ON A PROBLEM OF G. GOLOMB.

P. ERDÖS
(received 3 August 1960)

In his paper on sets of primes with intermediate density Golombl I proved the following theorem:

Let $2<P_{1} \mid \triangleleft P_{2}<\cdots$ be any sequence of primes for which

$$
\begin{equation*}
P_{i} \not \equiv \rrbracket\left(\bmod P_{i}\right) \tag{1}
\end{equation*}
$$

for every \imath and j . Denote by A (x) the number of P 's not exceeding x. Then

$$
\begin{equation*}
\left.\liminf _{x=\infty} \mathrm{A}(x) / x \mid=0\right] \tag{2}
\end{equation*}
$$

It is not difficult to see that in some sense (2) is best possible since it is easy to construct a sequence of primes satisfying (1) for which

$$
\limsup _{x=\infty} \mathrm{A}(x) / x \mid>0,
$$

and in fact the lim sup can be as close to 1 as we wish. Golombl pointed out that in some ways the most natural sequence satisfying (1) can be obtained as follows: $q_{1}=3, q_{2}=5, q_{3}=17, \cdots q_{k}$ is the smallest prime greater than q_{k-1} for which

$$
q_{k} \mid \neq 1\left(\bmod \mid q_{i}\right), \quad 1 \leqq i<k .
$$

Henceforth we will only consider this special sequence satisfying (1). We shall prove the following (as before A (x) denotes the number of $\left.q_{i} \leqq x\right)$.

Theorem.

$$
A(x)=(1+H o(1)) \frac{x}{\log x \log \log x}
$$

\log , x will denote the k times iterated logarithm, c_{1}, c_{2}, \ldots will denote positive absolute constants.

Our method will be similar to the one used in our recent joint paper with Jabotinsky ${ }^{2} \mathfrak{j}$ but we will also need Brun's method and the results on primes in short arithmetic progressions.

』 S. Golomb, Math. Scand. 3 (1955), 264-74」
${ }^{2}$ P. Erdös and E. Jabotinsky, Indig. Math. 20 (1958), 115-128.

Lemma 1. Denote by $\pi(x, k, l)$ the number of primes $p \leqq \mathrm{x}, \not p \equiv k(\bmod k)$, $(l, k)=1$. Then $\left(\exp z=e^{z}\right)$

$$
\begin{equation*}
\pi(x, k, l)=\frac{x}{\varphi(k) \log x}\left(1+O\left(\frac{1}{\log x}\right)\right) \tag{3}
\end{equation*}
$$

uniformly for all $\mathrm{k}<\exp \left(c_{1} \mid \log x / \log \log \mathrm{x}\right)$, except possibly for the multiples of a certain $\mathrm{k}^{*}=\mathrm{h}^{*}(\mathrm{x})$ where $k^{*}>(\log x)^{A}$ (A is an arbitrary constant, but the constant in $O(1 / \log \mid x)$ depends on A$)$.

Lemma 1 is well known ${ }^{3}$]
Lemma 2 . Let $2=p_{1}\left|<p_{2}\right| \triangleleft--$. be the sequence of consecutive primes, and let n be a fixed integer, $0 \leqq r_{i} \triangleleft r$. Denote by $N_{k}(x)$ the number of integers $\mathbb{\square} \leqq \leqq \mathrm{x}$ for which $\sharp \equiv \mathbb{d}(\bmod \mathrm{k}),(\mathrm{I}, k)=1$ and

$$
z \neq a_{i}^{(j)}\left(\bmod p_{i}\right), \quad 1 \leqq j \leqq r_{d}
$$

where the $a_{i}^{(j)} \mid$ are arbitrary residues and $p_{i} \leqq x$. Then

$$
N_{k}(x)<c_{2} \frac{x}{k} \prod_{p_{i} \leq x / k}\left|\left(\mathbb{l}-r_{i} / p_{i}\right)\right|
$$

The proof follows immediately from Brun's method ${ }^{4}$]
Lemma 3. There exists al constant c_{3} so that

$$
\begin{equation*}
\log , x-c_{3} \triangleleft \sum_{a_{i} \leq x} 1 / q_{i}<\log _{3} x\left|+c_{3}\right| \tag{4}
\end{equation*}
$$

