GRAPH THEORY AND PROBABILITY. II

P. ERDOS

Define $f(k, l)$ as the least integer so that every graph having $f(k, l)$ vertices contains either a complete graph of order k or a set of l independent vertices (a complete graph of order k is a graph of k vertices every two of which are connected by an edge, a set of l vertices is called independent if no two are connected by an edge).

Throughout this paper c_{1}, c_{2}, \ldots will denote positive absolute constants. It is known $(\mathbf{1}, \mathbf{2})$ that

$$
\begin{equation*}
l^{1+a}<f(3, l) \leqslant\binom{ l+1}{2} \tag{1}
\end{equation*}
$$

and in a previous paper (3) I stated that I can prove that for every $\epsilon>0$ and $l>l(\epsilon), f(3, l)>l^{2-\epsilon}$. In the present paper I am going to prove that

$$
\begin{equation*}
f(3, l)>\frac{c_{l} l^{2}}{(\log l)^{2}} . \tag{2}
\end{equation*}
$$

The proof of $f(3, l)>l^{1+\varepsilon_{1}}$ was by an explicit construction. I can only prove (2) by a probabilistic argument, and I cannot explicitly construct a graph which satisfies it. The method used in the proof of (2) will be a combination of that used in (3) with that in my recent paper (4) with Renyi. It is possible that (2) can be strengthened to $f(3, l)>c_{3} l^{2}$, but it seems impossible to improve (2) by the methods of this paper

Theorem. Let A be a fixed, sufficiently large number. Then for every $n>n_{0}$ there is a graph (5 having n vertices, which contains no triangle and which does not contain a set of $\left[A n^{\frac{1}{2}} \log n\right]=x$ independent vertices.

Clearly our theorem implies (2).
To prove the theorem put $y=\left[n^{3 / 2} / A^{1 / v}\right]$. Denote by $(6)^{(n)}$ the complete graph of n vertices and by $\mathrm{G}^{(x)}$ any of its complete subgraphs having x vertices. Clearly we can choose $\left(3 j^{(z)}\right.$ in $\binom{n}{x}$ ways. Let

$$
\begin{equation*}
\left.\circlearrowleft_{a}^{(n)}, \quad 1 \leqslant \alpha \leqslant\binom{ n}{2}\right)=t \tag{3}
\end{equation*}
$$

be an arbitrary subgraph of $(6)^{(n)}$ having y edges (we use the notations of (3)). Now we need

[^0]Lemma 1. Almost all $\mathbb{G}_{a^{(x)}}$ have the property that for every $\mathfrak{G}^{(x)}$ there is an edge $e_{a, x}$ contained in both $\dot{\Theta}_{\alpha}^{(1)}$ and $\left.\dot{(}\right)^{(5)}$, which is not contained in any triangle whase edges are in $\mathrm{B}_{a}^{(n)}$ and whase third vertex is not in (6) ${ }^{(x)}$.
"Almost all" here means for all but $o(t)$ graphs $\left(\xi_{a}{ }^{(1)}\right.$. We could prove Lemma 1 even if we would omit the words "and whose third vertex is not in (ङ)(x)," but the proof would become very much more complicated, and Lemma 1 suffices for the proof of our theorem.
The proof of Lemma 1 will be difficult and we postpone it. Assume that the Lemma has already been proved, then it is easy to prove our theorem. Let ${ }^{(5 j}{ }^{(0)}{ }^{(0)}$ be one of the graphs which satisfy Lemma 1 . We construct a subgraph $\bar{\sigma}_{3}{ }^{(a)}$ as follows: Let $e_{1}^{(a)}, c_{2}^{(\alpha)}, \ldots, e_{5}^{(a)}$ be an arbitrary enumeration of the edges of $\oiint_{\alpha}{ }^{(n)}$. We put $\varepsilon_{1}^{(n)} \subset \Xi_{\alpha}^{(n)}$ and we have $c_{e}^{(n)} \subset \overline{\zeta 丶}_{\infty}{ }^{(n)}(1<k \leqslant y)$ if and only if $e_{t}^{(a)}$ does not form a triangle with the edges $e^{(n)}, 1 \leqslant \tau<k$ which we had already put in (ब) ${ }^{(n)}$. (3) $a_{a}^{(n)}$ has n vertices, contains no triangle, and does not contain a set of x independent vertices. The first two statements are obvious; now we prove the third one. It will suffice to show that for every (G) ${ }^{(x)}{ }^{(G)}{ }^{(x)} \cap \bar{W}_{\alpha}^{(x)}$ is not empty. Consider the edge $e_{\alpha, x}=e_{\mathrm{T}}$ (sce Lemma 1), if it is contained in $G_{\alpha}{ }^{(1)}$ our statement is proved, if not there must exist a triangle $e_{i}, e_{j,} e_{\tau}(i<\tau, j<\tau)$, whose edges are all in $\bar{W}_{\alpha}{ }^{(m)}$. But by Lemma 1
 or c_{i} and e_{j} are both in ${ }^{(6)}\left({ }_{j}^{(x)} \cap \overline{(3)}_{\alpha}^{(n)}\right.$. This completes the proof of our third statement, and thus if we put $\left(\bar{\omega}_{\alpha}^{(w)}=(5\right.$ the proof of our theorem is complete.

