely one simple root between
two consecutive roots of fo(x), and these roots of fo(x) are maximum points of
I fo(x) . The number of these maximum points is at least n - 3 . If x0 is one
of these points, we must have fo. (xo) 5,1- 0 . If xo is different from these maximum
points (whose number in this case is n - 3), then we must have again fo . (xo) X 0,
and thus there is a relative maximum of I fo(x) at x = x o .

If we assume that fo(x o ) > 0 then fo(xo) = 0, fo (xo) < 0, so that fo(x) has a
relative maximum at x = xo .

Now we distinguish various cases .
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(a) xo = ± 1 .
Let xo = + 1 and let us denote an extremum polynomial of our problem by

un,(x), un(1) > 0, un(1) = 0 . As we showed before, u'. (x) has at least n - 2
and un(x) at least n - 3 distinct roots in -1 < x < +1 . Since un(1) = 0,
we find that n - 2 is the precise number of roots of un(x) in -1 < x < +1 .
�onsequently I u.(- 1) _ u.(+1) = 1 ; and, since un(1) > 0, we find
un(1) = 1, un,(-1) =

Thus the curve y = un(x), -1 <= x <_ +1, consists of n - 1 monotonic arcs
varying between +1 and -1, and un (1) = 1, u n(-1) u,(1) > 0,
un(1) = 0 .

Hence from the last remark of §2 we conclude that un (x) is identical with the
polynomial un(x; A n) defined there .

�onsequently, under the assumption x o = z El, the extremum polynomials of
our problem are ±un(x ; An) and ±un(-x ; An), respectively . The asymptotic
value of I un(1 ; An) I is a°b-2c' .n2 [see (3 .17)] .
(b) -1 < xo < + 1, and there exists a polynomial g(x) of Q n for which

g'(xo) I > I fo(xo) 1 . Suppose fo(xo) > 0, g, (X0) > 0 .
�onsider the polynomial h,(x) = fo (x) + e{g(x) - fo(x)}, 0 < e < 1 . Ob-

viously h,(x) e Qn ; furthermore h,(xo) > fo(xo) . For sufficiently small e there
is a root of h','(x) in the neighborhood of x o , xo say, and h,(x) attains a positive
relative maximum at x = xo . We evidently have

h,' (xo) > h, (xo) > fo (xo)

which shows that fo(x) cannot be the extremum polynomial .

5. Proof of Theorem 1 (continued)

The remaining case requires a more elaborate discussion . This case is
(c) -1 < xo < + 1 and fo (x) is the polynomial in Qn with the maximum value

of f'(xo)
Then W. Markoff has shown" that fo(x) must be one of the polynomials

±T„(x), ±T.-,(x), ±Tn
(1 -}- a) ,

I=T .
(

x + a)

(5.1)

	

1 + a '

±un(±x, A)

where 0 < a < a„ = tan2[,r/(2n)], and un(x; A) are the Zolotareff polynomials
defined and discussed above . As n -~ -c, the largest relative maximum of
I T,(x) I in -1 < x < +1 is asymptotically M . n2 where -M is the minimum
of sin 0/0 for real 0, that is M = 0.2172 . . . . �omparing this result with the
asymptotic value of un(1 ; A n ), that is with a'b

-1� [see (3.17)], we see that
for large values of n the four first types in (5.1) can be excluded .

11 Loc. cit . p . 249 .
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As W. Markoff has further shown12 , fo(x) = ±u n(x ; A) if and only if (a) xo
belongs to certain open intervals in -1 < x < -}-1, and (b)

d (1 - x2)u',(x ; A)
(5.2)

	

dx ,

	

x - A

	

} = 0

	

at x = xo .

\
Since u„ (xo ; A) ~ 0, and un

„
(xo ; A) = 0, the latter-mentioned condition im-

plies that

(5 .3)

	

xo = A - (A2 - 1)',

	

A - 1 = (1 - xo) 2/(2xo),

so that 0 < xo < + 1 . Now we distinguish again two cases :
(c') 0 < xo <- (1 - 16n2) I . According to S . �ernstein's theorem

(5 .4) un (x ; A) I _< n(1 - x 2)-' <- n'/4 .

