INTERSECTION THEOREMS FOR SYSTEMS OF FINITE SETS

By P. ERDŐS, CHAO KO (Szechuan), and R. RADO (Reading) [Received 13 August 1961]

1. Introduction

E. SPERNER (1) has proved that every system of subsets a_{ν} of a set of finite cardinal m, such that $a_{\mu} \notin a_{\nu}$ for $\mu \neq \nu$ contains at most $\binom{m}{p}$ elements, where $p = \lfloor \frac{1}{2}m \rfloor$. This note concerns analogues of this result. We shall impose an upper limitation on the cardinals of the a_{ν} and a lower limitation on the cardinals of the intersection of any two sets a_{ν} , and we shall deduce upper estimates, in many cases best-possible, for the number of elements of such a system of sets a_{ν} .

2. Notation

The letters a, b, c, d, x, y, z denote finite sets of non-negative integers, all other lower-case letters denote non-negative integers. If $k \leq l$, then [k, l) denotes the set

$$\{k, k+1, k+2, \dots, l-1\} = \{t: k \leq t < l\}.$$

The obliteration operator $\hat{}$ serves to remove from any system of elements the element above which it is placed. Thus $[k, l) = \{k, k+1, ..., l\}$. The cardinal of a is |a|; inclusion (in the wide sense), union, difference, and intersection of sets are denoted by $a \in b, a+b, a-b, ab$ respectively, and a-b = a-ab for all a, b.

By S(k, l, m) we denote the set of all systems $(a_0, a_1, ..., a_n)$ such that

$$egin{aligned} a_
u \in [0,m); \; |a_
u| \leqslant l \quad (
u < n), \ a_\mu \notin a_
u \notin a_\mu; \; |a_\mu a_
u| \geqslant k \quad (\mu <
u < n). \end{aligned}$$

3. Results

THEOREM 1. If
$$1 \leq l \leq \frac{1}{2}m$$
; $(a_0, ..., d_n) \in S(1, l, m)$, then $n \leq \binom{m-1}{l-1}$.
If, in addition, $|a_{\nu}| < l$ for some ν , then $n < \binom{m-1}{l-1}$.

THEOREM 2. Let $k \leq l \leq m, n \geq 2$, $(a_0, ..., \hat{a}_n) \in S(k, l, m)$. Suppose that either $2l \leq k+m, \quad |a_{\nu}| = l \quad (\nu < n)$ (1)

ort

$$2l \leqslant 1 + m, \qquad |a_{\nu}| \leqslant l \quad (\nu < n). \tag{2}$$

† The condition $|a_{\nu}| \leq l$ is in fact implied by $(a_0,..., a_n) \in S(k, l, m)$. Quart. J. Math. Oxford (2), 12 (1961), 313-20. P. ERDŐS, CHAO KO, AND R. RADO

Then (a) either (i)

314

$$\begin{aligned} |a_0...\hat{a}_n| \ge k, \qquad n \leqslant \binom{m-k}{l-k}, \\ or \text{ (ii)} \qquad |a_0...\hat{a}_n| < k < l < m, \qquad n \leqslant \binom{m-k-1}{l-k-1} \binom{l}{k}^3; \end{aligned}$$

(b) if
$$m \ge k + (l-k) {l \choose k}^{s}$$
, then $n \le {m-k \choose l-k}$.

Remark. Obviously, if $|a_{\nu}| = l$ for $\nu < n$, then the upper estimates for *n* in Theorem 1 and in Theorem 2 (*a*) (i) and (*b*) are best-possible. For, if $k \leq l \leq m$ and if a_0, \ldots, \hat{a}_n are the distinct sets *a* such that

$$\begin{bmatrix} 0,k \end{pmatrix} \subset a \subset \begin{bmatrix} 0,m \end{pmatrix}, \qquad |a| = l,$$
 then $(a_0,\ldots,\hat{a}_n) \in S(k,l,m), \qquad n = \binom{m-k}{l-k}.$