If we had proved Lemmat 1 in the stronger form without the words "and whose third vertex is not in (5)(x)," we could have defined $\overline{(F}_{a}^{(0)}$ as the union of those edges of $\left(\xi_{a}{ }^{(\omega)}\right.$ which are not contained in any triangle of $\left(\Theta_{a}{ }^{(N)}\right.$,
To complete our proof we now have to prove Lemma 1. First we need some lemmas. Denote by $E_{\alpha}\left(\mathscr{G}^{(x)}\right)$ the number of edges in $\oiint_{a}^{(1)}$ connecting the vertices in $\left.{ }^{(3)}\right)^{(x)}$ with the vertices not in ${ }^{(5)}(x)$.

Lemma 2. For alnost all $\left(\mathrm{S}_{a}{ }^{(1)}\right.$ we have

$$
\begin{equation*}
\max E_{a}\left(\left(\mathrm{~S}^{(5)}\right)<\left[n^{1 / 3}\right]=m\right. \tag{4}
\end{equation*}
$$

where the maximum is taken over all the $\binom{n}{x}$ possible choices of (5x).
We could easily prove the lemma with $(1+o(1)) 2 A^{\frac{1}{2}} n$, but (1) will suffice for our purpose.

The number $\Re(m)$ of $\alpha^{\prime} s$ for which (4) is not satisfied is not greater than

$$
\left.\mathfrak{N}(m) \leqslant\binom{ n}{x}\binom{x(n-x)}{m}\binom{n}{2}-m, \begin{array}{c}
n \tag{5}\\
y-m
\end{array}\right)<\binom{n x}{x}\binom{n}{2}-m .
$$

To prove (5) observe that there are $\binom{n}{x}$ choices for ${ }^{(5)}{ }^{(z)}$, and the number of edges in (5) ${ }^{(x)}$ connecting the vertices of (f) ${ }^{(x)}$ with those not in $6^{(x)}$ is $x(n-x)$. Thus (5) follows by a simple combinatorial argument.

In estimating binomial coefficients we will make use of the following simple inequalities

$$
\begin{gather*}
\binom{u}{v}<\frac{u^{v}}{v!}<\left(\frac{e u}{v}\right)^{v}, \tag{6}\\
\binom{u-l}{v-l} /\binom{u}{v}<\left(\frac{v}{u}\right)^{\prime}, \tag{7}
\end{gather*}
$$

$$
\frac{\binom{n}{2}}{n^{2}}=\frac{n-1}{2 n} \geqslant \frac{1}{3} \quad \text { for } \quad n \geqslant 3
$$

