
UNSOLVED PROBLEMS

We start with this number a new
section of this journal : that of unsolved
problems. In this section unsolved prob-
lems will be proposed, at the same time
some information about previous results
in the direction of the problem in question
will be given . Problems for this section
as well as comments on published problems
should be sent to G. ALEXITS, editor of
the section, to the address of the redac-
tion of the journal (Budapest, V . Reál-
tanoda u. 13-15.) .

SOME UNSOLVED PROBLEMS
by

PAUL ERDŐS

In this paper I shall discuss some unsolved problems in number theory
combinatorial analysis, set theory, elementary geometry, analysis and pro-
bability. The choice of problems is purely subjective, I discuss problems on
which I worked myself or which interested me and it is certainly not claimed
that all or most of the problems discussed here are very important ; but I
hope the reader will find them challenging and amusing ; most of them will
have a combinatorial character . Classical and wellknown problems are-
avoided as much as possible .

I gave several talks on unsolved problems at various places (Moscow,
Leningrad, Peking, Singapore, Adelaide) . In the autumn of 1959 I gave a
series of talks on unsolved problems at the Mathematical Institute of the
Hungarian Academy of Sciences and most of the problems discussed here
were discussed in my lectures .

My first talk on unsolved problems was given on November 16, 1957
at Assumption University Windsor, Ontario, Canada, a paper on this talk
appeared in the Michigan Mathematical Journal 4 (1957), 291-300, and
there is a considerable_ overlap between this paper and the present one .

c, cl , c2 , . . . , C will denote positive absolute constants . i, o. is an
abreviation for infinitely often .

I. Problems in number theory

First some problems on prime numbers .
1) Denote by :r(x) the number of primes not exceeding x . It has been

conjectured that
(I . 1 .1)

	

n(x + y) S n(x) + n(y) .
It is easy to verify (I . 1.1) for small values of y (P. UNGÁR informed

me that he verified it for y S 41). For x > xp, x = y (I . 1 .1) was proved by
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(Budapest, V. Reáltanoda utca 13-15.)
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LANDAU. HARDY and LITTLEWOOD proved by BRUN'S method that

A conjecture weaker than (I . 1 .1) but stronger than (I. 1 .3) would be: To
every E > 0 there exists a yo so that for y > yo

(I . 1 .4)

	

70 + y) - n(x) < (1 + E) y
*log y

The replacement in (I. 1 .3) of 2 by a smaller constant would be of great
importance .

Instead of considering n(x + y) - n(x) one could define I(x, y) as the
greatest integer k so that there exist k integers x < al < a 2 < . . . < ak S
S x + y satisfying (a,, aj ) = 1. The proof of HARDY and LITTLEWOOD
gives I (x, y) < cy/log y (trivially f (x, y) Z n(x + y) - n(x)) and one could
conjecture that I(x, y) S n(y) or that f (x, y) < (1 + e) y for y > yo .

log y
Following HARDY and LITTLEWOOD put

e(y) = lim sup (n(x + y) - n(x)) .
X= W

One would conjecture that lim e(y) = co and perhaps evenY=-

e(y) > (1-E) yflog y for y > yo ,

but it is not even known that e(y) Z 2 for y > yo .
G. H . HARDY and J. E . LITTLEWOOD: "Some problems of partitio numerorum ."

Actor Mathematics 44 (1923) 1-70 .
E . LANDAU : Handbuch der Lehre von der Verteilung der Primzahlen . Vol . 1 .
A. SELBERG: ,On elementary methods in prime number theory and their limitations ."

Den 11-te Skandinaviske Matematikerkongress (1952) 13-22 .

2) Denote by 2 = pi < p2 < . . . the sequence of prime numbers . Put
do = pn+1 ` . p, . TURÁN and I proved that for infinitely many n and m,
do > d,,+1 and d,,, +1 > d,,, . It is not known if d o = do+i holds i . o. We could
not prove that i . o . do > do+1 > do+2, in fact we could not even prove that
i . o. either d„ > d„ +1 > do +2 or do < do +1 < do+2 •

It seems very likely that the sequence dn/log n is everwhere dense and
that it has a distribution function (in other words the density of integers
n satisfying doflog n < c exists and if we denote it by f (c) then /(0) = 0,
f(oo)=1). RICCI and I proved that the set of limit points of doflog n has positive
measure, but co is the only known limit point (theorem of WESTZYNTHIUS) .
Analogous questions can be asked about d„ldn+i .

