INTERSECTION THEOREMS FOR SYSTEMS OF FINITE SETS

By P. ERDÓS, CHAO KO (Szechuan), and R. RADO (Reading)

[Received 13 August 1961]

1. Introduction

E. Sperner (1) has proved that every system of subsets a_{ν} of a set of finite cardinal m, such that $a_{\mu} \not \subset a_{\nu}$ for $\mu \neq \nu$ contains at most $\binom{m}{p}$ elements, where $p=\left[\frac{1}{2} m\right]$. This note concerns analogues of this result. We shall impose an upper limitation on the cardinals of the a_{ν} and a lower limitation on the cardinals of the intersection of any two sets a_{ν}, and we shall deduce upper estimates, in many cases best-possible, for the number of elements of such a system of sets a_{v}.

2. Notation

The letters a, b, c, d, x, y, z denote finite sets of non-negative integers, all other lower-case letters denote non-negative integers. If $k \leqslant l$, then [k, l) denotes the set

$$
\{k, k+1, k+2, \ldots, l-1\}=\{t: k \leqslant t<l\} .
$$

The obliteration operator ^ serves to remove from any system of elements the element above which it is placed. Thus $[k, l)=\{k, k+\mathbf{1}, \ldots, \hat{l}\}$. The cardinal of a is $\backslash a \mid ;$ inclusion (in the wide sense), union, difference, and intersection of sets are denoted by $a \subset b, a+b, a-b, a b$ respectively, and $a-b=a-a b$ for all a, b.

By $S(k, l, m)$ we denote the set of all systems $\left(a_{0}, a_{1}, \ldots, \hat{a}_{n}\right)$ such that

$$
\begin{aligned}
a_{\nu} \subset[0, m) ;\left|a_{\nu}\right| \leqslant l \quad & (v<n) \\
a_{\mu} \nsubseteq a_{\nu} \not \subset a_{\mu} ;\left|a_{\mu} a_{\nu}\right| \geqslant k \quad & (\mu<\nu<n)
\end{aligned}
$$

3. Results

Theorem 1. If $\mathrm{I} \leqslant l \leqslant \frac{1}{2} m ;\left(a_{0}, \ldots, \hat{a}_{n}\right) \in S(1, l, m)$, then $n \leqslant\binom{ m-1}{l-1}$. If, in addition, $\left|a_{\nu}\right|<l$ for some ν, then $n<\binom{m-1}{l-1}$.

Theorem 2. Let $k \leqslant l \leqslant m, n \geqslant 2,\left(a_{0}, \ldots, \hat{a}_{n}\right) \in S(k, l, m)$. Suppose that either
or \dagger

$$
\begin{equation*}
2 l \leqslant k+m, \quad\left|a_{\nu}\right|=l \quad(\nu<n) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
2 l \leqslant 1+m, \quad\left|a_{\nu}\right| \leqslant l \quad(\nu<n) \tag{2}
\end{equation*}
$$

\dagger The condition $\left|a_{\nu}\right| \leqslant l$ is in fact implied by $\left(a_{0}, \ldots, a_{n}\right) \in S(k, l, m)$.
Quart. J. Math. Oxford (2), 12 (1961), 313-20.

Then (a) either (i)

$$
\left|a_{0} \ldots \hat{a}_{n}\right| \geqslant k, \quad n \leqslant\binom{ m-k}{l-k}
$$

or (ii)

$$
\left|a_{0} \ldots \hat{a}_{n}\right|<k<l<m, \quad n \leqslant\binom{ m-k-1}{l-k-1}\binom{l}{k}^{3}
$$

(b) if

$$
m \geqslant k+(l-k)\binom{l}{k}^{3}, \quad \text { then } \quad n \leqslant\binom{ m-k}{l-k}
$$

Remark. Obviously, if $\left|a_{\nu}\right|=l$ for $\nu<n$, then the upper estimates for n in Theorem 1 and in Theorem $2(a)$ (i) and (b) are best-possible. For, if $k \leqslant l \leqslant m$ and if $a_{0}, \ldots, \hat{a}_{n}$ are the distinct sets a such that
then

$$
\begin{aligned}
& {[0, k) \subset a \subset[0, m), }|a|=l, \\
&\left(a_{0}, \ldots, \hat{a}_{n}\right) \in S(k, l, m), \quad n=\binom{m-k}{l-k} .
\end{aligned}
$$