4. The following lemma is due to Sperner (1). We give the proof since it is extremely short.

LEMMA. If

$$n_0 \ge 1, \ a_{\nu} \in [0,m), \ |a_{\nu}| = l_0 \ (\nu < n_0),$$

then there are at least $n_0(m-l_0)(l_0+1)^{-1}$ sets b such that, for some v,

$$\nu < n_0, \quad a_{\nu} \in b \in [0, m), \quad |b| = l_0 + 1.$$
 (3)

Proof. Let n_1 be the number of sets *b* defined above. Then, by counting in two different ways the number of pairs (v, b) satisfying (3), we obtain $n_0(m-l_0) \leq n_1(l_0+1)$, which proves the lemma.

5. Proof of Theorem 1

Case 1. Let $|a_{\nu}| = l \ (\nu < n)$. We have $m \ge 2$. If m = 2, then l = 1; $n = 1 \le \binom{m-1}{l-1}$. Now let $m \ge 3$ and use induction over m. Choose, for fixed l, m, n, the a_{ν} in such a way that the hypothesis holds and, in addition, the number

$$f(a_0,...,\hat{a}_n) = s_0 + ... + \hat{s}_n$$

is minimal, where s_{ν} is the sum of the elements of a_{ν} . Put $A = \{a_{\nu} : \nu < n\}$. If 2l = m, then $[0, m) - a_{\nu} \notin A$ and, hence

$$n \leq \frac{1}{2} \binom{m}{l} = \binom{m-1}{l-1}.$$

Now let 2l < m.

Case 1 a. Suppose that whenever 1 = 1 = 1 = 1

$$m-1 \in a \in A, \quad \lambda \in [0,m)-a,$$

 $a-\{m-1\}+\{\lambda\} \in A.$

We may assume that, for some $n_0 < n$,

$$\begin{array}{ll} m-1 \in a_{\nu} & (\nu < n_0), & m-1 \notin a_{\nu} & (n_0 \leqslant \nu < n). \\ & b_{\nu} = a_{\nu} - \{m-1\} & (\nu < n_0). \end{array}$$

Let $\mu < \nu < n_0$. Then

then

Put

$$\begin{split} |a_{\mu}+a_{\nu}| &< 2l < m, \\ \text{and there is} & \lambda \in [0,m)-a_{\mu}-a_{\nu}. \\ \text{Then} & b_{\mu}+\{\lambda\} \in A, \quad b_{\mu}b_{\nu} = (b_{\mu}+\{\lambda\})b_{\nu} = (b_{\mu}+\{\lambda\})a_{\nu} \neq \emptyset \\ \text{and therefore} \\ l-1 \geq 1, \qquad (b_{n},\dots,b_{n}) \in S(1,l-1,m-1). \end{split}$$

Since
$$2(l-1) < m-2 < m-1$$
 we obtain, by the induction hypothesis,

 $n_0 \leq \binom{m-2}{l-2}$. Similarly, since

$$(a_{n_0},\ldots,\hat{a}_n)\in S(1,l,m-1), \qquad 2l\leqslant m-1,$$

we have $n - n_0 \leqslant \binom{m-2}{l-1}$. Thus $n = n_0 + (n - n_0) \leqslant \binom{m-2}{l-2} + \binom{m-2}{l-1} = \binom{m-1}{l-1}$.

Case 1 b. Suppose that there are $a \in A$, $\lambda \in [0, m) - a$ such that

$$m-1 \in a, \qquad a-\{m-1\}+\{\lambda\} \notin A.$$

Then $\lambda < m-1$. We may assume that

$$\begin{split} & m - 1 \in a_{\nu}, \quad \lambda \notin a_{\nu}, \quad b_{\nu} = a_{\nu} - \{m - 1\} + \{\lambda\} \notin A \quad (\nu < n_0), \\ & m - 1 \in a_{\nu}, \quad \lambda \notin a_{\nu}, \quad c_{\nu} = a_{\nu} - \{m - 1\} + \{\lambda\} \in A \quad (n_0 \leqslant \nu < n_1), \\ & m - 1 \in a_{\nu}, \quad \lambda \in a_{\nu} \quad (n_1 \leqslant \nu < n_2), \\ & m - 1 \notin a_{\nu} \qquad \qquad (n_2 \leqslant \nu < n). \end{split}$$

