Suppose
Then

$$
\angle B P C>\angle B C P .
$$

Also
and so
Similarly
Therefore
i.e.

$$
B C>B P .
$$

$$
\angle B P C+\angle B C P=\angle A B C
$$

$$
\angle B C P<\frac{1}{2} \angle A B C .
$$

$$
\angle C B Q<\frac{1}{2} \angle A C B .
$$

$$
\angle B R C>180^{\circ}-\frac{1}{2} \angle A B C-\frac{1}{2} \angle A C B
$$

$$
\angle B R C>90^{\circ}+\frac{1}{2} \angle A .
$$

Since we made $\angle B R C$ equal to $90^{\circ}+\frac{1}{2} \angle A$, the supposition cannot be true. Similarly we can prove that the supposition $B C<B P$ is untenable.

Hence $B C=B P$, which completes the proof.
The use of cross ratios, a projective tool, seems rather out of character in a problem of this nature, but I have been unable to find any simpler way of proving ' (1).

The problem of constructing a triangle given $(a+b),(b+c)$ and $\angle A$ has a similar solution.

T. E. Easterbield

2938. On note 2921

1. Morley's conjecture in Note 2921 that if $2^{n}-1=p$ is prime then $2^{p}-1$ is also prime is false. The electronic computer in Urbana Illinois showed that although $2^{13}-1=8191$ is prime, $2^{8191}-1$ is composite; the computer took about 40 hours to show this, and as far as I know the result was not checked.
Budapest
Paul Erdös
2. Some of the numbers in G. H. Morley's conjecture were tested in Toronto on the new 1BM 704 Data Processing System, with the following results.
$657,710,813$ is prime.

$$
\begin{aligned}
& 1,161,737,179=1559 \times 745181 \\
& 2,147,483,647 \text { is prime. }
\end{aligned}
$$

For each number the initial programming took less than an hour, and the machine time was less than 5 minutes.
88 Bernard Ave., Toronto, 5.

J. A. H. Hunter

3. Morley's conjecture that $2^{p}-1$ is prime if $p=2^{n}-1$ is prime was proposed by E. Catalan (Melanges Math. Bruxelles, 1 (1885), p. 147. Cf. L. E. Dickson, History of the Theory of Numbers,