4. The following lemma is due to Sperner (1). We give the proof since it is extremely short.

Lemma. If

$$
n_{0} \geqslant 1, \quad a_{\nu} \subset[0, m), \quad\left|a_{\nu}\right|=l_{0} \quad\left(\nu<n_{0}\right)
$$

then there are at least $n_{0}\left(m-l_{0}\right)\left(l_{0}+1\right)^{-1}$ sets b such that, for some ν,

$$
\begin{equation*}
\nu<n_{0}, \quad a_{\nu} \subset b \subset[0, m), \quad|b|=l_{0}+1 \tag{3}
\end{equation*}
$$

Proof. Let n_{1} be the number of sets b defined above. Then, by counting in two different ways the number of pairs (ν, b) satisfying (3), we obtain $n_{0}\left(m-l_{0}\right) \leqslant n_{1}\left(l_{0}+1\right)$, which proves the lemma.

5. Proof of Theorem 1

Case 1. Let $\left|a_{\nu}\right|=l(\nu<n)$. We have $m \geqslant 2$. If $m=2$, then $l=1$; $n=1 \leqslant\binom{ m-1}{l-1}$. Now let $m \geqslant 3$ and use induction over m. Choose, for fixed l, m, n, the a_{ν} in such a way that the hypothesis holds and, in addition, the number

$$
f\left(a_{0}, \ldots, \hat{a}_{n}\right)=s_{0}+\ldots+\hat{s}_{n}
$$

is minimal, where s_{ν} is the sum of the elements of a_{ν}. Put $A=\left\{a_{\nu}: \nu<n\right\}$. If $2 l=m$, then $[0, m)-a_{\nu} \notin A$ and, hence

$$
n \leqslant \frac{1}{2}\binom{m}{l}=\binom{m-1}{l-1}
$$

Now let $2 l<m$.

Case $1 a$. Suppose that whenever
then

$$
\begin{gathered}
m-1 \in a \in A, \quad \lambda \in[0, m)-a, \\
a-\{m-1\}+\{\lambda\} \in A .
\end{gathered}
$$

We may assume that, for some $n_{0}<n$,

$$
\begin{array}{cl}
m-\mathbf{1} \in a_{\nu} & \left(\nu<n_{0}\right), \quad m-1 \notin a_{\nu} \quad\left(n_{0} \leqslant \nu<n\right) \\
& b_{\nu}=a_{\nu}-\{m-1\} \quad\left(\nu<n_{0}\right) .
\end{array}
$$

Put
Let $\mu<\nu<n_{0}$. Then
and there is $\quad \lambda \in[0, m)-a_{\mu}-a_{\nu}$.
Then $\quad b_{\mu}+\{\lambda\} \in A, \quad b_{\mu} b_{\nu}=\left(b_{\mu}+\{\lambda\}\right) b_{\nu}=\left(b_{\mu}+\{\lambda\}\right) a_{\nu} \neq \varnothing$ and therefore

$$
l-1 \geqslant 1, \quad\left(b_{0}, \ldots, b_{n_{0}}\right) \in S(1, l-1, m-1)
$$

Since $2(l-1)<m-2<m-1$ we obtain, by the induction hypothesis, $n_{0} \leqslant\binom{ m-2}{l-2}$. Similarly, since

$$
\left(a_{n_{0}}, \ldots, \hat{a}_{n}\right) \in S(1, l, m-1), \quad 2 l \leqslant m-1
$$

we have $n-n_{0} \leqslant\binom{ m-2}{l-1}$. Thus

$$
n=n_{0}+\left(n-n_{0}\right) \leqslant\binom{ m-2}{l-2}+\binom{m-2}{l-1}=\binom{m-1}{l-1}
$$

Case $1 b$. Suppose that there are $a \in A, \lambda \in[0, m)-a$ such that

$$
m-1 \in a, \quad a-\{m-1\}+\{\lambda\} \notin A .
$$

Then $\lambda<m-1$. We may assume that

$$
\begin{array}{llll}
m-1 \in a_{\nu}, & \lambda \notin a_{\nu}, & b_{\nu}=a_{\nu}-\{m-1\}+\{\lambda\} \notin A & \left(v<n_{0}\right), \\
m-1 \in a_{v}, & \lambda \notin a_{\nu}, & c_{\nu}=a_{\nu}-\{m-1\}+\{\lambda\} \in A & \left(n_{0} \leqslant v<n_{1}\right), \\
m-1 \in a_{\nu}, & \lambda \in a_{\nu} & \left(n_{1} \leqslant v<n_{2}\right), & \\
m-1 \notin a_{\nu} & & \left(n_{2} \leqslant v<n\right) . &
\end{array}
$$