First we prove the upper bound. If the upper estimation in (4) would not hold then for every c there would be arbitrarily large values of x so that for every $z \triangleleft \mathrm{x}$

$$
\begin{equation*}
\sum_{a_{i} \leqq x} \frac{1}{q_{i}}\left|-\log _{3} x>\sum_{a_{i} \leqq z} \frac{1}{q_{i}}\right|-\log _{3} z \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{a_{i} \leqq x} \frac{1}{q_{\sharp}}>\log _{3} x+c \tag{6}
\end{equation*}
$$

Let $x^{1 / 2} \triangleleft q_{i} \leqq \mathrm{x}$. Clearly by the definition of the $q^{\prime} s q_{i} \neq 0(\bmod p)$ for all $p<x^{1 / 2}$ and $q_{i} \neq 1\left(\bmod q_{j}\right)$ for $\left.q_{i} \triangleleft x^{1 / 2}\right\rfloor$ Thus by lemma $2(\mathrm{k}=1)$

$$
\begin{equation*}
\left.\mathrm{A}(\mathrm{x})<x^{1 / 2}+c_{2} x \prod_{p_{i} \leq x^{1 / 2}} \|_{i} 1-r_{i} / p_{i}\right) \tag{7}
\end{equation*}
$$

where $r_{i}=2$ if p_{i} is a q and is 1 otherwise. From (7), (6) and from $\prod_{p<x^{1 / 2}}(1-1 / p) \quad \triangleleft c_{4} / \log x$

$$
\begin{equation*}
A(x) \triangleleft c_{5 \mid} \frac{x}{\log x} \prod_{q_{i}<x^{1 / 2}}\left(\mathrm{I}-\frac{1}{q_{i}}\right) \triangleleft c_{6} 2 \exp (-c) / \log \mathrm{x} \log , \mathrm{x} . \tag{8}
\end{equation*}
$$

[^0]The last inequality in (8) follows from $\prod_{q_{i}<2}\left(1-1 / q_{i}\right) \triangleleft c_{\lambda} \exp$ (- $\left.\sum_{q_{i}<d} 1 / q_{i}\right)$ and from (using (6))

$$
\left.\sum_{a_{i}<x^{1 / 2}} \frac{1}{q_{i}}>\left|\sum_{q_{i} \leq x}\right| \frac{1}{q_{i}}-\sum_{x^{1 / 2} \leq p \leq x}\left|\frac{1}{p}\right|>1 \log _{3} \right\rvert\, x+c-c_{8} .
$$

From (8) we have

$$
\begin{equation*}
\left.\sum_{x / 2<q_{\xi} \leq x} \frac{1}{q_{\|}}<\frac{2 A(x)}{x} \right\rvert\, \triangleleft 2 c_{6} \exp (-c) ; \log x \log \log x . \tag{9}
\end{equation*}
$$

But from (5) we have for $z=x / 2$

$$
\sum_{x / 2<q_{4} \leq x} \frac{1}{q_{\mathrm{d}}} \gg \log _{3} x-\log , \left.\frac{x}{2}>c_{9} / \log \right\rvert\, x \log , x,
$$

which contradicts (9) for sufficiently large $c \mathrm{~d}$ Thus the upper bound in (4) is proved.

The proof of the lower bound will be more complicated. Put y $=$ $\exp \left(\log x /(\log \log \mid x)^{10}\right)$ and denote by A, (x) the number of primes $\nmid \leqq x$ satisfying

$$
\begin{equation*}
p \mid \not \equiv \mathbb{1}\left(\bmod \mid q_{i}\right)_{,} \quad 3 \leqq q_{i} \leqq y . \tag{10}
\end{equation*}
$$

We evidently have

$$
\begin{equation*}
A_{y}(x)-\sum_{y<q_{j}<x} B\left(x, q_{j}\right)<A(x) \mid \triangleleft A_{y}(x)+\mathrm{Y} \tag{11}
\end{equation*}
$$

where $B\left(x, q_{j}\right)$ denotes the number of primes $\not p \mid \leqq x$ satisfying

$$
\not p \equiv 1\left(\bmod q_{j}\right), \quad \quad \quad \neq 1\left(\bmod \mid q_{i}\right), \quad 3 \leqq q_{i} \leqq y .
$$