J.1 .2)

	

n(x + -

	

cyy) n(x) < log y
and A. SELBERG proved that

J.1 .3)

	

n(x + y) - n(x) < 2 y - + p y log log y
,log y (log y) 2
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P. ERDŐS and P . TURÁN: "On some sequences of integers ." Bull . Amer. Math .
Soc . 54 (1948) 371-378 .

P. ERDŐS : "On the difference of consecutive primes ." Ibid . 885-889.
P. ERDŐS and A . RÉNYI : "Some problems and results on consecutive primes."

Simon Stevin 27 (1950) 115-125 .
G}. RICCI: "Recherches sur i'aliure de la suite P n+1 - P„/log Pn ." Colloque sur la

Théorie des nombres, Bruxelles (1955) 93-106 .
E. WESTZYNTHIUS : *Über die Verteilung der Zahlen die zu den ersten Primzahlen

teilerfremd sind." Commentationes Phys .-mat. Soc. Sci . fenn . 5, Nr. 25, 1-37 .

3) Sharpening the result of WESTZYNTHIUS I proved that i . o .

d ] c log n loglog n
n

	

(logloglogn) 2
and RANKIN proved that i . o .

(I . 3.2)

	

d> c log n loglog n loglogloglog n
n

	

(logloglog n) 2

It seems to be very difficult to improve (I . 3 .2) .
INGHAM proved do < n"s (d,, < nl-E was first proved by HOHEISEL

for e = 32999/33000) and the Riemann hypothesis would imply do < n" 2+e ,
CRAMER conjectured that
(I . 3 .3)

	

lim sup do/(log n) 2 = 1 .

The old conjecture on prime twins states that i . o . do = 2, but it is
not even known that
(I . 3 .4)

	

lim inf d,,/log n = 0 .

I proved using BRUN's method that
(I . 3.5)

	

lim inf d,,/log n < 1 .
I further proved that

(I . 3 .6)

	

lim sup min (dn , do+,)/log n = oo ,

but I can not prove that

(I . 3.7)

	

lim inf max (dn , d )/log n < 1 or lim sup min (dn, do+i, do+2)
n+I log n

also I can not prove

lim do + do+i +. . . +do+k-i < 1 - c
k log n

where c does not depend on n .
P . ERDÖS : "On the difference of consecutive Primes." Quarterly Journal of Math .

6 (1935) 124-128 . See also T . 11 . CHANG : "Über aufeinanderfolgende Zahlen, von denen
jede mindesten einer von n linearen Kongruenzen genügt, deren Moduln die ersten n
Primzahlen sired ." Schriften Math . Sem . u. Inst. Angew. Math . Univ . 4 (1938) 35-55.

R. A. RANKIN: ,The difference between consecutive prime number ." Journal
London Math. Soc . 13 (1938) 242-247 .



224

	

ERDÖS

A. E . INGHAM : "On the difference between consecutive primes ." Quarterly Journal
of Math. 8 (1937) 255-266 .

H. CRAMER : "On the order of magnitude of the difference between consecutive
prime numbers ." Acta Arithmetica 2 (1936) 23-46.

G. HOHEISEL : ,Primzahlprobleme in der Analysis ." Sitzungsber . der Preuss .
Akad . der Wíss phys . Math. Klasse, (1930), 580-588 .

P. ERDÖS: "The difference of consecutive primes," Duke Math . Journal 6 (1940)
438-441.

R. A. RANKIN, Proc. Amer. Math. Soc. 1 (1950) 143-150 .
P. ERDÖS : "Problems and results on the differences of consecutive primes ."

Publ. Math . Debrecen 1 (1949) 37-39 .

4) RÉNYI and I proved by BRUN'S method that to every cl there exists
a c2 so that there exists r > 02 log n d's dk , . . . , dk+r satisfying

(1.4.1)

	

k<n,dk+i >cl ,

	

0 .<i<r,

but we can not prove that (I . 4.1) holds for every cl and c 2 if n > n o (cl , c 2 ) .
Denote by a l < a2 < . . • the sequence of integers having not more

than two prime factors . I proved that

(I . 4.2)

	

lim sup (ak+1-ak)/log k > c;

but can not prove that the lim sup in (I . 4.2) is infinite, I can not prove that
the limit in (I . 4.2) is positive if the a's are the integers having not more than
three prime factors . (ERDÖS-RÉNYI, see problem 2 .) (I . 4.2) was a problem
in Elemente der Mathematik, 1955 .

