
ON A PROBLEM OF G. GOLOMB.
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(received 3 August 1960)

In his paper on sets of primes with intermediate density Golomb 1
proved the following theorem:

Let 2 < P,  < P,  < ” * be any sequence of primes for which

(1) P, +& 1 (mod PO

for every i and j. Denote by A (x) the number of P’s not exceeding z.  Then

(2) lim inf A (3c)/x  = 0.
iX=oO

It is not difficult to see that in some sense (2) is best possible since it is
easy to construct a sequence of primes satisfying (1) for which

lim sup A (X)/X  > 0,
r=CO

and in fact the lim sup can be as close to 1 as we wish. Golomb pointed out
that in some ways the most natural sequence satisfying (1) can be obtained
as follows: q1 = 3, q2 = 5, ‘Is  = 17, - f - qK is the smallest prime greater than
qkml  for which

~,t  + 1 (mod c~i), l$i<k.

Henceforth we will only consider this special sequence satisfying (1). We
shall prove the following (as before A (x) denotes the number of qi 5 2).

THEOREM.

44 = (1 + o(l))  logzl~g~ogs.
log, 2 will denote the k times iterated logarithm, cl, c2,  - - - will denote
positive absolute constants.

Our method will be similar to the one used in our recent joint paper with
Jabotinsky 2,  but we will also need Brun’s method and the results on primes
in short arithmetic progressions.

1 S. Golomb,  Math. Stand.  3 (1955),  264-74.
z P. ErdCs  ad  E. Jabotinsky, Indig.  Math. 20 (1958),  115-128.
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LEMMA 1. Denote by s’t.(x,  k, 1)  the number of primes+  S x, p E I (mod K),
(I,  K)  = 1. Then (exp z = e*)

(3) n(x,  k, I)  = .ik)~ogx(l+o(i&))
uniformly for all k < exp (cr  log x/loglog  x), except possibly for the mul-
tiples of a certain k* = h*(x) where k*  > (log x)” (A is an arbitrary con-
stant, but the constant in O(l/log  x) depends on A).

Lemma 1 is well known 3.

LEMMA 2.Let2  =p, <p, < -- * be the sequence of consecutive primes,
and let Y be a fixed integer, 0 5 ri < Y.  Denote by N,(x)  the number of
integers 1 =( z 5 x for which .z  = I (mod k), (I, k) = 1 and

z $ a!) (mod pi), lljSYri

where the ai’) are arbitrary residues and p, 5 x. Then

N*(x) < c2 ; p*Jrk ( 1 - YilPL).

The proof follows immediately from Brun’s method 4.
LEMMA 3. There exists .a constant c3  so that

(4) log, x - c3 < c l/q,  < log, x + c3.
@5X

First we prove the upper bound. If the upper estimation in (4) would not
hold then for every c there would be arbitrarily large values of x so that for
every z < x

(5)

and

qIzz;  -1%3X  >& - log32
,

(6) *~x~~log3x+c.
I P

Let x1/2  < qi 5 x. Clearly by the definition of the 4’s qi $ 0 (mod+)  for
all p < x1/2  and 4: $ 1 (mod qj)  for pi c x1i2.  Thus by lemma 2 (k = 1)

(‘1 A (x) < x1i2 + c2x  n ( 1 - r&i)
V&CfJ~

where ri = 2 if pi is a 4 and is 1 otherwise. From (‘i),  (6) and from

rlv<d@ (1 - l/P) -=c  Call%  x

(8) A(x)  =c  ~5 < cc  2 exp (- c)/log x log, x.

8 This is Theorem 2.3 p. 230 of Prachar’s book Primzahlverteilung (Springer 1957) where
the literature of this question can be found.

4 See e.g. P. Erdds,  Proc. Cambridge Phil. Sot. 34 (1957), 8.
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The last inequality in (8) follows from l&,. (1 - l/qJ < G,  exp
(- &S l/qi) and from (using (6))

a&  ; ’ .*g  ; - pg<, ; ’ 1og3  x + c - c8.- -

From (8) we have

(9) .,&?:  < TA+
< Zc,  exp (-c)jlog x loglog x.

I p

But from (5) we have for z = x/2

.3z.sz:  1 g3
> 0

‘ z
2 - log, ; > cJog  x log, X,

which contradicts (9) for sufficiently large G.  Thus the upper bound in (4)
is proved.