(c") (1 - 16n 2 )_
#
< xo < 1 . Then A - 1 = An - 1 = 0(2i-4) . Now

we assume that this case occurs for an infinite number of values of n, and we
write x o = cos (zo/n) ; then zo is bounded . From Lemma 3 we conclude that

(5.5)

	

lim n'u'n (cos-(z/n) ; An) = - sin ((a 2 -F z 2 )'}

(72 + z 2) 4

The maximum of the absolute value of the last expression for real z is
M = 0.2172 . . . so that this case can be also eliminated .
The assumption fo(x) = ±un(-x ; A) can be dealt with similarly .
Thus for large n only �ase (a) remains . This completes the proof of

Theorem 1 .

6. Proof of Theorem 2

1. First we consider again the case (c) defined in §5 and let x o belong to one
of the open intervals in -1 <= x <_ + 1 in which the maximum of f(xo), f (x) e Qn ,
is attained for the Zolotareff polynomial f (x) = u.(x ; A) . [The argument is similar
for -un(x ; A) or ±un(-x; A) .] Then f(x) = u n(x; A) = fo(x), where fo(x) has
the same meaning as in §§4 and 5, so that fo(x) e Qn(xo) ; that is, f."(X.) = 0.
We have f., ( X,) > 0, f." , ( X0) < 0 .
�y an important theorem of W . Markoff13 , to every positive e correspond

values x i such that 14

(a) 0 < I xi - xo I < e ;

((3) if f, (x) = u. (x ; A') denotes the polynomial of Qn for which f'(x i) becomes
a maximum, then

(6.1)

	

fi(xl) > fo(xo) .

t 2 Loc . cit . pp . 233-246 .
13 Loc. cit . p . 257 .
18 In fact, a whole half-neighborhood of xo satisfies this condition .
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Now if e is sufficiently small, f (x) will have a root, say x, , in the neighbor-
hood of xo ; we can assume that -1 < xi < +1 . Also f1" (x ;) < 0, so that
fi(x) has a relative maximum at x = xi ; hence

(6.2)

	

fi(xi) ? fl(xl) > fo(xo),
which shows that fo(x) can not be the solution of our problem .

This argument leaves as the only possibilities for fo(x) either the Zolotareff
polynomials ±u, (x ; A n ) with xo = ± 1, or the Tchebycheff polynomials ±T n (x) .

2 . Let D„ be the largest root of u n(x ; A n), � n. < D,, < �„ . Using the con-
vexity of u n(x; A .n ) for x > 1, we deduce

(6 .3)

	

D n - �,, > �n - Dn .

Further we make use of a theorem of I . Schur on the largest roots of the deriva-
tives of an algebraic equation with only real roots ." Applying this theorem
to un (x ; A .n ) we obtain

(6.4)

	

Dn - A„ <= An - 1

so that

2(A n -1) >=D n - 1 > z(�.-1+�„-1) > {(�n-1)(�n-1)}' .

Hence, from (2.8),

(6.5)

	

un(1 ; An) > n2/4 .

3 . On the other hand we show that

(6 .6)

	

I Tn(x) 1 _< n'/4

	

if

	

Tn(x) = 0

provided n >= 5 (with equality only if n = 5) . Incidentally, I . Schur has proved
(6 .6) for all large n ."

Let <p be a root of the equation tan n' = n tan So, 0 < ~o < n/2 . Then the
assertion is

(6.7) n
sin ncp

sin So
= z7 '(n' sin' + cost gyp)- <- n2/4, sin 4

>_ (n2 15 1)
.

It is sufficient to show this for the largest root x n = cos (p n of Tn(x) ; that is,
for the smallest positive value cp n , it < ntpn < 3ir/2, satisfying the equation
above .

The function

(6.8)

	

h(¢)
\ tan n,/

ntan wk

15 I . . Sehur, Zwei Sätze fiber algebraische Gleichungen mit lauter reellen Wurzeln, Journal
fur die reine and angewandte Mathematik, vol . 144 (1914), pp . 75-88 .

16 I. Schur, loc . cit . 2 , p . 277 .
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increases from 0 to + x as ¢ increases from 7r/n to 3ir/(2n) . Let z be the small-
est positive root of the equation tan z = z, 7r < z < 37r/2 . Since

(6.9)

	

h(z/n)

	

n tan (z/n)
< 1,

we have y > z/n, so that (6.7) follows from

(6.10)

	

sin (z/n) >_ G~15
1)

.

Since n sin (z/n) increases and n2/(n2 - 1) decreases as n increases, the last
inequality will be proved for n >_ 6 if we prove it for n = 6. �ut

(6.11)

	

sin (z/6) >_ (3/7) 3 = 0.6546

	

,

since" z = 4 .4934 . . . and sin (z/6) = 0 .6808 •
In the case n = 5 we have

(6.12) T6(x) = 320x3 - 120x, xb = cos cp6 = ( 3/8), sin lp5 = ( 5/8) 3 .