Here $1 \leq n_0 \leq n_1 \leq n_2 \leq n$. Put $b_{\nu} = a_{\nu}$ $(n_0 \leq \nu < n)$. We now show that $(b_0, \dots, \hat{b}_n) \in S(1, l, m)$. (4)

Let $\mu < \nu < n$. We have to prove that

$$b_{\mu} \neq b_{\nu}, \qquad b_{\mu}b_{\nu} \neq \emptyset.$$
 (5)

If $\mu < \nu < n_0$ or $n_0 \leq \mu < \nu$, then (5) clearly holds. Now let $\mu < n_0 \leq \nu$. Then $b_{\mu} \notin A$, $b_{\nu} = a_{\nu} \in A$, and hence $b_{\mu} \neq b_{\nu}$. If $n_0 \leq \nu < n_1$, then $c_{\nu} \in A$, and there is $\sigma \in a_{\mu}c_{\nu}$. Then $\sigma \neq \lambda$, $\sigma \neq m-1$, and $\sigma \in b_{\mu}b_{\nu}$. If $n_1 \leq \nu < n_2$, then $\lambda \in b_{\mu}b_{\nu}$. If, finally, $n_2 \leq \nu < n$, then there is P. ERDŐS, CHAO KO, AND R. RADO

 $\rho \in a_{\mu} a_{\nu}$. Then

$$ho \in a_
u, \qquad
ho < m-1, \qquad
ho \in b_\mu b_
u.$$

This proves (5) and therefore (4). However, we have

$$f(b_0,...,\hat{b}_n) - f(a_0,...,\hat{a}_n) = n_0(-[m-1] + \lambda) < 0,$$

which contradicts the minimum property of $(a_0,..., \hat{a}_n)$. This shows that Case 1 *b* cannot occur.

Case 2: $\min(\nu < n) |a_{\nu}| = l_0 \leq l$.

If $l_0 = l$, then we have Case 1. Now let $l_0 < l$ and use induction over $l-l_0$. We may assume that

$$|a_{\nu}| = l_0 \quad (\nu < n_0), \qquad |a_{\nu}| > l_0 \quad (n_0 \leqslant \nu < n),$$
 (6)

where $1 \leq n_0 \leq n$. Let $b_0, ..., \dot{b}_{n_1}$ be the distinct sets b such that (3) holds for some ν . Then

$$(l_0+1) - (m-l_0) \leqslant 2(l-1) + 1 - m \leqslant 0, \tag{7}$$

and hence, by the lemma, $n_1 \ge n_0$. Also,

 $(b_0,..., \hat{b}_{n_1}, a_{n_0},..., \hat{a}_n) \in S(1, l, m).$

Hence, from our induction hypothesis,

$$n \leqslant n_1 + (n - n_0) \leqslant \binom{m-1}{l-1},$$

and Theorem 1 follows.

6. Proof of Theorem 2

Case 1: k = 0. Then

$$2l \leqslant 1+m, \qquad |a_{\nu}| \leqslant l \quad (\nu < n), \qquad (a_0, \ldots, \hat{a}_n) \in S(0, l, m).$$

Now (a) (ii) is impossible, and (a) (i) is identical with (b), so that all we have to prove is that $n \leq \binom{m}{l}$. Again, we may assume (6), where $l_0 \leq l, 1 \leq n_0 \leq n$. If $l_0 = l$ then

$$|a_{
u}| = l \quad (
u < n), \qquad n \leqslant inom{m}{l}.$$

Now let $l_0 < l$ and use induction over $l-l_0$. Let $b_0, ..., b_{n_1}$ be the distinct sets b such that (3) holds for some ν . Again (7) holds and, by the lemma, $n_1 \ge n_0$. We have

 $(b_0,..., \dot{b}_{n_1}, a_{n_0}, ..., \dot{a}_n) \in S(0, l, m)$

. .

and, by our induction hypothesis,

$$n \leqslant n_1 + (n - n_0) \leqslant \binom{m}{l}.$$

This proves the assertion.