5) CRAMER (see problem 3) proved, assuming the Riemann hypothesis
that

(I. 5 .1)

It is possible that

(1.5.2) 1 (Pk+l - IN )2 < cx log x
Pk<X

holds . Perhaps even lim 1	(Pk+1-Pk)2 exists . (I . 5.2) seems hope-
xlog 2

Pk<Xless at present, but perhaps the following conjecture of mine can be
attacked . Let 1 = a1 < a2 < . . . < a,,(n) be the integers relatevely prime to
n. Then

(I. 5 .3)

(I . 5.4)

I can not even prove that

Z (Pk+l - A)2 < CX(log x)s
Pk<X

~p(n)-1

	

n 2
(ak+1 - ak)2 < C	9,(n )

99(n)-1
(ak+1 - ak ) 2 < C n(loglog n)r,

k=1

((I . 5.4) follows easily by BRUN's method with n (logn)c• .
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SIVASANKARANARAYAMA PILLAI conjectured that

"S' d k =
1 .2

+ 0(1)) pn .

k=o(mod 2)
k<n

(I . 5.5) seems very difficult but again one can conjecture that

(I . 5 .6)

	

" ( ak+I - ak) _ (
2 + o(1)) n .

k-Wmod2)
k<r(n)

We mentioned already, (the probably hopeless) conjecture that d o/log n
has a distribution function . Let n; be the product of the first i primes. Denote

by 1(c, i) the number of solutions of ak+I - a`k' < _
c ni

(a'k', 1 S k S T(ni ) are
49(ni)

the integers S n i relatively prime to ni) . Is it true that
lim f (c, i)/q9(ni) = g(c)
(_w

exists? It is not difficult to show that the numbers
,

	

li>auk+I - ak ,1 k<T(ni),1Si<oo
n i /99(n i )

are everywhere dense in (0, oo) .

6) Let /(n) be a real valued multiplicative function, i .e . f (a . b) -
=/(a) • 1(b) if (a, b) = 1 . Assume I 1(n) J = 1 . Is it true that

1im 1 ~~ f(k)
n=- n ~~

always exists? It is easy to prove that if

(I.6 .2)

	

IV

	

<

	

,
f(a

	

i p
hen the limit (I . 6.1) always exsists and is different from 0 . It can be con-
ectured that if (I . 6.2) diverges, then (I . 6 .1) is 0 . If f(pa)=-1, then the
conjecture is equivalent with the prime number theorem . I conjectured
(I. 6.1) about 20 years ago, but quite possibly the conjecture is much older .

WINTNER observed that if /(n) = 1 can be complex valued, the
limit (I . 6 .1) does not have to exist .

A WINTNER : ,The theory of measure in arithmetical semigroupa . Baltimore, 1944 .
See also N. G. TCHUDASAFF : "Theory of the characters of number semigroups ." Journal
Indian Math . Soc. 20 (1956) 11-15 .

7) OSTMANN conjectured that there do not exist two sequences of
integers a l < a2< . . . ; bI < b2 < . . . each having at least two elements so
that all but a finite number of primes are of the form ai + bi and there are
only a finite number of composite numbers of this form .

15 A Matematikai Butató Intézet Közleményei VI. 1- 2 .
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HORNFECK proved, using BRUN'S method that both sequences must be
infinite .

It seems certain that OSTMANN'S conjecture is true, but the proof
may well be difficult .

8) A . WINTNER once asked me if I can prove the existence of an infinite
sequence of primes pi , 1 S i< oo so that if a l < a2 < . . . are the integers
composed of the P's, then lim (a,+I - a i ) _ oo . I was unable to prove thei=-
existence of such a sequence of primes . A Well-known theorem of Pólya states
that if the a's are all composed of pl, p2, . . . , pk then lira (ai+I -a,) _ oo .

i=.
For several problems and conjectures on prime numbers see A. SCHINZEL

and W. SIERPINSKI : "Sur certaines hypothéses concernant les nombres
premiers ." Acta Arithmetica 4 (1958) 185-207 .