�omparing (6.5) and (6.6) we obtain ±u,(±x ; A„) as the only eligible ex-
tremum polynomials [and x o = =L:1 as the points at which the extremum is
obtained] provided n >= 5 .

7. Proof of Theorem 2 '(continued)
The previous result holds also for n = 4, as a direct discussion shows ; how-

ever, it fails for n = 3 .
1 . We have for n = 4 :

(7 .1) T4(x) = 8x4 - 8x2 + 1, T4(x) = 32x 3 - 16 x, T4 (x) = 96x2 - 16,

so that, with the same notation as before, x4 = 6 -3 and

(7 .2)

	

I T' (4X4) I = (16/3)(2/3) 3 = 4.3546 . . .

On the other hand, let us denote by y, and y2 , the values of x for which the
relative extrema of u4(x ; A 4 ) in -1 <= x =< +1 are attained ; thus -1 < y1 <

y2 < /+ 1, say . Then

(7 .3)

	

u4(x ; A4) = 1 - X(1 - x)(�4 - x)(y1 - x)2

must satisfy the following conditions :

[(a) : U4(-1 ; A 4) = -1,

	

A(�4 + 1)(y, + 1) 2 = 1,

(0) :

	

u4(y2; A4) = - 1,

	

A(1 - y2)(�4 - y2)(y1 - y2)2 - 2,
(7.4)

(ti)

	

u4(y2, A4) = 0,

	

1
I + y2

1

- �4 +
2

- 0,y2 - Y2 - y1

(b) :

	

u4"(1 ; A4) = 0,

	

2�4 + yl = 3 .

17 See, for instance, E . Jahnke-F. Emde, Funktionentafeln, 1933, p . 30 .
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Hence �4 < 2. Let

1 -y2-h(�4-1),

		

�4-y2 = (h+1)(�4-1),

y2-y1=(2-h)(�4-1) ;

then (y) becomes :

(7.6)

	

h + h	
-

	 1 + h22 = 0; i .e ., h = (1 + (33)')/8 = 0.8430 . . . .

Further, writing v(x) = x(x + 1)(x - 2) 2 , we obtain from (a) and ((3)

(7.7)

	

v (�4
	 2

1) =
v(h).

Since v(x) = v(h) has h as a double root, it can be reduced to a quadratic equa-
tion giving

(7.8)

Now

2

(7.9) u4'(1; A4) = X(�4 - 1)(1 - yl) 2 = 4 �4
2

1 = 4.7881 . . . .

V
(�4 - 1)

�omparison of this value with (7 .2) furnishes u4(x; A4) as the solution .
2 . Finally in the case n = 3,

T3(x) = 4x3 - 3x,

	

T3' (x) = 12x 2 - 3,

	

T3(x) =24x,
x3 = 0,

	

1 T3(x3) = 3 .
(7 .10)

On the other hand,

(7 .11)

	

u3(x; A3) = 1 - A(1 - x2)(�3 - x)

with a relative minimum at x = y i , '-1 < yi < + 1, satisfies the following
conditions

so that

(7 .13)

2

	

= 3/2 - h + 2(10h + 5) = 2.4893 • • •
�4 - 1

y, = 1 - 2 . 3- ',

	

A = 31/8,

u3(x ; A 3 ) = 1 - 3'(l - x2)(3 - x)/8, u3(1 ; A3) = 3 /2 < 3 .

This completes the proof of Theorem 2.

(a) u3(yl ; A3) A(1 - yi)(�3 - yl) = 2,

(7.12) (0) : u3(y 1 ; A3) = 0, 3yi - 2�3y1 - 1 = 0,

(Y) . u3 (1, A3) = 0, �3 = 3,



8. Two problems of Zolotareff

1. The previous considerations permit a very simple approach to the follow-
ing interesting theorem of Zolotareff : 18
THEOREM 3 . Let a be a given positive number and f (x) an arbitrary polynomial

of degree n of the form

(8 .1)

	

f(x) = xn - oxn-1 + . . .

Then max f (x) !, -1 _< x :5 +1, is minimized if and only if
(a) f(x) = const. un(x ; A) provided o >= na„,,

(b) f(x) = 2'-n(1 + v/n)nT.
(1

X .- aln
+	

a/n)
provided 0 < v <= nan .