Now we estimate A,(x) by Brun's method.
Lemma 4.

$$
A^{*}(x)=(1 \mid+o(1)) \frac{x}{\log x} \prod_{a_{i}, \zeta y}\left(1-\frac{1}{q_{i}-1}\right) .
$$

By the sieve of Eratosthenes we have

$$
A_{y}(x)=\pi(x)-\sum \pi\left(x, q_{i}, 1\right)+\sum \pi\left(x, q_{i_{1}} q_{i_{2}}, 1\right)-\cdots
$$

where $3 \leqq q_{i t} \leqq y$ and i's are distinct. By the well known idea of Brun ${ }^{5}$ we haved $\left(\sum_{r}=\Sigma \pi\left(x, q_{i_{1}} \cdot q_{j_{r}} \cdot \cdot \cdot q_{i_{r}} \mid 1\right)\right)$.
(12) $\pi(x)-\Sigma_{1}+\Sigma_{2}-\Sigma_{3}+\cdots-\Sigma_{2 k-1}<A_{v}(x)<\pi(x)-\Sigma_{1}+\Sigma_{2}-\cdots+\Sigma_{2 k}$.

We now choose $k=[10 \log , \mathrm{x}]$. We distinguish two cases. In the first case none of the numbers $q_{i_{1}} \cdots q_{i_{2}}, 1 \leqq n \leqq 2 k$ are exceptional from the point

[^1]of view of Lemma 1. In this case we can estimate Σ_{λ} by Lemma 1 and following say Landau's treatment of Brun's method ${ }^{5}$ we obtain from (12) by a simple computation
$A_{y}(x)=\frac{x}{\log x} \prod_{3 \leq q_{i} \leq \eta}\left(1-\frac{1}{q_{i \|}-1}\right)+O\left(\frac{x}{(\log x)^{2}}\right) \prod_{3 \leq q_{i} \leq y}\left(1+\frac{1}{q_{i 1}-1}\right)+o\left(\frac{x}{(\log x)^{2}}\right)$.
By the upper bound of (4) we have
$$
\prod_{a_{i} \leq y}\left(1+\frac{1}{q_{i}-1}\right) \triangleleft c_{10} \log , \mathrm{x} \text { and } \prod_{q_{i} \leq y}\left(1-\frac{1}{q_{i}-1}\right) \gg c_{10} / \log _{2} x,
$$
thus from (13) we obtain Lemma 4 in the first case.
In the second case let $\mathbb{d}=q_{i_{1}}$ ' $q_{i_{d}}$. $\cdot q_{i_{d}}$ be the smallest exceptional number (i.e. for which Lemma 1 does not hold). By Lemma 1 we can assume that $d l \gg(\log x)^{A} \mid$ We estimate $\pi(x \mid t d, 1)$ from below by 0 and from above by $x / t d$. Since
$$
\sum_{t<x} \frac{x}{t d}=O\left(\frac{x \log x}{d}\right)=o\left(\frac{x}{(\log x)^{2}}\right)
$$
we can neglect this exceptional d and the proof of Lemma 4 is complete.
Now we complete the proof of Lemma 3. Assume that the lower bound in (4) is false. Then for every c_{3} there are infinitely many integers x satisfying for every $z \exists x$
\[

$$
\begin{equation*}
\sum_{a_{i} \leq x} \frac{1}{q_{i}}-\log _{3} x<\sum_{a_{i} \leq z} \frac{1}{q_{i}}-\log _{3} z \tag{14}
\end{equation*}
$$

\]

and

$$
\begin{equation*}
\sum_{q_{i} \leq x} \frac{1}{q_{i}}=\log _{3} x-c_{x}, \quad c_{x}>c_{3} . \tag{15}
\end{equation*}
$$

From (14) we have

$$
\begin{equation*}
\left.\sum_{z<a_{i}<x} \frac{1}{q_{i}} \right\rvert\, \triangleleft \log _{3} x-\log _{3} z 1 \tag{16}
\end{equation*}
$$