From (5), (6), (7), and (8) we have (by substituting the values of x, y, and m)

$$
\Re(m) / t<n^{x}\left(\frac{e n x}{m}\right)^{m}\left(\frac{3 y}{n 2}\right)^{m}<n^{z}\left(\frac{10 x y}{n m}\right)^{m}=o(1),
$$

which proves the lemma.
Lemma 3. For almost all $\oiint_{\alpha}^{(n)}$ the degree of every vertex of $\omega_{\alpha}^{(1)}$ is less than

$$
\left[10\left(\frac{n}{A}\right)^{\frac{1}{2}}\right]=p
$$

By a theorem of Rényi and myself (4) it follows that p can be replaced by

$$
(1+o(1)) 2\left(\frac{n}{A}\right)^{\frac{1}{2}},
$$

but the weaker result will suffice here.
The number of α 's for which the condition of Lemma 3 is not satisfied is, by a simple combinatorial argument, less than

$$
\left.n\binom{n-1}{p}\left(\binom{n}{2}-p\right)<n\binom{n}{y-p}\binom{n}{2}-p\right),
$$

(since the number of $\circlearrowleft_{\alpha}^{(n)}$ for which a given vertex has degree $\geqslant p$ is

$$
\left.\binom{n-1}{p}\binom{n}{2}-p\right)
$$

and there are n possible choices for this vertex). From (6), (7), and (8), we have

$$
n\binom{n}{p}\left(\binom{n}{2}-p\right) / t<n\left(\frac{3 e y}{n p}\right)^{p}<n\left(\frac{3 e}{9}\right)^{p}=o(1),
$$

which proves the lemma.

Put

$$
z_{i}=\left[2^{i} A^{2 / 3} \log n\right], \quad i=0,1, \ldots,
$$

and

$$
\left\{\begin{array}{l}
w_{i}=\left[\frac{n}{4^{i}(i+1)^{2}}\right] \quad \text { for } 0 \leqslant i \leqslant \frac{1}{4} \log n \tag{10}\\
w_{i}=\left[\frac{n}{4^{2} i}\right] \quad \text { for } \frac{1}{4} \log n<i
\end{array}\right.
$$

We shall say that $\mathscr{H}_{\alpha}{ }^{(n)}$ has property P_{i} if there exists a (${ }^{(5)}$ (x) and an $i \geqslant 0$ so that there are at least w_{i} vertices not contained in $(3(z)$, each of which is connected in $\oiint_{a}^{(n)}$ with at least z_{i} vertices of $)^{(\pi)}$.

Lemma 4. The number of graphs $\left({ }_{a}{ }^{(n)}\right.$ which have property P_{i} for some i is $o(t)$.
Since by Lemma 3 we can assume that the degree of every vertex of ${ }_{\left(\xi_{\alpha}{ }^{(0)}\right.}$ is less than p, we can assume that for sufficiently large A

$$
\begin{equation*}
2^{t} A^{2 / 3} \log n<p=\left[10\left(\frac{n}{4}\right)^{\frac{1}{2}}\right], \quad \text { or } 2^{x}<\frac{n^{\frac{3}{2}}}{A \log n} . \tag{11}
\end{equation*}
$$

Thus there are less than $\log n$ choices of i, and it will suffice to show that for every i satisfying (11) the number of α^{\prime} s for which $\mathcal{O}_{\alpha}^{(n)}$ satisfies P_{i} is $o(t / \log n)$. Denote by Ω_{i}, the number of α^{\prime} s for which $\xi_{a}^{(n)}$ satisfies P_{f}, A simple combinatorial argument shows that

$$
\left.\Re_{i} \leqslant\binom{ n}{x}\binom{n-x}{w_{i}}\binom{x}{z_{i}}\left(\begin{array}{c}
n \tag{12}\\
n \\
2
\end{array}\right)-w_{i} z_{i}\right) .
$$

To see (12) observe that there are $\binom{n}{x}$ ways of choosing $\mathrm{GH}^{(z)} ;\binom{n-x}{w_{t}}$ ways of choosing the w_{l} vertices not in (5) ${ }^{(x)}$, which are connected with at least z_{i} vertices of $(3)^{(x)}:\binom{x}{z_{i}}^{w_{i}}$ ways of choosing the vertices in $\xi^{(x)}$, with which the w_{i} vertices not in $\mathscr{G}^{(x)}$ are connected in $\mathfrak{W}_{\alpha}^{(n)}$. For the remaining $y-w_{i} z_{i}$ edges of $\mathrm{OS}_{\alpha}^{\left({ }^{(n)}\right)}$ there are clearly

$$
\left.\binom{n}{2}-w_{i} z_{i}\right)
$$

choices; thus (12) is proved. From (12), (6), (7), and (8) we have, by $x y \leqslant A^{\frac{1}{2}} n^{2} \log n$.