Here un(x; A) denotes the polynomial (2.4) ; and in case (a) A = A(Q) is a uniquely
determined function which increases monotonically from 1 to + co as v increases
from nan to + - ; an = tang [7r/(2n)] .

A corresponding result holds for negative o-, obtained by replacing f(x) by
(-1)nf(-x) . For v = 0 the extremum is given by Tchebycheff's polynomial .
From (2.4) we obtain, for x > �,

-u n(x ; A) = Rxn - Sxn-' +

= cosh

	

f
x

(t - A)(t - �)-'(t - �)-'(t2 - l)-'d4}
ll~

= cosh n (log x - log �)

+ n f
:

[(t - A)(t - �)-'(t - �)-' (t2 - 1) - t '] dt
�

- n f ~ [(t - A)(t - �)-'(t - �)-'(t2 - 1)-' -
t-1] dt ) ;

))x
so that, as x --f + oo,

-un(x ; A) = 2(x/�)n exp { n f [(t - A)(t - �)-'(t

	

t '] dt
l

	

c

- n f ~ [( 2(� + �) - A)t 2 + 0(t-')] dt} + O(x n) .
JJJx

�onsequently

R = 2�_n X

(8 .2)

	

exp {n
L

[(t - A)(t - �)-'(t - �)-'(t2 - 1)-' - t' dt) > 0,

SIR =n{2(�+�)-A] >0,

so that R and S are continuous functions of A .
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18 Loc . cit .' (a), (b), (c) .
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From the results of Lemma 1,

(8.3)

	

(dx)n u,(x ; A) _ -n!R,

is an increasing function of A . Let A, < A2 , and let R 1 , S1 , R2 , S 2 be the cor-
responding values of R and S,R > R2 . �onsidering Ri'u n (x ; A,) - R2'un(x;A 2 )
at the extremum points of u,(x;A2) in - 1 <= x S + 1 we see that it cannot be of
degree n - 2, so that S1/R, ~ S 2/R2 . Hence S/R is monotonic . Its minimum
value is attained for

u n (x ; +1) = -Tn
(x - an

1 + a.) '

so that min (SIR) = nan . Its maximum value is attained for un(x ; +-0) _
Tn_,(x), so that max (SIR) = + cc

-Now let f(x) be a polynomial of the form (8.1), and let v >= nan . Then there
exists a definite polynomial un(x ; A), A = A(a) > 1, for which S/R = v so that

(8.4)

	

d(x) = f(x) + R 'u n(x; A)

is of degree n - 2 . Let max f (x) I <= R - ', -1 < x <_ + 1 . Then the poly-
nomial (8.4) is alternately > 0 and <<_0 at the points at which un(x ; A) = ±1 .
Unless d(x) == 0 this gives n - 1 distinct points at which d(x) is alternately
>0 and < 0, and hence n - 2 roots for d'(x) which is impossible .

2 . The argument is similar in the other case, 0 < v < nan , since the poly-
nomial

(8.5)

	

21-n (1 + o7/n)' Tn x - v/n = x n - Qxn-1 + . . .
(1 + Q/n -

assumes its maximum modulus 2'-n (1 + o-/n)' precisely n times in -1 _<
x <_ +1 .

Replacing -R-'un(x ; A) in (8.4) by the left-hand side of (8 .5), we obtain the
desired result .

3 . Another theorem of Zolotareff is the following 19 :
THEOREM 4 . Let xo , yd, be arbitrary real numbers, of which x o > 1, and let

f(x) be an arbitrary polynomial of degree n satisfying the conditions

(8.6)

	

AX) = xn + . . .

	

f (X0) = yo

Then max I f(x) I, -1 < x <_ +1, is a minimum if and only if f(x) is one of the
polynomials

(8.7)
2'-n(1 + a)nTn (x+a)I+a '

1 9 Loc. cit .3 (b), p. 27, (c), p. 371.

-R-' un(x ; A),

	

2'-n(1 + a)"Tn x

	

a
1 + a

(-1)n-'R-'un(-x ; A) .
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Here A ? 1, 0 <- a _< an = tan2 [7r/(2n)] are certain numbers uniquely deter-
mined by x o and yo .