By Lemma 4 and (16) \downarrow since $\left.\log , x-\log _{3} y=a(1)\right)$

$$
\begin{equation*}
A_{y}(x)-A_{y}\left(\frac{x}{2}\right)=(1+o(1)) \frac{x}{2 \log x_{a_{i} \leq y}} \Pi_{1}\left(1-\frac{1}{q_{i}-1}\right)>c_{11} \frac{x \exp c_{x}}{\log x \log _{2} x} . \tag{17}
\end{equation*}
$$

Thus from (11) and (17)

$$
\begin{equation*}
A(x)-A\left(\frac{x}{2}\right)>c_{11} \frac{x \exp c_{x}}{\log x \log _{2} x}-y-\sum_{y<a_{i} \leq x} B\left(x, q_{j}\right) . \tag{18}
\end{equation*}
$$

Now we estimate $\sum_{y<q_{j} \leq d} B\left(x, q_{j}\right) \mid$ Write

[^2]\[

$$
\begin{equation*}
\sum_{y<a_{j} \leq x} B\left(x, q_{j}\right)=\Sigma_{1}+\Sigma_{2}+\Sigma_{3} \tag{19}
\end{equation*}
$$

\]

where in $\Sigma_{1}\left|\mathrm{y}<q_{\|} \leqq x \exp \left(-\log x /(\log , x)^{1 / 2}\right)\right|$ in $\Sigma_{2} x \exp \left(-\log x \|\left(\log _{2} x\right)^{1 / 2}\right)$ $<q_{j} \unlhd x \exp \left(-\log x /\left(\log _{2} x\right)^{5 / 4}\right)$ and in $\Sigma_{3} \times \exp \left(-\log x /\left(\log _{2} x\right)^{5 / 4}\right)<q_{i}$ $\leqq x\rfloor$ From Lemma 2 we have for the q_{j} in Σ_{1} and Σ_{2}

$$
\begin{equation*}
B\left(x, q_{j}\right)<c_{2} \frac{x}{q_{j} \log \frac{x}{q_{j}}} \Pi^{\prime}\left(1-\frac{1}{q_{i}}\right)<c_{2} \frac{x}{q_{j} \log \frac{x}{q_{j}}} \prod_{q_{i}<y}\left(1-\frac{1}{q_{i}}\right) \tag{20}
\end{equation*}
$$

where in $\Pi^{\prime} q_{i}<\min \left(q_{j}, x / q_{j}\right),(\mathbf{2 0})$ holds since for the q_{i} in Σ_{1} and Σ_{2} $\left.\min \left(q_{j}, \mid x / q_{j}\right)\right\rangle y$. Now from (16) $\sum_{y<a_{i} \leq x}\left|\mathbf{l} / q_{i} \triangleleft \log , x-\log , y\right|=o(1)$, Thus from (15)

$$
\begin{equation*}
\sum_{a_{i}<y} \frac{1}{q_{i}}=\log _{3} x-c_{x}-o(1) \tag{21}
\end{equation*}
$$

From (20) and (21) we have for the q_{j} in Σ_{1}

$$
\begin{equation*}
B\left(x, q_{j}\right) \triangleleft c_{12} \frac{\mathrm{x} \exp c_{2 d}}{q_{j} \log \frac{x}{q_{j}} \log _{2} x}<c_{12} \frac{\mathrm{x} \exp c_{2 d}}{q_{i} \log \mathrm{x}(\log , x)^{1 / 2}} \tag{22}
\end{equation*}
$$

But from (16)

$$
\begin{equation*}
\Sigma_{1} \frac{1}{q_{j}} \leqq \sum_{y<a_{j} \leq x \mid} \frac{1}{q_{j}}<\log , \mathrm{x}-\log , \mathrm{y} \triangleleft c_{13} \log , x / \log _{2}|x| \tag{23}
\end{equation*}
$$