316

Case 2: k > 0. We separate this into two cases.

Case 2a. Suppose that (1) holds. Put $|a_0...d_n| = r$. We now show that, if $r \ge k$, then (i) follows. We may assume that

$$a_0...\hat{a}_n = [m-r,m).$$

Put Then

$$a_{\nu}[0, m-r) = c_{\nu} \quad (\nu < n).$$

$$(c_{\nu} \dots c_{\nu}) \in S(0, l-r, m-r).$$

$$(v_0, \dots, v_n) \in \mathcal{O}(0, v_1, m_1, v_1),$$

$$2(l-r)-(m-r)=2l-r-m\leqslant 2l-k-m\leqslant 0.$$

Hence, by Case 1,

$$n \leqslant \binom{m-r}{l-r} = \binom{m-r}{m-l} \leqslant \binom{m-k}{m-l} = \binom{m-k}{l-k},$$

so that (i) holds. We now suppose that (i) is false, and we deduce (ii). We have $|a_i - b_i| = |a_i - b_i| = |a_i - b_i| = |a_i - b_i|$

$$|a_0...a_n| = r < k \le |a_0a_1| < |a_0| \le l,$$

and therefore $2l \leqslant k+m < l+m, \quad k < l < m.$

There is a maximal number $p \ge n$ such that there exist p-n sets a_n, \dots, \hat{a}_p satisfying $(a_0, \dots, \hat{a}_n) \in S(k, l, m).$ (8)

Put $A' = \{a_{\nu} : \nu < p\}$. We assert that

$$(a_0,...,\hat{a}_p) \notin S(k+1,l,m).$$
 (9)

For otherwise $|a_{\mu}a_{\nu}| > k$ ($\mu < \nu < n$). Let $a \in A'$. Then we can choose $a' \in [0, m)$ such that

 $|a'| = l, \qquad |aa'| = l - 1.$

Then, for every $b \in A'$, we have

$$|a'b|\geqslant |ab|{-}1\geqslant k$$

and hence, since p is maximal, $a' \in A'$. By repeated application of this result we find that

$$[0, l), [m-l, m) \in A', \qquad k < |[0, l)[m-l, m)| = l - (m-l) \leq k,$$

which is the desired contradiction. This proves (9), and hence there are sets $a, b \in A'$ such that |ab| = k. Since $|a_0...d_p| \leq |a_0...d_n| < k$, there is $c \in A'$ such that |abc| < k. Denote by T the set of all triples (x, y, z) such that $x \subset a, y \subset b, z \subset c, |x| = |y| = |z| = k, |x+y+z| \leq l$. Put $\phi(x, y, z) = \{d: x+y+z \subset d \in A'\}$. Then, by (8),

$$A' = \sum ((x, y, z) \in T) \phi(x, y, z).$$

If $(x, y, z) \in T$ and s = |x+y+z|, then s > k since otherwise we obtain the contradiction

$$|k > |abc| \ge |xyz| = |x| = k.$$

Hence

$$\begin{aligned} |\phi(x,y,z)| \leqslant \binom{m-s}{l-s} &= \binom{m-s}{m-l} \leqslant \binom{m-k-1}{m-l} = \binom{m-k-1}{l-k-1}, \\ n \leqslant p &= |A'| \leqslant \binom{m-k-1}{l-k-1} \binom{l}{k}^3, \end{aligned}$$

which proves (ii).