Now $2^{z_{i}}>n$ since $z_{i} \geqslant\left[A^{2 / 3} \log n\right]$. Thus $2^{w_{i} z_{i}}>n^{m_{i}}$, hence from (13), by substituting $\varepsilon_{i}=\left[2^{\prime} A^{2 / 3} \log n\right]$, we have for sufficiently large A

$$
\begin{equation*}
\frac{\Re_{i}}{t}<n^{z}\left(\frac{30 A^{\frac{1}{2}}}{2^{\prime} A^{2 / 3}}\right)^{w i z_{i}}<n^{z}\left(\frac{1}{2^{i+1}}\right)^{w i z_{i}} . \tag{14}
\end{equation*}
$$

Assume first $0 \leqslant i \leqslant \frac{1}{4} \log n$. Then from (9) and (10) we have

$$
\begin{equation*}
w_{i} z_{i}>\frac{n}{2^{i}(i+1)^{2}}>n^{\frac{3}{2}} \tag{15}
\end{equation*}
$$

From (14) and (15) we have (exp $u=e^{4}$)

$$
\begin{equation*}
\frac{\Re_{i}}{t}<n^{x} \exp \left(-n^{\frac{1}{2}} \log 2\right)=o\left(\frac{1}{n}\right) . \tag{16}
\end{equation*}
$$

Assume next $i>\frac{1}{4} \log n$. From (9), (10), and (11) we have, by $i<\log n$ for sufficiently large A,

$$
\begin{equation*}
w_{i} z_{i}>\frac{A^{2 / 3} n \log n}{2^{l+1} i}>A^{3 / 2} n^{\frac{1}{2}} \log n \tag{17}
\end{equation*}
$$

Thus from (14) and (17), by $2^{i+1}>n^{1 / 10}$,

$$
\begin{equation*}
\frac{\Re_{i}}{t}<n^{x} \exp \left(-A^{3 / 2} n^{\frac{1}{3}}(\log n)^{2} / 10\right)=o\left(\frac{1}{n}\right) \tag{18}
\end{equation*}
$$

for sufficiently large A. Equations (16) and (18) complete the proof of Lemma 4.

Lemma 5. Almost all (3) $_{a}{ }^{(n)}$ have the property that for every ${ }^{(5)}{ }^{(x)}$ there are more than $\frac{1}{2}\binom{x}{2}$ edges of (5 $^{(x)}$ which do not occur in any triangle, the other two sides of which are in ${ }_{(5)}^{a}{ }^{\left({ }^{()}\right)}$and whose third vertex is not in ${ }^{(3)}$.

We could prove Lemma 5 even if we omit the words "and whose third vertex is not in $6(x)$," but the proof would be more complicated and Lemma 5 in its present form suffices for our purpose.

Denote by $u_{1}^{(\alpha)}, u_{2}^{(\alpha)}, \ldots, u_{n-1}^{(a)}$ the number of edges in $6_{\alpha^{(n)}}$ which connect the $n-x$ vertices of $G^{(n)}$ not in $G^{(x)}$ with the vertices of $\xi^{(5)}$. The number of edges of $(5)^{(r)}$ which are contained in triangles the other two sides of which are in $\left(6_{p}{ }^{(n)}\right.$ and whose third vertex is not in $6^{(z)}$ is clearly at most

$$
\sum_{j=1}^{n-x}\binom{u_{j}^{(\alpha)}}{2}
$$

Thus to prove Lemma 5 it will suffice to show that for almost all α we have for every choice of (3) ${ }^{(x)}$

$$
\begin{equation*}
\sum_{j=1}^{n-x}\binom{w_{j}^{(\mathrm{n})}}{2}<\frac{1}{2}\binom{x}{2} \tag{19}
\end{equation*}
$$

