
GRAPH THEORY AND PROBABILITY. II

P. ERDÖS

Define f (k, l) as the least integer so that every graph having f(k, 1) vertices
contains either a complete graph of order k or a set of l independent vertices
(a complete graph of order k is a graph of k vertices every two of which are
connected by an edge, a set of I vertices is called independent if no two are
connected by an edge) .

Throughout this paper c1, c2, . . . will denote positive absolute constants . It
is known (1, 2) that

and in a previous, paper (3) 1 stated that I can prove that for every e > 0
and l > l(e), f(3, l) > 1 2- E . In the present paper I am going to prove that

The proof of f (3, l) > 11+°t was by an explicit construction. I can only
prove (2) by a probabilistic argument, and I cannot explicitly construct a
graph which satisfies it . The method used in the proof of (2) will be a com-
bination of that used in (3) with that in my recent paper (4) with Rényi . It
is possible that (2) can be strengthened to f (3, l) > c 31 2 , but it seems impossible
to improve (2) by the methods of this paper

THEOREM . Let A be a fixed, sufficiently large number. Then for every n > no
there is a graph (s5 having n vertices, which contains no triangle and which does
not contain a set of [An' log n] = x independent vertices .

Clearly our theorem implies (2) .
To prove the theorem put y = [n"1/A111]. Denote by (5 ( " ) the complete

graph of n vertices and by ~ (x ) any of its complete subgraphs having x ver-

tices. Clearly we can choose (53 (x ) in (n) ways . Letx

be an arbitrary subgraph of &"`> having y edges (we use the notations of
(3)) . Now we need
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LEMMA 1 . Almost all f .0> have the property that for every f(') there is an
edge ea , x contained in both (3 a0) and 65 (x) , which is not contained in any triangle
whose edges are in (3a0> and whose third vertex is not in (4Yx ) .

"Almost all" here means for all but o (t) graphs (L ( a . We could prove
Lemma 1 even if we would omit the words "and whose third vertex is not
in j (x)," but the proof would become very much more complicated, and
Lemma 1 suffices for the proof of our theorem .
The proof of Lemma l will be difficult and we postpone it. Assume that

the Lemma has already been proved, then it is easy to prove our theorem .
Let d G0> be one of the graphs which satisfy Lemma 1 . We construct a sub-
graph (Y(`) as follows : Let e,_ ( n ) , e_'>, . . . , e,` be an arbitrary enumeration
of the edges of We put e immm C 03, (") and we have e,. (,) C h5 a ~"' (1 < k < y)
if and only if e,~ (,) does not form a triangle with the edges e m (`") , 1 < T < k
which we had already put in 05~ (''> . (?5n 0"> has n vertices, contains no triangle,
and does not contain a set of x independent vertices . The first two statements
are obvious ; now we prove the third one . It NIT i11 suffice to show that for
every (SP ) (S3 ( ' ) fl Oi a (") is not empty . Consider the edge ea , z = e, (see Lemma 1),
if it is contained in O5a 0) our statement is proved, if not there must exist a
triangle e 1 , e 1 , e, (i < 7, j < 7), whose edges are all in (5 n f"> . But by Lemma 1
the third vertex of this triangle must be also iii OW) , thus e i C (S5 ('>, e; C (55m
or e j and e,; are both in (5i (z) n 0 a (") . This completes the proof of our third
statement, and thus if we put h) a (") = U the proof of our theorem is complete .

If we had proved Lemma 1 iii the stronger form without the words "and
whose third vertex is not in (Si(')," we could have defined 05 « (11) as the union
of those edges of (55"0> which are not contained in any triangle of 0,(' 1) .

complete our proof we now have to prove Lemma 1 . First we need
some lemmas . Denote by E ((P')) the number of edges in 05~f"> connecting
the vertices in (S) (') with the vertices not in OW > .

LEMMA 2 . For almost all Oia f"> we have

where the maximum is taken over all the
(n)

possible choices of (5i(x>x

We could easily prove the lemma with (1 + o(1))2A n, but (-t) will suffice
for our purpose .
The number T(m) of ci's for which (1) is not satisfied is not greater than

~iTo prove (5) observe that there are n
choices for ( m , and the numberx

of edges in U 0 > connecting the vertices of (js (x) with those not in SP (x) is
x(n - x) . Thus (5) follows by a simple combinatorial argument .



In estimating binomial coefficients we will make use of the following simple
inequalities

From (5), (6), (7), and (8) we have (by substituting the values of x, y, and
m)

which proves the lemma .

LEMMA 3 . For almost all 05, (n) the degree of every vertex of (S a ('°) is less than

By a theorem of Rényi and myself (4) it follows that p can be replaced by

but the weaker result will suffice here .
The number of a's for which the condition of Lemma 3 is not satisfied is,

by a simple combinatorial argument, less than

(since the number of (y) . (n ) for which a given vertex has degree > p is

and there are n possible choices for this vertex) . From (6), (7), and (8), we
have

which proves the lemma .



Put

and

We shall say that (i.(n> has property Pi if there exists a (5 ( x) and an i > 0 so
that there are at least wi vertices not contained in 05(x), each of which is
connected in 65 .0) with at least z i vertices of US5(x ) .

LEMMA 4 . The number of graphs 65 a ( n ) which have property P i for some i
is o (t) .