Case 2 b. Suppose that (2) holds. We may assume (6), where $l_0 \leq l$; $1 \leq n_0 \leq n$. If $l_0 = l$, then Case 2*a* applies. Now let $l_0 < l$ and use induction over $l-l_0$. Let $b_0, ..., \dot{b}_{n_1}$ be the distinct sets *b* satisfying, for some ν , the relations (3). Then (7) holds and hence, by the lemma, $n_1 \geq n_0$. Also, since $l_0 < l < m$, so that $m-l_0 \geq 2$, we have, by definition of the b_{μ} ,

$$b_{0}...\hat{b}_{n_{1}} = a_{0}...\hat{a}_{n_{0}}, \qquad |b_{0}...\hat{b}_{n_{1}}a_{n_{0}}...\hat{a}_{n}| = |a_{0}...\hat{a}_{n}| < k.$$

$$(b_{0}...,\hat{b}_{n_{1}},a_{n_{2}}...,\hat{a}_{n_{1}}) \in S(k,l,m).$$

Since

it follows from our induction hypothesis that

$$n \leqslant n_1 + (n - n_0) \leqslant \binom{m - k - 1}{l - k - 1} \binom{l}{k}^3.$$

It remains to prove (b) in Case 2. If k = l, then (b) is trivial. If k < l and $m \ge k + (l-k) {l \choose k}^3$, then

$$\binom{m-k}{l-k} = \binom{m-k-1}{l-k-1} \frac{m-k}{l-k} \ge \binom{m-k-1}{l-k-1} \binom{l}{k}^3,$$

so that (b) follows from (a). This completes the proof of Theorem 2.

7. Concluding remarks

(i) In Theorem 2(b) the condition

$$m \geqslant k + (l-k) \binom{l}{k}^3,$$

though certainly not best-possible, cannot be omitted. It is possible for

$$(a_0,..., d_n) \in S(k, l, m), \qquad k \leq l \leq m$$

to hold and, at the same time, $n > \binom{m-k}{l-k}$. This is shown by the following example due to S. H. Min and kindly communicated to the authors. Let a_0, \ldots, \hat{a}_n be the distinct sets a such that

$$a \in [0, 8), \qquad |a| = 4, \qquad |a[0, 4)| = 3.$$

Then

$$n = 16,$$
 $(a_0, \dots, a_{15}) \in S(2, 4, 8),$ $\binom{m-k}{l-k} = \binom{6}{2} = 15 < n.$

318

A more general example is the following. Let r > 0 and denote by a_0, \ldots, a_n the distinct sets a such that

$$a \in [0, 4r), \quad |a| = 2r, \quad |a[0, 2r)| > r.$$

 $(a_0, ..., \hat{a}_n) \in S(2, 2r, 4r),$

Then and we have

$$n = \sum (r < \lambda \leq 2r) {2r \choose \lambda} {2r \choose 2r-\lambda} = \frac{1}{2} \sum (\lambda \leq 2r) {2r \choose \lambda} {2r \choose 2r-\lambda} - \frac{1}{2} {2r \choose r}^2 = \frac{1}{2} {4r \choose 2r} - \frac{1}{2} {2r \choose r}^2.$$

$$(m-k) \qquad (4r-2)$$

In this case $\binom{n-k}{l-k} = \binom{2r-2}{2r-2}$, and, for every large r, possibly for every r > 2, we have $\binom{m-k}{l-k} < n$. We put forward the conjecture that, for our special values of k, l, m, this represents a case with maximal n, i.e.