Now we consider some problems on additive number theory .
9) Can one give k + 2 integers 1 < al < a2 < . . . < ak+2 < 2 1 so that

k+2
the sums

	

ei a i , e i = 0 or 1, are all distinct? The sequence 2i, 0 < i _< k
i=1

shows that one can give k + 1 such integers and 3, 5, 6, 7 shows that ak+I < 24
is possible . Very recently CONWAY and GUY answered this question affir-
matively, independently of each other . The problem, wether one can find
k + 3 such integers < 2k remains open .

More generally one can ask what is the maximum number of integers
k

aI < a2 < . . . < aks < x so that the sums Z e i ai , ei = 0 should be all
different? MOSER and I proved that

(I. 9 .1)

	

kX s log x + (1 4_
e)

loglog x
log 2

	

2 log 2

very far from being best possible,Probably (I . 9 .1) is k _
log x +0(1) .X

	

log 2
is quite possibly true .

P. ERDÖS : "Problems and results in additive number theory ." Colloque sur la
théorie des nombres, Bruxelles (1955) 136-137 .

10) Denote by /(n) the maximum number of positive integers a l < a2 < . . .
not exceeding n for which the sums ai + aj are all different . SIDON asked
to estimate /(n) . TURIN and I proved that
(I. 10 .1)

	

f(n) < ny2 + n'/ , ,
and SINGER proved that for infinitely many n
(I. 10 .2)

	

f (n) > n% .
It is possible that f(n) = ny= + 0(1) .

SINGER'S proof is based on his construction of a perfect difference
set i .e . a set of residues ai , a2 , . . . , ak+i (mod n) so that every residue mod n
except 0 can be uniquely represented in the form ai - aj . Clearly a perfect
difference set is only possible if n _ k 2 + k + 1 and SINGER proved that a
perfect difference set exists if k is a power of a prime . It has been conjectured
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if k is not the power of a primes a perfect set can not exist . Special cases of
this conjecture have been proved by BRUCK and RYSER . The case k = 10
is not yet decided.

From (I . 10.1) and SINGER'S result one can in fact deduce

(I. 10 .3)

	

/(n) _ (1 + o(1))ny= .

Denote by /3(n) the maximum number of a's not exceeding n so that
all the sums a, + a, + a, are all distinct . BOSE recently asked me if I can
prove analogously to (I . 10.1) and (I . 10.3)

(1.10.4)

	

/3(n) _ (1 + o(1))n%

The proof of (.10.4) seems difficult, the method we used in the proof
of (1.10.1) does not work .

SIDON also asked what can be said about an infinite sequence for which
the sums a; + aj are all different . TURIN and I proved that for such a
sequence

(1.10.5)

	

lira sup ak/k 2 = oo (or lim inf /(n)/Vn = 0),

but we constructed a sequence for which lim inf ak/k2 < oo .
One can show that there exists such a sequence for which

(1.10.6)

	

a k < ck 3

	

for all k .

There is a considerable gap between (1.10.5) and (.10.6), which at present
I can not fill .
RÉNYI and I proved by using probabilistic methods that to every e
there exists an l = l(e) and a sequence al < a2 < . . . for which ak < k2+e
and the number of solutions of n = a; + aj is less than l .

ERDÖS -TURIN : "On the problem of Sidon in additive number theory and on some
related problems ." Journal London Math . Soc . 16 (1941) 212- 215 .

J. SINGER : "A theorem in finite projective geOmetry and some applications to
number theory." Trans. Amer. Math. Soc . 43 (1938) 377-385 .

R. H. BRUCK and H. J . RYSER : "The nonexistence of certain finite projective
planes." Canadian Journal of Math . 1 (1949) 88-93 .

P. ERDÖS and A . RÉNYI: „Additive properties of random sequences of positive
integers ." Acta Arithmetica 6 (1940) 83-110 .

For the prOblems considered in 10, and 11, see also A . STÖHR ,,Gelöste and ungelöste
Fragen über Basen der natürlichen Zahlenreihe, I. and H.1° Journal für die rein and
angewandte Math. 194 (1955) 40 - 65 and 111-140, many interesting problems can be
found in this paper .