By Lemma 4 we can assume that $\oint_{a^{(n)}}$ does not satisfy P_{i} for all $i \geqslant 0$. But then the number of indices j for which $u_{j}^{(\alpha)} \geqslant z_{f}$ is not greater than w_{i} for all $i \geqslant 0$, or by (9) and (10) and $w_{0}=n$

$$
\begin{gather*}
\sum_{j=1}^{n-s}\binom{u_{j}^{(\alpha)}}{2} \leqslant \sum_{i} w_{i}\binom{s_{i+1}}{2}<\sum_{1} \frac{n 2^{2 i} A^{4 / 3}(\log n)^{2}}{4^{i}(i+1)^{2}}+ \tag{20}\\
\sum_{2} \frac{n 2^{2 i} A^{4 / x}(\log n)^{2}}{4^{i} i}
\end{gather*}
$$

where in $\sum_{1}, 0 \leqslant i \leqslant \frac{1}{4} \log n$; and in $\sum_{2}, \frac{1}{4} \log n<i<\log n$
by (11). Thus, finally, from (20),

$$
\sum_{j=1}^{n-x}\binom{u_{j}^{(\alpha)}}{2}<\frac{\pi^{2}}{6} A^{4 / 3} n(\log n)^{2}+4 A^{4 / 3} n(\log n)^{2}<\frac{1}{2}\binom{x}{2}
$$

for sufficiently large A, and this proves the lemma.
Now we can prove Lemma 1. It suffices to consider those $\left(H_{a}^{(n)}\right.$ which satisfy Lemmas 2 and 5 (since the number of the other graphs is $o(t)$). Let $\sigma^{\left.()^{(x)}\right)}$ be a fixed graph having x vertices. We are going to estimate the number of graphs $\mathfrak{๒}_{a}^{(4)}$ which satisfy Lemmas 2 and 4 and which fail to satisfy Lemma 1 with respect to $\mathfrak{G}^{(x)}$ (that is which do not contain an edge $e_{\alpha, x} \subset \mathfrak{G b}^{(x)} \cap \mathfrak{G}_{\alpha}{ }^{(5)}$, where $e_{\alpha, x}$ is not contained in any triangle whose other two sides are in $\xi_{\alpha^{n}}{ }^{(n)}$ and whose third vertex is not in $\left.\mathfrak{G H}^{(x)}\right)$. Let us assume that we have already chosen the u edges $e_{1}^{(x)}, e_{2}^{(x)}, \ldots, e_{u^{(x)}}^{(x)}\left(u=u_{x}\right)$ which connect (in $\left.\dot{j}_{a}^{(n)}\right)$ the vertices of $\left.{ }^{(3)}\right)^{(x)}$ with the vertices not in ${ }^{\left(5^{(x)}\right.}$. Since Lemma 2 holds we have $u<n^{4 / 3}$. The number of the $\xi_{a}{ }^{(n)}$ for which $e_{1}^{(2)}, e_{3}^{(x)}, \ldots, e_{n}{ }^{(x)}$ are all the edges which connect the vertices of $\circlearrowleft(6)^{(5)}$ with those not in $\bigoplus^{(5)}$ clearly equals

$$
\begin{equation*}
\binom{n}{2}-x(n-x), ~ \rightsquigarrow\left(e_{1}^{(x)}, \ldots, e_{u}^{(x)}\right), \tag{21}
\end{equation*}
$$