Here $1 \leqslant n_{0} \leqslant n_{1} \leqslant n_{2} \leqslant n$. Put $b_{\nu}=a_{\nu}\left(n_{0} \leqslant \nu<n\right)$. We now show that

$$
\begin{equation*}
\left(b_{0}, \ldots, \hat{b}_{n}\right) \in S(1, l, m) \tag{4}
\end{equation*}
$$

Let $\mu<\nu<n$. We have to prove that

$$
\begin{equation*}
b_{\mu} \neq b_{\nu}, \quad b_{\mu} b_{\nu} \neq \varnothing \tag{5}
\end{equation*}
$$

If $\mu<\nu<n_{0}$ or $n_{0} \leqslant \mu<\nu$, then (5) clearly holds. Now let $\mu<n_{0} \leqslant \nu$. Then $b_{\mu} \notin A, b_{\nu}=a_{\nu} \in A$, and hence $b_{\mu} \neq b_{\nu}$. If $n_{0} \leqslant \nu<n_{1}$, then $c_{\nu} \in A$, and there is $\sigma \in a_{\mu} c_{\nu}$. Then $\sigma \neq \lambda, \sigma \neq m-1$, and $\sigma \in b_{\mu} b_{\nu}$. If $n_{1} \leqslant \nu<n_{2}$, then $\lambda \in b_{\mu} b_{\nu}$. If, finally, $n_{2} \leqslant \nu<n$, then there is
$\rho \in a_{\mu} a_{\nu}$. Then

$$
\rho \in a_{\nu}, \quad \rho<m-1, \quad \rho \in b_{\mu} b_{\nu}
$$

This proves (5) and therefore (4). However, we have

$$
f\left(b_{0}, \ldots, \hat{b}_{n}\right)-f\left(a_{0}, \ldots, \hat{a}_{n}\right)=n_{0}(-[m-1]+\lambda)<0,
$$

which contradicts the minimum property of $\left(a_{0}, \ldots, \hat{a}_{n}\right)$. This shows that Case $1 b$ cannot occur.

Case 2: $\min (\nu<n)\left|a_{\nu}\right|=l_{0} \leqslant l$.
If $l_{0}=l$, then we have Case 1. Now let $l_{0}<l$ and use induction over $l-l_{0}$. We may assume that

$$
\begin{equation*}
\left|a_{\nu}\right|=l_{0} \quad\left(\nu<n_{0}\right), \quad\left|a_{\nu}\right|>l_{0} \quad\left(n_{0} \leqslant \nu<n\right) \tag{6}
\end{equation*}
$$

where $1 \leqslant n_{0} \leqslant n$. Let $b_{0}, \ldots, \hat{b}_{n_{1}}$ be the distinct sets b such that (3) holds for some ν. Then

$$
\begin{equation*}
\left(l_{0}+1\right)-\left(m-l_{0}\right) \leqslant 2(l-1)+1-m \leqslant 0 \tag{7}
\end{equation*}
$$

and hence, by the lemma, $n_{1} \geqslant n_{0}$. Also,

$$
\left(b_{0}, \ldots, \hat{b}_{n_{1}}, a_{n_{0}, \ldots,}, \hat{a}_{n}\right) \in S(1, l, m)
$$

Hence, from our induction hypothesis,

$$
n \leqslant n_{1}+\left(n-n_{0}\right) \leqslant\binom{ m-1}{l-1}
$$

and Theorem 1 follows.

6. Proof of Theorem 2

Case 1: $k=0$. Then

$$
2 l \leqslant 1+m, \quad\left|a_{\nu}\right| \leqslant l \quad(\nu<n), \quad\left(a_{0}, \ldots, \hat{a}_{n}\right) \in S(0, l, m)
$$

Now (a) (ii) is impossible, and (a) (i) is identical with (b), so that all we have to prove is that $n \leqslant\binom{ m}{l}$. Again, we may assume (6), where $l_{0} \leqslant l, \mathbf{1} \leqslant n_{0} \leqslant n$. If $l_{0}=l$ then

$$
\left|a_{\nu}\right|=l \quad(\nu<n), \quad n \leqslant\binom{ m}{l}
$$

Now let $l_{0}<l$ and use induction over $l-l_{0}$. Let $b_{0}, \ldots, \hat{b}_{n_{1}}$ be the distinct sets b such that (3) holds for some ν. Again (7) holds and, by the lemma, $n_{1} \geqslant n_{0}$. We have

$$
\left(b_{0}, \ldots, \hat{b}_{n_{1}}, a_{n_{0}}, \ldots, \hat{a}_{n}\right) \in S(0, l, m)
$$

and, by our induction hypothesis,

$$
n \leqslant n_{1}+\left(n-n_{0}\right) \leqslant\binom{ m}{l}
$$

This proves the assertion.