Thus from (22) and (23)

$$
\begin{equation*}
\Sigma_{1}<c_{12} \frac{x \exp c_{x}}{\log x\left(\log _{2} x\right)^{1 / 2}} \Sigma_{1} \frac{1}{q_{j}}<c_{12} c_{13} \frac{x \log _{3} x \exp c_{x}}{\log x\left(\log _{2} x\right)^{3 / 2}}=o\left(\frac{x \exp c_{x}}{\log x \log _{2} x}\right) \tag{24}
\end{equation*}
$$

Again from (20), (21) and (16) we obtain as in the estimation

$$
\begin{equation*}
\Sigma_{2}<c_{14} \frac{x\left(\log _{2} x\right)^{1 / 4} \exp c_{x}}{\log x} \Sigma_{2} \frac{1}{q_{j}}<c_{14} c_{15} \frac{x \exp c_{x}}{\log x\left(\log _{2} x\right)^{5 / 4}}=o\left(\frac{x \exp c_{x}}{\log x \log _{2} x}\right) \tag{25}
\end{equation*}
$$

To estimate\&denote by $N(a, x)$ the number of primes $p \mid<\mathrm{x} / \mathrm{a}$, a $<x^{1 / 2}$, for which a " $p \mid+1$ is also a prime. A well known consequence of Brun's method implies that

$$
\begin{equation*}
N(a, x)<c_{16} \frac{x}{(\log x)^{2}} \prod_{p / a}\left(1+\frac{1}{p}\right) . \tag{26}
\end{equation*}
$$

(26) easily follows from Lemma 2. From (26) we have by interchanging the order of summation $\left(\sum \mid\right.$ denotes that $\left.\mathbf{1} \leqq \mathbf{a} \triangleleft \exp \left(\log x /\left(\log _{2} x\right)^{5 / 4}\right)\right) \mid$
(27) $\Sigma_{3} \leqq \Sigma^{\prime} N(a, x)<c_{16} \frac{x}{(\log x)^{2}} \Sigma^{\prime} \frac{\prod_{p / a}\left(1 \left\lvert\,+\frac{1}{p}\right.\right)}{a}<c_{17} \frac{\mathrm{x}}{\log \mathrm{x}(\log , x)^{5 / 4}}$.

The last inequality of (27) holds since it is well known that

$$
\begin{equation*}
\sum_{a=1}^{z} \frac{\prod_{p / a}\left(1+\frac{1}{p}\right)}{a}<c_{18} \log 2 \tag{28}
\end{equation*}
$$

((28) follows easily from the well known result $\sum_{a=1}^{z} \prod_{p / a}(1+1 / p) \mid<$ $\sum_{a=1}^{z}\left|\sigma(a) / a=(1+o(1)) \pi^{2} / 6\right| \log z$ by partial summation), From (24), |(25) and (27) we obtain

$$
\begin{equation*}
\sum_{\nu \leqq a_{j} \leq x} B\left(x, q_{j}\right)=o\left(\frac{x \exp c_{x}}{\log x \log _{2} x}\right) \tag{29}
\end{equation*}
$$

From (18) and (29) we have

$$
\begin{equation*}
A(x)-A\left(\frac{x}{2}\right)>c_{19} \frac{x \exp c_{x}}{\overline{\log x \log _{2} x}} \tag{30}
\end{equation*}
$$

(30) implies that

$$
\begin{equation*}
\left.\sum_{(x / 2)<q_{i}<x} \frac{1}{q_{2}}\left|>c_{19} \exp c_{x}\right| \log \right\rvert\, \mathrm{x} \log , x . \tag{31}
\end{equation*}
$$

On the other hand (16) implies that

$$
\left.\left.\sum_{(x / 2)<q_{i}<x}\left|\frac{1}{q_{2}}\right| \triangleleft \log _{3} x-\log _{3} \frac{x}{2}<c_{20} / \log x \log _{2} \right\rvert\, x\right)
$$

an evident contradiction for sufficiently large $c_{3}\left(c_{2}|>| c_{3}\right)$, Thus the upper bound of (4) is proved and the proof of Lemma 3 is complete.