Of the many problems discussed in STÖHR'S paper I just wish to mention
the following problem of ROHRBACH: What is the smallest number of integers
a I < a2 < . . . < ak„ so that every integer < n should be of the form
ai+aj . The estimate k,,> Y-2n is trivial and ROHRBACH improves this to (1+ e)V2n
for a fixed e > 0. Recently MOSER obtained a better value for e (L . MOSER, Acta
Arithmetica 6 (1960) 11-13) . Trivially k,,< 2Vn and perhaps kn = 2Vn + 0(1) .

For a review of additive number theory see H . H . OSTMANN : Additive
Zahlentheorie, Ergebnisse der Math . Heft 7 . (two volumes) .

11) Another problem Of SIDON asked if there exists an infinite sequence
of integers so that if g(n) denotes the number of solutions of n = a; + aj,
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then to every e > 0 there exists an no so that for n > n o
(1.11.1)

	

0 < g(n) < ns .

I proved by probabilistic arguments that such a sequence exists, in
fact I proved the existence of a sequence with
(1.11 .2)

	

cl log n < g(n) < c2 log n.

The existence of a sequence with g(n)/log n = c > 0 is an open problem .
An older conjecture of TURÁN and myself stated that if g(n) > 0 for all n > no
then lim sup g(n) = - (perhaps even g(n) > c log n for infinitely many n,
which would show that (1 .11 .2) is best possible) . Our conjecture seems rather
difficult . A stronger conjecture would be : if ak < ck2 for all k then lim sup
g(n) = co . This would imply our original conjecture, but is perhaps easier
to attack ; all we can show is that lim sup g(n) > 1 (see STÖHR'S paper quoted
in 10 .1) .

TURIN and I conjectured that if al < a 2 < . . . is any infinite sequence
of integers then

n
g(k) = cn + O(1)

k=1

is impossible . FUCHS and I proved the following stronger theorem :

n
1

1 4
(L 11 .4)

	

g(k) = cn + o (-	
k-1

	

`(log n) "2

is impossible for c > 0. In the case a k = k2 HARDY and LANDAU proved that

g(k) -
4
n + o((n log n)",) .

k=1

In the case ak = k2 (this is the classical problem of the lattice points
in the circle) it has been conjectured that for every e > 0

g(k) =
4

n + 0(n"4+-')
k=1

(1.11 .6) is very deep . It is very likely that (1 .11 .4) is very close to being best
possible, but we have not been able to prove this . Very recently JURKAT
improved the error term in (1 .11 .4) to o(n'/`) .

It would be of interest to show that the number o£ solutions of a; + a, +
+ ar S n can not be of the form c n + 0(1), but this, and possible generali-
zations in the direction of (1.11.4) have not yet been done .

Very recently H . E . RICHERT proved the following result :
Let a l < a2 < . . . be any sequence . Then

ak a l = n log n + en + 0(n*)
k(5_n

and
n
ak = n + O(na)

k-1
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can not both hold if a <
1 . Perhaps the condition (1.11.6) is superfluous
4

[perhaps the error term in (1.11.5) has to be changed] .
P . ERDÖS : "On a problem of Sidon in additive number theory," Acta Szeged

11 (1954) 255-259, see also the paper quoted in I. 9) .
P . ERDÖS and W. H. J. FUCHS : "On a prOblem Of additive number theOry ."

Journal London Math . Soc . 31 (1956) 67-73 .
E. LANDAU : Vorlesungen fiber Zahlentheorie, Vol . 2 .

12) LORENZ proved the following conjecture of STRAUS and myself: to
every infinite sequence of integers al < a2 < . . . there exists a sequence of
density 0, bI < b2 < . . . so that every sufficiently large integer can be expressed
in the form a; + bj . In particular he proved that if the a's are the primes
then the b's can be chosen so that B(x) < c (log x)a. I improved this to
B(x) < C (log x) 2 (B(x) _ 2 1) . Perhaps such a sequence exists satisfying

bj :5~x
B(x) < c logx . From the prime number theorem c z 1 . I can not prove
that c > 1 . This would follow from the following general conjecture of H.
HANANI (oral communication) : Let al < a2 < . . . ; bl < b2 < . . . be two
infinite sequences of integers so that every sufficiently large n can be written
in the form a; + b j . Then

lim sup A(x) B(x)/x > 1 .X=-
Does there exist a sequence bI < b2 < . . . satisfying B(x) < Cx so

log x
that every sufficiently large integer can be written in the form 2k + b ; ?
LorenZ's result only gives B(x) < ex loglogx/logx .