Case 2: $k>0$. We separate this into two cases.
Case $2 a$. Suppose that (1) holds. Put $\left|a_{0} \ldots \hat{a}_{n}\right|=r$. We now show that, if $r \geqslant k$, then (i) follows. We may assume that

$$
a_{0} \ldots \hat{a}_{n}=[m-r, m)
$$

Put

$$
a_{\nu}[0, m-r)=c_{v} \quad(\nu<n)
$$

Then

$$
\begin{gathered}
\left(c_{0}, \ldots, \hat{c}_{n}\right) \in S(0, l-r, m-r) \\
2(l-r)-(m-r)=2 l-r-m \leqslant 2 l-k-m \leqslant 0
\end{gathered}
$$

Hence, by Case 1,

$$
n \leqslant\binom{ m-r}{l-r}=\binom{m-r}{m-l} \leqslant\binom{ m-k}{m-l}=\binom{m-k}{l-k}
$$

so that (i) holds. We now suppose that (i) is false, and we deduce (ii). We have

$$
\begin{array}{ll}
\text { We have } & \left|a_{0} \ldots \hat{a}_{n}\right|=r<k \leqslant\left|a_{0} a_{1}\right|<\left|a_{0}\right| \leqslant l, \\
\text { and therefore } & 2 l \leqslant k+m<l+m, \quad k<l<m .
\end{array}
$$

There is a maximal number $p \geqslant n$ such that there exist $p-n$ sets $a_{n}, \ldots, \hat{a}_{p}$ satisfying $\quad\left(a_{0}, \ldots, \hat{a}_{p}\right) \in S(k, l, m)$.
Put $A^{\prime}=\left\{a_{\nu}: \nu<p\right\}$. We assert that

$$
\begin{equation*}
\left(a_{0}, \ldots, \hat{a}_{p}\right) \notin S(k+1, l, m) \tag{9}
\end{equation*}
$$

For otherwise $\left|a_{\mu} a_{\nu}\right|>k(\mu<\nu<n)$. Let $a \in A^{\prime}$. Then we can choose $a^{\prime} \subset[0, m)$ such that

$$
\left|a^{\prime}\right|=l, \quad\left|a a^{\prime}\right|=l-1
$$

Then, for every $b \in A^{\prime}$, we have

$$
\left|a^{\prime} b\right| \geqslant|a b|-1 \geqslant k
$$

and hence, since p is maximal, $a^{\prime} \in A^{\prime}$. By repeated application of this result we find that

$$
[0, l),[m-l, m) \in A^{\prime}, \quad k<|[0, l)[m-l, m)|=l-(m-l) \leqslant k
$$

which is the desired contradiction. This proves (9), and hence there are sets $a, b \in A^{\prime}$ such that $|a b|=k$. Since $\left|a_{0} \ldots \hat{a}_{p}\right| \leqslant\left|a_{0} \ldots \hat{a}_{n}\right|<k$, there is $c \in A^{\prime}$ such that $|a b c|<k$. Denote by T the set of all triples (x, y, z) such that $x \subset a, y \subset b, z \subset c,|x|=|y|=|z|=k,|x+y+z| \leqslant l$. Put $\phi(x, y, z)=\left\{d: x+y+z \subset d \in A^{\prime}\right\}$. Then, by (8),

$$
A^{\prime}=\sum((x, y, z) \in T) \phi(x, y, z)
$$

If $(x, y, z) \in T$ and $s=|x+y+z|$, then $s>k$ since otherwise we obtain the contradiction

$$
k>|a b c| \geqslant|x y z|=|x|=k
$$

Hence

$$
\begin{gathered}
|\phi(x, y, z)| \leqslant\binom{ m-s}{l-s}=\binom{m-s}{m-l} \leqslant\binom{ m-k-1}{m-l}=\binom{m-k-1}{l-k-1} \\
n \leqslant p=\left|A^{\prime}\right| \leqslant\binom{ m-k-1}{l-k-1}\binom{l}{k}^{3}
\end{gathered}
$$