From the upper bound in (4), $,(19),|(24)|,(25)$ and (27) we immediately obtain (we now know that $c_{n}<c_{3}$)

$$
\begin{equation*}
\sum_{y \leq a_{j} \leq x} B\left(x, \mid q_{j}\right)=a\left(\frac{x}{\log x \log _{2} x}\right) . \tag{32}
\end{equation*}
$$

From (11), (32) and Lemmas 3 and 4 we obtain
(33)

$$
\begin{aligned}
A(x) & =\left.(1+o(1)) \frac{x}{\log x}\right|_{d_{i} \leq y}\left(1-\frac{1}{q_{i}-1}\right)+o\left(\frac{x}{\log x \log _{2} x}\right) \\
& =(1+o(1))\left|\frac{x}{\log x} \prod_{q_{i} \leqq y}\right|\left(1-\frac{1}{q_{i}-1}\right)
\end{aligned}
$$

The last inequality of (33) follows, since by the lower bound in (4) $\prod_{a_{i} \leq y}\left|\left(1-1 /\left(q_{i}-1\right)\right)\right|>c_{21} / \log _{2} x$. From (33) and the lower bound in (4)

$$
\begin{equation*}
\left.\mathrm{A}(x) \triangleleft c_{2 \mathrm{~d}} \mathrm{Z} / \log 2 \log , x\left(\text { since } \prod_{q_{i}<\eta}, \mathbb{l}-\frac{1}{q_{i}-1}\right) \triangleleft c_{23} / \log _{2} x\right), \mid \tag{34}
\end{equation*}
$$

Thus by a simple computation

$$
\begin{equation*}
\sum_{y \leq a_{i} \leq x} \frac{1}{q_{i}}=o(1) . \tag{35}
\end{equation*}
$$

From (33) and (35) we finally obtain

$$
\begin{equation*}
A(x)=(1 \mid+o(1)) \frac{x}{\log x} \prod_{a_{i} \leq q}\left(1-\frac{1}{q_{i}-1}\right) . \tag{36}
\end{equation*}
$$

To complete the proof of our Theorem we only have to show that

$$
\begin{equation*}
\prod_{q_{i} \leq x}\left(1-\frac{1}{q_{i}-1}\right)=\frac{1+o(1)}{\log _{2} x} . \tag{37}
\end{equation*}
$$

Assume that (37) does not hold. Assume first that

$$
\begin{equation*}
\lim \sup \log , \left.x \prod_{a_{i} \leq x}\left(1-\frac{1}{q_{i}-1}\right) \right\rvert\,=c>1 . \tag{38}
\end{equation*}
$$

The limit of the expression in (38) cannot exist. For if it would exist it would equal $\mathrm{c}>1$. But then by (36)

$$
\lim \frac{A(x) \log x \log _{2} x}{x 1}=c_{1} \quad \text { or } \quad \lim \frac{q_{n}}{n_{1} \log n_{n} \log , \mathrm{n}}=\frac{1}{c}<1
$$

which contradicts (38).
Since the limit in (38) does not exist it follows by a simple argument that there exists a constant $\mathrm{c}^{\prime}, 1<\mathrm{c} 1<\mathrm{c}$ and two infinite sequences $x_{k} \triangleleft z_{k}$ so that

$$
\begin{align*}
& \lim _{k=\infty} \log _{2} x_{k} \prod_{q_{i} \leq x_{k}}\left(1-\frac{1}{q_{i}-1}\right)=c^{1} \tag{39}\\
& \lim _{k=\infty} \log _{2} z_{k} \prod_{q_{i} \leq s_{k}}\left(1-\frac{1}{q_{i}-1}\right)=c \tag{40}
\end{align*}
$$

and for every $x_{k} \triangleleft \varpi \triangleleft z_{k}$

$$
\begin{equation*}
\log _{2} x_{k} \prod_{q_{i} \leq x_{k}}\left(1-\frac{1}{q_{i}-1}\right)<\log _{2} w \prod_{q_{i} \leq w}\left(1-\frac{1}{q_{i}-1}\right) . \tag{41}
\end{equation*}
$$

From (34) we have for every a >1

$$
\begin{equation*}
\left.\prod_{x<a_{i}<\alpha x}\left(1-\frac{1}{q_{i n}-1}\right) \right\rvert\,=11+o(1) . \tag{42}
\end{equation*}
$$