The values of the polynomials (8 .7) at x = xo increase

from - x to 2'-"(1 + an)-T. (10	
- an = 13

1 + an)
as A decreases from +oo to +1 ;

from 0 to 2'-"Tn(xo) as a decreases from an to 0,

from 2'-nTn(xo) to 2'-n(1 + a n)" Tn
(xo

	
+ an)

= (3'
1 + an

as a increases from 0 to an ;
from 0' to + c as A increases from 1 to + oc,

respectively. These facts determine for a given yo the extremum polynomial
fo (x) in question . Indeed, consider the difference f(x) -\fo(x) at the points in
-1 < x S +1 at which fo(x) _ ± 1, and in addition at x = x o . Since this
difference is alternately >= 0 and < 0 at these n + 1 points, the usual argument
gives n - 1 distinct roots for its derivative [unless f(x) _- fo (x)], which is im-
possible .

4 . The problem defined by the condition

(8 .8)

	

f1k)
(xo) = yo

where 1 < k <= n - 1, xo > 1, and y o is arbitrary, can be treated in a similar
manner. For k = n - 1 we obtain the first problem dealt with above .

9. A further application

The previous considerations furnish another property of the polynomials
u,,(x ; A) of Zolotareff which play a role in the interesting investigations of
W. Markoff [see'] .

1 . We prove the following application of Lemma 1 :
THEOREM 5 . Let

(9 .1)

	

1 > x1 > z1 > x2 > Z2 > . . . > xn-2 > zn-2 > X.-1 > - 1

then the functions xy = x,(A) and z, = z,(A) increase as A increases."
The roots x y of un(x ; A) satisfy the equation

f 1
(9 .4)

	

(A - t)(� - t)"(� - t)-'(1 - t2 )- ' dt = (v - Dr/n,

v=1,2, . . .,n-1.

2 0 �oncerning x,,, see W. Markoff, loc. cit. p. 242. The largest root D = D(A) also in-
creases, as can l e concluded from the result of §2,\o.".

be the values of x characterized by the conditions

(9 .2) un (x, ; A) = 0, v = 1, 2, . . , n. - 1,

(9 .3) u ;, (z . ; A) = 0, v = 1, 2, . • . , n - 2 ;
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We can assume that A = A(p), � = �(p), � = �(p) are increasing functions
of a parameter p,p > 0, all these functions having continuous derivatives . Then
x, = x. (p) and

(A - xv)(� - x,)-'(� - xy )-'(1 - x',)-'x',(p)

I d {(A - t) (� - t)-'(� - t)-'(1 - t2 )- '} dt
- WP

= f Y (� - t)-'(� - t)-'(1 - t 2 ) - ' dt{A'(P) - '�'(P) � - t - 2�'(P) � _ t}z

> ~A'(p) - a� (P) �	 + 1 - 10p) �	 + 1, f V � - t) -'(� - t)-'(1 - t 2 ) - ' dt

>0

since the expression (2 .9) increases with p .
The assertion about z, can be proved in a similar manner .
2 . The assertion about z,, follows also from the following general remark .

Suppose the roots of an algebraic equation are real and distinct, and that they
are increasing functions of a parameter ; then the same holds for the roots of
the derivative. Indeed, using the notation above :

	 1 	+	 1 	+ . . . +	1 	= 0,

	

x,,. = D.
Z v - xl

	

Z,, - x2

	

Z' - x n

[Here xn = D denotes the only root of un(x; A) which is > 1.] Differentiating
this relation,

= 0,
µ=I (Z ; - xµ) 2

so that xu >b implies z' > 0 .
Repeated application of this argument shows that the roots of all derivatives

u.k'(x ; A) increase as A increases .

P. ERDÖS AND G . SZEGÖ

UNIVERSITY OF PENNSYLVANIA
STANFORD UNIVERSITY
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"ON A PRO�LEM OF I. S�HUR"

�Y P. ERDÖS AND G . SZEGÖ

These Annals, Vol . 43 (1942), 451-470

(Received July 12, 1961)

Professor R . M . Robinson has called our attention to an error in the last
section of the quoted paper, p . 470. It can be corrected by replacing lines
7-9 (from above) by the following text :

We write for a fixed p

g(t) = A'(p) - 2 �'(p)(A - t)/(� - t) - 2 �'(p)(A - t)/(� - t) ,

(� - t)-2'(� - t)-2(1 - t2)-Zg(t)dt .z
Since g(� + 0) _ - no, g(� - 0) = + co, the function g(t) has a zero be-
tween � and �. The other zero t o is between -1 and + 1 since (in view
of Lemma 1) g(-1) < 0, g(+1) > 0. Differentiating (2 .5) we see that
p(- 1) = 0, also 'p(r) is increasing for 0 < z <_ t o , decreasing for t o <,r < 1,
and p(1) = 0. Thus p(z) > 0 for all r between -1 and + 1 so that x"(p) > 0 .
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