which proves (ii).
Case 2b. Suppose that (2) holds. We may assume (6), where $l_{0} \leqslant l$; $1 \leqslant n_{0} \leqslant n$. If $l_{0}=l$, then Case $2 a$ applies. Now let $l_{0}<l$ and use induction over $l-l_{0}$. Let $b_{0}, \ldots, \hat{b}_{n_{1}}$ be the distinct sets b satisfying, for some ν, the relations (3). Then (7) holds and hence, by the lemma, $n_{1} \geqslant n_{0}$. Also, since $l_{0}<l<m$, so that $m-l_{0} \geqslant 2$, we have, by definition of the b_{μ},

$$
b_{0} \ldots \hat{b}_{n_{1}}=a_{0} \ldots \hat{a}_{n_{0}}, \quad\left|b_{0} \ldots \hat{b}_{n_{1}} a_{n_{0}} \ldots \hat{a}_{n}\right|=\left|a_{0} \ldots \hat{a}_{n}\right|<k
$$

Since

$$
\left(b_{0}, \ldots, \hat{b}_{n_{1}}, a_{n_{0}}, \ldots, \hat{a}_{n}\right) \in S(l, l, m)
$$

it follows from our induction hypothesis that

$$
n \leqslant n_{1}+\left(n-n_{0}\right) \leqslant\binom{ m-k-1}{l-k-1}\binom{l}{k}^{3}
$$

It remains to prove (b) in Case 2. If $k=l$, then (b) is trivial. If $k<l$ and $m \geqslant k+(l-k)\binom{l}{k}^{3}$, then

$$
\binom{m-k}{l-k}=\binom{m-k-1}{l-k-1} \frac{m-k}{l-k} \geqslant\binom{ m-k-1}{l-k-1}\binom{l}{k}^{3}
$$

so that (b) follows from (a). This completes the proof of Theorem 2.

7. Concluding remarks

(i) In Theorem $2(b)$ the condition

$$
m \geqslant k+(l-k)\binom{l}{k}^{3},
$$

though certainly not best-possible, cannot be omitted. It is possible for

$$
\left(a_{0}, \ldots, \hat{a}_{n}\right) \in S(k, l, m), \quad k \leqslant l \leqslant m
$$

to hold and, at the same time, $n>\binom{m-k}{l-k}$. This is shown by the following example due to S. H. Min and kindly communicated to the authors. Let $a_{0}, \ldots, \hat{a}_{n}$ be the distinct sets a such that

$$
a \subset[0,8), \quad|a|=4, \quad|a[0,4)|=3
$$

Then

$$
n=16, \quad\left(a_{0}, \ldots, a_{15}\right) \in S(2,4,8), \quad\binom{m-k}{l-k}=\binom{6}{2}=15<n
$$

A more general example is the following. Let $r>0$ and denote by $a_{0}, \ldots, \hat{a}_{n}$ the distinct sets a such that

$$
a \subset[0,4 r), \quad|a|=2 r, \quad|a[0,2 r)|>r
$$

Then

$$
\left(a_{0}, \ldots, \hat{a}_{n}\right) \in S(2,2 r, 4 r)
$$

and we have

$$
\begin{aligned}
& n=\sum(r<\lambda \leqslant 2 r)\binom{2 r}{\lambda}\binom{2 r}{2 r-\lambda}=\frac{1}{2} \sum(\lambda \leqslant 2 r)\binom{2 r}{\lambda}\binom{2 r}{2 r-\lambda}-\frac{1}{2}\binom{2 r}{r}^{2} \\
& =\frac{1}{2}\binom{4 r}{2 r}-\frac{1}{2}\binom{2 r}{r}^{2} . \\
& \text { In this case } \\
& \binom{m-k}{l-k}=\binom{4 r-2}{2 r-2},
\end{aligned}
$$

and, for every large r, possibly for every $r>2$, we have $\binom{m-k}{l-k}<n$.
We put forward the conjecture that, for our special values of k, l, m, this represents a case with maximal n, i.e.

$$
\begin{array}{cc}
\text { If } \quad r>0, \quad\left(a_{0}, \ldots, \hat{a}_{n}\right) \in S(2,2 r, 4 r), \\
\text { then } & n \leqslant \frac{1}{2}\binom{4 r}{2 r}-\frac{1}{2}\binom{2 r}{r}^{2} .
\end{array}
$$