Since by Lemma 3 we can assume that the degree of every vertex of (Sj
a (n)

is less than p, we can assume that for sufficiently large A

Thus there are less than log n choices of i, and it will suffice to show that
for every i satisfying (11) the number of a's for which (5 (") satisfies Pi is
o(t/log n) . Denote by 91 i the number of a's for which C3a ( " ) satisfies Pi . A
simple combinatorial argument shows that

To see (12) observe that there are
Cn/

ways of choosing (43(x) ; n-x
ways

x

	

Wi

of choosing the w i vertices not in (53 (x) , which are connected with at least z i

vertices of (S)(') ;
(x

Wz

ways of choosing the vertices in (53 (x) , with which thez i
w i vertices not in OW ) are connected in (3 ( n ) . For the remaining y - w iz i
edges of 0 .0)) there are clearly

choices ; thus (12) is proved . From (12), (6), (7), and (8) we have, by
l1 2xy <

	

n2 log n,



Now 2 4 i > n since z i > [A2 a log n] . Thus 2wi'i > n"' , hence from (13), by
substituting z 1 = [ 2'Al 2 11 log n], we have for sufficiently large A

Assume first 0 < ti < 4 log n . Then from (9) and (10) we have

From (14) and (15) we have (exp u = e")

Assume next i > 4 log n . From (9), (10), and (11) we have, by i < log n
for sufficiently large :1,

Thus from (14) and (17), by 2`+ 1 > n"10

for sufficiently large A . Equations ('1(i) and (18) complete the proof of
Lemma 4 .

LEMMA 5 . Almost all SU', (" ) have the property that for every (S)(X ) there are more

than I, X edges of Occ) which do not occur in any triangle, the other two sides

of which
/
are in 0?, ( " ) and whose third vertex is not -in OW* ) .

We could prove Lemma 5 even if we omit the words "and whose third
vertex is not in 05 (1) ," but the proof would be more complicated and Lemma 5
in its present form suffices for our purpose .

Denote by u1(`x u2(a) , the number of edges in f a (" ) which con-
nect the n - x vertices of (S5(n) not in (W x) with the vertices of US' ( x) . The
number of edges of (iI ( x) which are contained in triangles the other two sides
of which are in (Si, ( " ) and whose third vertex is not in 0(") is clearly at most

Thus to prove Lemma 5 it will suffice to show that for almost all a we have
for every choice of NO )



By Lemma 4 we can assume that 0, ( ",) does not satisfy P, for all 1i > 0. But
then the number of indices j for which u,W > z i is not greater than w 1 for
all i > 0, or by (9) and (10) and w o = n

where in and in

for sufficiently large A, and this proves the lemma .
Now we can prove Lemma 1 . It suffices to consider those (53 a (") which

satisfy Lemmas 2 and 5 (since the number of the other graphs is o(1)) . Let
N(x> be a fixed graph having x vertices . We are going to estimate the number
of graphs

	

which satisfy Lemmas 2 and 4 and which fail to satisfy Lemma 1
with respect to C5 ( x) (that is which do not contain an edge e .,, c C53(x ) n
where e a , x is not contained in any triangle whose other two sides are in (S1,(")
and whose third vertex is not in & x

>) . Let us assume that we have already
chosen the u edges ei (x ), e 2 (x), . . . , e,, (x ) (u = u x) which connect (in 65 a0)) the
vertices of O(x) with the vertices not in i(x). Since Lemma 2 holds we have
u < n4/3 . The number of the ft(n) for which el (x) , e2 (x) , . . , eu .'x> are all the
edges which connect the vertices of O(x) with those not in (sj ( x ) clearly equals

since we have at our disposal
(2

- x(n - x) edges and have to choose

y - u of them. But by Lemma 5 there are at least j,(2> edges of 65WW > which

do not form a triangle with any two of the e n 's 1 < i < u, and if we put
any of these edges in (33, ('n Lemma 1 will be satisfied . Hence the number
J1'(e i (x ) , . . . , e u (x) ) of graphs, which do not satisfy Lemma 1 with respect to
O(x ) and for which the edges connecting the vertices of OM with those not
in 0 (x ) are e i ( x) , . . . , 0 ( x>, satisfies (u < n 4 / 3 < y/2 for n > no(A))



Thus from (21), (22), and (7), we have

Since (23) holds for all choices of e i ( r )	e,, (z) which satisfy Lemmas 2
and 4, we obtain that the number of (53~O) which satisfy Lemmas 2 and 4
but do not satisfy Lemma 1 with respect to (U' (x ) is less than

(24)

Since these are
/ n,

choices for j ( x ) we obtain from (24) and Lemmas 2
1\ //x

and 4 that the number of graphs (53 q0 ' which do not satisfy Lemma 1 is less

than ((n) < nx

which completes the proof of Lemma 1 . Thus our theorem is proved .
The difficulty of trying to improve our theorem by the methods used in

this paper is due to my belief that there exists a constant c 3 = c 3 (A) so
that almost all graphs C3 a0) contain an independent set of [c 3n 312 log n] ver-
tices. I am unable at present to prove or disprove this conjecture .

REFERENCES

1. P. Erdös and G Szekeres, On a combinatorial problem in geometry, Compositio Math ., 2
(1935),463-470 .

2 . P. Erdös, Remarks on a theorem of Ramsey, Bull. Research Council of Israel, Section F, 7
(1957) .

3 . P. Erdös, Graph theory and probability, Can. J. Math ., 11 (1959), 34-38 .
4. P. Erdös and A . Rényi, On the evolution of random graphs, Publ. Inst . Hung. Acad . Sci ., 5

(1960),17-61 .

Australian National University, Canberra


	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7