Thus from (39), (40) and (42) $z_{k}\left|x_{k}\right| \rightarrow \infty$. Choose now w $=(1+\eta) x_{k} \mid<z_{k}$ where $\eta>0$ is a sufficiently small constant. Put

$$
U_{k}=A\left[(1+\eta) x_{k}\right]-A\left(x_{k}\right) .
$$

From (41) we have
(43) $\left.\frac{\log _{2} x_{k} \mid}{\log _{2}\left[x_{k}(1 \mid+\eta)\right]} \triangleleft \prod_{x_{k}<0_{i}<(1+\eta) x_{k}}\left(1-\frac{1}{q_{i}-1}\right) \right\rvert\, \triangleleft\left(1 \left\lvert\,-\frac{1}{(1+\eta) x_{k}}\right.\right)^{U_{k}}$.

From (36), (39) and (42) we have
(44) $\left.U_{k}=(1+\mid o(1)) \left\lvert\, \frac{c^{\prime}(1+\eta) x_{k}}{\log x_{k} \cdot \log _{2} x_{k}}-(1)+o(1)\right.\right) \frac{c^{\prime} x_{k}}{\log x_{k} \log g_{2} x_{k}}=\frac{(1+o(1)) c^{\prime} \eta x_{k}}{\log x_{k} \log _{2} x_{k}}$.

Now by a simple computation

$$
\begin{equation*}
\frac{\log _{2} x_{d}}{\log _{2}\left[x_{k}(丩+\eta)\right]}=1-\frac{\log (1+\eta)}{\log x_{k} \log _{2} x_{k}}+o\left(\frac{1}{\log x_{k} \log _{2} x_{k}}\right) . \tag{45}
\end{equation*}
$$

From (43), (44) and (45) we have

$$
\begin{align*}
& \left.1-\frac{\log (1+\eta)}{\log \left(x_{k d} \log _{2} x_{k}\right.}+H a\left(\frac{1}{\log x_{k} \log _{2} \mid x_{k}}\right)<\left(1-\frac{1}{(1+\eta) x_{k}}\right)\right)^{U_{k}} \tag{46}\\
& =1-\frac{c^{\prime} \eta}{(\Perp+\eta) \log x_{k} \log _{2} x_{k}}+\operatorname{Ha}\left(\frac{1}{\log x_{k} \log _{2} x_{k}}\right)
\end{align*}
$$

But (46) is false for sufficiently small η (since c' >1). This contradiction shows that the lim in (38) equals 1 . In the same way we can show that the lim of the expression in (38) is 1 . Thus (37) is proved, and (36) implies our Theorem.

I do not know whether for infinitely many i's q_{i+1} is the least prime greater than $q_{i}+$
By similar arguments we can prove the following more general result:
Let $r \geqq 1, Q_{\mathrm{J}}>\mid r+1, Q_{\perp}$ prime. Q_{i+1} is the smallest prime greater than Q_{i} so that $Q_{i} \neq t\left(\bmod Q_{j}\right), \mathrm{l} \leqq j \leqq i, \mathrm{l} \leqq t \leqq r$.

Denote by $B_{Q_{i}} \mid,(x)$ the number of Q's not exceeding x , then

$$
\begin{equation*}
B_{Q_{1}, r}(x) \left\lvert\,=(4+H o(1)) \frac{\mathbf{x}}{\log \mathrm{x} \log , \mathrm{x} \cdots \log _{r+1} x} .\right. \tag{47}
\end{equation*}
$$

For $Q_{1}=3, n=1, \mathrm{~A}(\mathrm{x})=B_{Q_{1}, r}(x)$, (47) is thus a generalisation of our Theorem.

Technion,
Haifa.

[^0]: a This is Theorem 2.3 p. 230 of Prachar's book Primzahlverteilung (Springer 1957) where the literature of this question can be found.

 4 See e.g. P. Erdös, Procل Cambridge Phil. Soc. 34 (1957), 8.

[^1]: ${ }^{3}$ See e.g. E. Landau, Zahlentheorie Vol. 1」

[^2]: a See e.g. E. Landau, Zahlentheorie Vol. 1.