If
$$r > 0$$
, $(a_0, ..., \hat{a}_n) \in S(2, 2r, 4r)$,

then

$$n \leqslant \frac{1}{2} \binom{4r}{2r} - \frac{1}{2} \binom{2r}{r}^2.$$

(ii) If in the definition of S(1, l, m) in § 2, the condition $a_{\mu} \notin a_{\nu} \notin a_{\mu}$ is replaced by $a_{\mu} \neq a_{\nu}$ and if no restriction is placed upon $|a_{\nu}|$, then the problem of estimating n becomes trivial, and we have the result:

Let m > 0 and $a_{\nu} \in [0,m)$ for $\nu < n$, and $a_{\mu} \neq a_{\nu}$, $a_{\mu}a_{\nu} \neq \emptyset$ for $\mu < \nu < n$. Then $n \leq 2^{m-1}$, and there are $2^{m-1}-n$ subsets $a_n, \dots, \hat{a}_{2^{m-1}}$ of [0,m) such that $a_{\mu} \neq a_{\nu}$, $a_{\mu}a_{\nu} \neq \emptyset$ for $\mu < \nu < 2^{m-1}$.

To prove this we note that of two sets which are complementary in [0,m) at most one occurs among $a_0,..., a_n$, and, if $n < 2^{m-1}$, then there is a pair of complementary sets a, b neither of which occurs among a_0, \ldots, a_n . It follows that at least one of a, b intersects every a_{ν} , so that this set can be taken as a_n .

(iii) Let $l \ge 3$, $2l \le m$, and suppose that

$$a_{\nu} \in [0, m), \qquad |a_{\nu}| = l \quad \text{for} \quad \nu < n,$$

and

 $a_\mu
eq a_
u, \qquad a_\mu a_
u
eq extsf{0} \quad extsf{for} \quad \mu <
u < n, \quad extsf{and} \quad a_0...\hat{a}_n = extsf{0}.$

We conjecture that the maximum value of n for which such sets a_{ν} can be found is n_0 , where

$$n_0 = 3\binom{m-3}{l-2} + \binom{m-3}{l-3}.$$

A system of n_0 sets with the required properties is obtained by taking all sets a such that

$$a \in [0,m), \qquad |a[0,3)| \ge 2, \qquad |a| = l.$$

(iv) The following problem may be of interest. Let $k \leq m$. Determine the largest number n such that there is a system of n sets a_{ν} satisfying the conditions

$$a_{\mu} \neq a_{\nu}, \qquad |a_{\mu}a_{\nu}| \geqslant k \quad (\mu < \nu < n).$$

If m+k is even, then the system consisting of the *a* such that

 $a \in [0,m), \qquad |a| \ge \frac{1}{2}(m+k)$

has the required properties. We suspect that this system contains the maximum possible number of sets for fixed m and k such that m+k is even.

(v) If in (ii) the condition $a_{\mu}a_{\nu} \neq \emptyset$ ($\mu < \nu < n$) is replaced by $a_{\mu}a_{\nu}a_{\rho} \neq \emptyset$ ($\mu < \nu < \rho < n$), then the structure of the system a_{ν} is largely determined by the result:

Let $m \ge 2$, $a_{\nu} \in [0,m)$ for $\nu < n$, $a_{\mu} \ne a_{\nu}$ for $\mu < \nu < n$, and $a_{\mu}a_{\nu}a_{\rho} \ne \emptyset$ for $\mu < \nu < \rho < n$. Then $n \le 2^{m-1}$, and, if $n = 2^{m-1}$, then $a_0a_1...a_n \ne \emptyset$, so that the a_{ν} are all 2^{m-1} sets $a \in [0,m)$ which contain some fixed number t (t < m).

For there is a largest p $(1 \leq p \leq n)$ such that

$$a_0 a_1 \dots \hat{a}_p \in \{a_0, a_1, \dots, \hat{a}_n\}.$$

If p = n, then $a_0...\hat{a}_n = a_\nu \neq \emptyset$ for some $\nu < n$. If p < n, then any two of the n+1 distinct sets

$$a_0 a_1 \dots a_p, a_0, a_1, \dots, a_n$$

have a non-empty intersection and hence, by (ii), $n+1 \leq 2^{m-1}$. Different proofs of (v) have been found by L. Pósa, G. Hajós, G. Pollák, and M. Simonovits.

REFERENCE

1. E. Sperner, Math. Z. 27 (1928) 544-8.

320