The proof of the lower bound will be more complicated. Put y =
exp (log XI (loglog x)ro)  and denote by A,(x) the number of primes p s z
satisfying

(10) P g 1 (mod  PA 3 2 qi s y.

We evidently have

(11) 4h4 - c Bb  4;)  < A(x)  -==l  h/(4  + Y
ria,=zz

where B(x,  qi) denotes the number of primes p 5 x satisfying

p = 1 (mod pi), P $1 (mod  qi), 3 s qs  i y.-

Now we estimate A,(x) by Brun’s method.

LEMMA 4.

A * ( x )  =  (1 + o(l)) $rs.(‘-&ba,- %

By the sieve of Eratosthenes we have

A,~~)=~(x)-~~(~,qi,l)+~~(x,qi,qa*,l)--*.

where 3 5 qi 5 y and i’s are distinct. By the well known idea of Brun6  we
have Ccr  = 2 ~(x,  qi, - qi, - + . - pi,,  1)).

(12) n(X)-&+&-.&+ ---E’,,-,<A,(x) <~(X)--Z;+212-..‘+~2L.

We now choose k = [lo log, x]. We distinguish two cases. In the first case
none of the numbers qa, - - * pi,,  1 5 r 5 2k are exceptional from the point

s See e.g. E. Landau, Zahlentheorie Vol. 1.
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of view of Lemma 1. In this case we can estimate .E,.  by Lemma 1 and
following say Landau’s treatment of Brim’s  method5 we obtain from (12)
by a simple computation

(l3) A,(x)  =&3*ts  (1-~)+u(~)3~~~~1+~)+o(~,.
--I  y 2 * a

By the upper bound of (4) we have

< cl0 log, x and r]: 1 -
$3, ’ cJog2  XJ

thus from (13) we obtain Lemma 4 in the first case.
In the second case let d = qi,  * qI,  . * . qi, be the smallest exceptional

number (i.e. for which Lemma 1 does not hold). By Lemma 1 we can assume
that d > (log x)“. We estimate n(x,  td,  1) from below by 0 and from above
by x/t&.  Since

we can neglect this exceptional d and the proof of Lemma 4 is complete.
Now we complete the proof of Lemma 3. Assume that the lower bound in

(4) is false. Then for every cg there are infinitely many integers x satisfying
for every .z 5 x

(14)
and

(15)

From (14) we have

(16) & < log3 x - log3 z.

By Lemma 4 and (16) ( since log, x - log,  y = 0 (1))

Thus from (11) and (17)

Now we estimate Lca,S;o  B(x,  qj). Write

6 See e.g. E. Landau, Zahlentheorie Vol. 1.
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where in 2, y < p, 5 3: exp ( --log  X/  (log, z)  1/2)  in .Z2  x exp ( -log X/  (log, x)rj2)
< q1  5 x exp (-log z/(log,  X)6/4) and in & x exp (-log z/(log,  x)614)  < q,
5 CC. From Lemma 2 we have for the q5  in .ZI  and C2

where in IT’  q, < min (pi, x/qf). (20) holds since for the pi in Z; and .Z2

min  (pi,  x/qi)  > y. Now from (16) zwiQ,sr  l/qi  < log, CC  - log, y =0(l).
Thus from (15)

(21)

From (20) and

(2%  B(x,

But from (16)

x - c, - o(l).

(21) we have for the qi in .Z,

4i)  < Cl2
x exp c,

< Cl2
x exp c,

qj log x (log, x)1/2 *

(23) Cl J 2
99

2 1 < log, x - log, y < cnj  log, “/log,  X
Y<:q&  4j

Thus from (22) and (23)

Again from (20),  (21) and (16) we obtain as in the estimation

To estimate&denote by N(a,  x) the number of primes p < x/a, a < sP,
for which a * p + 1 is also a prime. A well known consequence of Brun’s
method implies that

(26) easily follows from Lemma 2. From (26) we have by interchanging the
order of summation (y  denotes that 1 5 a < exp (log “/(log,  X)~/~))
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TI(l +a,
(27)  & 5 C'ww)  < Cl6  &pa

x
a < Cl? log x (log, x)5/*  *

The last  inequality of (27) holds since it is well known that

(28)
s(l +;I

i a
< $8  log 2.