since we have at our disposal $\binom{n}{2}-x(n-x)$ edges and have to choose $y-u$ of them. But by Lemma 5 there are at least $\frac{1}{2}\binom{x}{2}$ edges of $6^{(5)}{ }^{(\pi)}$ which do not form a triangle with any two of the e_{i} 's $1 \leqslant i \leqslant u$, and if we put any of these edges in $\oint_{\alpha}^{(n)}$ Lemma 1 will be satisfied. Hence the number $\Re^{\prime}\left(e_{1}^{(x)} \ldots, e_{\mu}^{(2)}\right)$ of graphs, which do not satisfy Lemma 1 with respect to (55 ${ }^{(5)}$ and for which the edges connecting the vertices of ${ }^{(5)}{ }^{(x)}$ with those not in (ङ) ${ }^{(z)}$ are $\epsilon_{1}^{(z)}, \ldots, e_{u}^{(z)}$, satisfies $\left(u<n^{4 / 3}<y / 2\right.$ for $\left.n>n_{0}(A)\right)$

$$
\begin{equation*}
\mathfrak{R}^{\prime}\left(e_{1}^{(x)}, \ldots, e_{u}^{(x)}\right)<\left(\binom{n}{2}-x(n-x)-\frac{1}{2}\binom{x}{2}\right) . \tag{22}
\end{equation*}
$$

Thus from (21), (22), and (7), we have

$$
\begin{align*}
& \frac{\Re^{\prime}\left(e_{2}^{(x)}, \ldots, e^{(z)}\right)}{9\left(e_{1}^{(x)}, \ldots, e_{x}^{(x)}\right)}<\left(\frac{\binom{n}{2}-x(n-x)-\frac{1}{2}\binom{x}{2}}{\binom{n}{2}-x(n-x)}\right)^{y} \tag{23}\\
&<\left(1-\frac{x^{2}}{2 n^{2}}\right)^{y / 2}<\exp \left(-\frac{x^{2} y}{4 n^{2}}\right) .
\end{align*}
$$

Since (23) holds for all choices of $e_{1}^{(z)}, \ldots, e_{u}^{(z)}$ which satisfy Lemmas 2 and 4 , we obtain that the number of $\left(\Im_{\alpha}^{(n)}\right.$ which satisfy Lemmas 2 and 4 but do not satisfy Lemma 1 with respect to $(5)^{(x)}$ is less than

$$
\begin{equation*}
t \exp \left(-\frac{x^{2} y}{4 n^{2}}\right) \tag{24}
\end{equation*}
$$

Since these are $\binom{n}{x}$ choices for $\left(5^{(x)}\right.$ we obtain from (24) and Lemmas 2 and 4 that the number of graphs $\left(5_{\alpha}{ }^{(n)}\right.$ which do not satisfy Lemma 1 is less than $\left(\binom{n}{x}<n^{2}\right)$

$$
\begin{aligned}
t\binom{n}{x} & \exp \left(-\frac{x^{2} y}{4 n^{2}}\right)+o(t)<t \exp (x \log n) \exp \left(-\frac{x^{2} y}{4 n^{2}}\right)+o(t) \\
& =t \exp \left((1+o(1)) A n^{\frac{1}{2}}(\log n)^{2}\right) \exp \left[-(1+o(1)) A^{3 / 2} n^{\frac{1}{2}}(\log n)^{2} / 4\right]+o(t) \\
& =o(t)
\end{aligned}
$$

which completes the proof of Lemma 1 . Thus our theorem is proved.
The difficulty of trying to improve our theorem by the methods used in this paper is due to my belief that there exists a constant $c_{3}=c_{3}(A)$ so that almost all graphs $\left(\xi_{\alpha}{ }^{(n)}\right.$ contain an independent set of $\left[c_{3} n^{3 / 2} \log n\right]$ vertices. I am unable at present to prove or disprove this conjecture.

References

1. P. Erdös and G Szckeres, On a combinatorial problem in geometry, Compositio Math., \& (1935), 463-470.
2. P. Erdos, Remarks on a theorem of Ramsey, Bull. Research Council of Israel, Section F, 7 (1957).
3. P. Erdös, Graph theory and probability, Can. J. Math., 11 (1959), 34-38.
4. P. Erdös and A. Rényi, On the cvolution of random graphs, Publ. Inst. Hung. Acad. Sci., 5 (1960), 17-61.

Australian National University, Canberra

[^0]: Received June 24, 1960.