(ii) If in the definition of $S(1, l, m)$ in $\S 2$, the condition $a_{\mu} \not \subset a_{\nu} \not \subset a_{\mu}$ is replaced by $a_{\mu} \neq a_{\nu}$ and if no restriction is placed upon $\left|a_{\nu}\right|$, then the problem of estimating n becomes trivial, and we have the result:

Let $m>0$ and $a_{\nu} \subset[0, m)$ for $\nu<n$, and $a_{\mu} \neq a_{\nu}, a_{\mu} a_{\nu} \neq \varnothing$ for $\mu<\nu<n$. Then $n \leqslant 2^{m-1}$, and there are $2^{m-1}-n$ subsets $a_{n}, \ldots, \hat{a}_{2^{m-1}}$ of $[0, m)$ such that $a_{\mu} \neq a_{\nu}, a_{\mu} a_{\nu} \neq \varnothing$ for $\mu<\nu<2^{m-1}$.

To prove this we note that of two sets which are complementary in $[0, m)$ at most one occurs among $a_{0}, \ldots, \hat{a}_{n}$, and, if $n<2^{m-1}$, then there is a pair of complementary sets a, b neither of which occurs among $a_{0}, \ldots, \hat{a}_{n}$. It follows that at least one of a, b intersects every a_{ν}, so that this set can be taken as a_{n}.
(iii) Let $l \geqslant 3,2 l \leqslant m$, and suppose that
and

$$
a_{\nu} \subset[0, m), \quad\left|a_{\nu}\right|=l \text { for } \quad \nu<n
$$

$$
a_{\mu} \neq a_{\nu}, \quad a_{\mu} a_{\nu} \neq \emptyset \quad \text { for } \quad \mu<\nu<n, \quad \text { and } \quad a_{0} \ldots \hat{a}_{n}=\varnothing
$$

We conjecture that the maximum value of n for which such sets a_{ν} can be found is n_{0}, where

$$
n_{0}=3\binom{m-3}{l-2}+\binom{m-3}{l-3}
$$

A system of n_{0} sets with the required properties is obtained by taking all sets a such that

$$
a \subset[0, m), \quad|a[0,3)| \geqslant 2, \quad|a|=l
$$

(iv) The following problem may be of interest. Let $k \leqslant m$. Determine the largest number n such that there is a system of n sets a_{ν} satisfying the conditions

$$
a_{\mu} \neq a_{\nu}, \quad\left|a_{\mu} a_{\nu}\right| \geqslant k \quad(\mu<\nu<n)
$$

If $m+k$ is even, then the system consisting of the a such that

$$
a \subset[0, m), \quad|a| \geqslant \frac{1}{2}(m+k)
$$

has the required properties. We suspect that this system contains the maximum possible number of sets for fixed m and k such that $m+k$ is even.
(v) If in (ii) the condition $a_{\mu} a_{\nu} \neq \varnothing(\mu<\nu<n)$ is replaced by $a_{\mu} a_{\nu} a_{\rho} \neq \emptyset(\mu<\nu<\rho<n)$, then the structure of the system a_{ν} is largely determined by the result:

Let $m \geqslant 2, a_{\nu} \subset[0, m)$ for $\nu<n, a_{\mu} \neq a_{\nu}$ for $\mu<\nu<n$, and $a_{\mu} a_{\nu} a_{\rho} \neq \varnothing$ for $\mu<\nu<\rho<n$. Then $n \leqslant 2^{m-1}$, and, if $n=2^{m-1}$, then $a_{0} a_{1} \ldots \hat{a}_{n} \neq \emptyset$, so that the a_{ν} are all 2^{m-1} sets $a \subset[0, m)$ which contain some fixed number $t(t<m)$.

For there is a largest $p(1 \leqslant p \leqslant n)$ such that

$$
a_{0} a_{1} \ldots \hat{a}_{p} \in\left\{a_{0}, a_{1}, \ldots, \hat{a}_{n}\right\}
$$

If $p=n$, then $a_{0} \ldots \hat{a}_{n}=a_{\nu} \neq \varnothing$ for some $\nu<n$. If $p<n$, then any two of the $n+1$ distinct sets

$$
a_{0} a_{1} \ldots a_{p}, a_{0}, a_{1}, \ldots, \hat{a}_{n}
$$

have a non-empty intersection and hence, by (ii), $n+1 \leqslant 2^{m-1}$. Different proofs of (v) have been found by L. Pósa, G. Hajós, G. Pollák, and M. Simonovits.

REFERENCE

1. E. Sperner, Math. Z. 27 (1928) 544-8.