a=1

((28) follows easily from the well known result 2-r r]Calo  (1 + l/p) <
CWI  +)/a = (1 + o(l))n2/6  log .z by partial summation), From (24),  (25)
and (27) we obtain

(29)

From (18) and (29) we have

(30)
(30) implies that

(31) (z,2,Z14<a: > cl9  exp c$og  x log, X.
2

On the other hand (16) implies that

I*2)z4<r  ; < 1% x - 1% ; < c2obg  x log2  4

*

an evident contradiction for sufficiently large ca (cm > cJ).  Thus the upper
bound of (4) is proved and the proof of Lemma 3 is complete.

From the upper bound in (a),  (19),  (24),  (25) and (27) we immediately
obtain (we now know that c, < cg)

(32) EY%!,$a! B(z)  aA = 0 (I,,  x;og2  ,)  .

From (ll), (32) and Lemmas 3 and 4 we obtain

(33)

A(x)=  il+41))&x  Q$-2) +“(logx:og2x)ad-
= (1+0(l))  ~loi, Qv  (l-&l).4-

The last inequality of (33) follows, since by the lower bound in (4)
rIP*SU  (1 - l/(41:  - 1))  > c21/1 og2 x. From (33) and the lower bound in (4)
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(34) A (2)  < c32 z/log 2 log, z (since JJp*<y  ( 1 - --&)  < c33bfh  34.

Thus by a simple computation

(35) &.; = O(l)*4 8
From (33) and (35) we finally obtain

(36) A(x)  = (1 + o(l)) l& 5 b-$i)
Q,-2

To complete the proof of our Theorem we only have to show that

Assume that (37) does not hold. Assume first that

(38) lim sup log, x fl
.,,,(

1 -
$4 = c’ l*,

The limit of the expression in (38) cannot exist. For if it would exist it
would equal c > 1. But then by (36)

lim A (x)  log ’ log3  x = c, or lim CL =l
2 n log n log, n

;<l

which contradicts (38).
Since the limit in (38) does not exist it follows by a simple argument that

there exists a constant c’, 1 < c’ < c and two infinite sequences xk < zk  so
that

(39) limlog,  z* j-J
k=ac .J1-$i~  = c’

(40) whzkQ~~(l-$J  = cA=02

and for every xk  < w < z,

(41)

From (34) we have for every a > 1

(42) z<IJ+-J  = l + o(l)-

Thus from (39),  (40) and (42)
i

z,  xk  -+ co.  Choose now w = (1 + q)xk < z,/
where q > 0 is a sufficiently small constant. Put
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Uk = 4x1  -I- rhl  - Ak&
From (41) we have

(43)
1o&  xk

1% [x,(1  + v)l  < z,<~(<P+?$T,‘IT (1 -$4 < t1 - (1 :,,,)“‘-

From (36),  (39) and (42) we have

(44)  uk=  (1+ 41))  ltg;k;;;r;k  - (1 + o(l))  log;;;;g,x
k

Now by a simple computation

(45)
lo&  xk

lo&3  Lxktl  + q)l

From (43),  (44) and (45) we have

1 __ 1% (1 A-  r>  + o
(

1 1 Uk

(46)

log  xk  10&  xk log  xk “& zk 1 (< 1-(1+7j)xk 1

=I-
C’V

t1  + 7) l"gxklo&xk + ' (log  xk:og,  5,) -

But (46) is false for sufficiently small q (since c’ > 1). This contradiction
shows that the lim  in (38) equals 1. In the same way we can show that the
lim of the expression in (38) is 1. Thus (37) is proved, and (36) implies our
Theorem.

I do not know whether for infinitely many i’s qi+r  is the least prime greater
than qi.

By similar arguments we can prove the following more general result:
Let I 2 1, Q1 > I + 1, Qr  prime. Ql+r  is the smallest prime greater than

QisothatQa$2:(modQi),1~jj-Ii,1~‘tS~.
Denote by BQi,  .(z) the number of Q’s not exceeding x, then

(47) BQ,,,(x) = (l + O(l))

X

log x log, x * ’ * log,+1  2 l

For Q1 = 3, Y = 1, A(x) = B Q,,r(x), (47) is thus a generalisation of our
Theorem.

Technion,
Haifa.