G. G . LORENZ : ,On a prOblem of additive number theory." Proc. Amer. Math- .
Soc. 5 (1954) 838-841 .

P . ERDŐS : ,Some results On additive number theOry ." Ibid . 847-853., see also
my paper quOted in I. 9) .

W. NARKIEWICZ : „Remarks on a conjecture of Hanani in number theory ."
Coll . Math 7 (1960) 161-165 .

13) A sequence bI < b2 < . . . was called by KHINTCHINE an essential
component if for every a l < a2 < . . . of positive density a the SCHNIREL-
MANN sum of the two sequences has density greater than a . By density we
mean here SCHNIRELMANN density i.e . the greatest lower bound o-
A(n)/n, 1 < n < c~c . The SCHNIRELMANN sum of a; and by 1 s i, j < oo is
the set of integers of the form {a ;, bj , a; + bj} . I proved, extending previous
results Of KHINTCHINE and BUCHSTAB, that every basis is an essential
component, a sequence bl < b2 < . . . is called a basis if there exists an
integer k so that every integer is the sum of k or fewer b's . LINNIK proved
that an essential component does not have to be a basis, in fact he constructed
an essential component for which B(x) = o(v) for every e > 0 . Linnik
informed me that he can construct an essential component satisfying B(x) <
< exp [(logx)1-e] . It seems to me that ifb;+1/b; > c > 1 then the sequence b ;
can not be an essential component, but I have not been able to show this
(it is easy to show this for b; = 2t) . Perhaps B(x)/logx cc holds for every
essential component .

Does there exist an essential component b ; for which there does not
exist a function /(a), satisfying /(a) > 0 for 0 < a < 1, so that if a i has
SCHNIRELMANN density a the SCHNIRELMANN sum of the two sequences
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has density Z a + /(a)? (I was recently informed by E . WIRSING that
he proved in his unpublished dissertation 10 years ago that such an essential
component does not exist) .

P. ERDÖS: "On the arithmetical density of the sum of two sequences one of which
forms a basis for the integers ." Acta Arithmetical (1936) 197-200.

U. V . LINNIK : "On Erdös's theorem on the additiOn of numerical sequences ."
Mat. Sbornik 10 (1942) 67-78, see also A . STÖHR and E. WIRSING : "Beispiele von wesent-
lichen Komponenten die keine Bases sind .« Journal refine and angewandte Math . 196
(1956) 96-98 .

14) ROMANOFF proved that for every integer a > 1 the density of
integers of the form p + ak is positive (p runs through the primes) . L . KALMÁR
asked me a few years ago if for every A > 1 the density of integers of the form
p + [Ak] is > 0 . The answer no doubt is affirmative, but I have not been
able to prove it .

I proved that if g(n) denotes the number of solutions of p + 2k = n,
then lim sup g(n) = oo, in fact g(n) > c loglog n i . o . It seems that 105 is the
largest integer n for which all the integers n - 2k, 2 2k < n are primes .

Let now 1 S al < a 2 < . . . be a sequence of integers satisfying
A(x) > c log x . Denote by g(n) the number of solutions of a; + p = n. Is A
true that lim sup g(n) = co? Clearly analogous questions could be asked
if the primes are replaced by other sequences .

N. P . ROMANOFF : *Über singe Satze der additives Zahlentheorie . Math . Annales
109 (1934) 668-678 .

	

ff
P. ERDÖS : "On integers of the form 2x + p and some related problems ." Summa

Brash. Math. 2 (1947-51) 113-123 .

15) Denote by A2 (x) the number of distinct integers not exceeding x
which are of the form a, + ap I conjectured that if lim A(x)lx = 0 then
(1.15.1)

	

lim sup A2(x)1A(x) Z 3 .

It is easy to see that J .15 .1.) holds with 2 instead of 3 and that if J .15 .1)
Is true it is best possible .

H . MANN: "A refinement of the fundamental theorem on the density of the sum
of two sets of integers ." Pacific Journal of Math . 10 (1960) 909-915 .

16) ROTH conjectured that there exists an absolute constant c so that
to every k there exists an no = no(k) which has the following property : Let
n > no , split the integers not exceeding n into k classes {a,"}, 1 < j s k .
Then the number of distinct integers not exceeding n which for some j, 1 < j k
can be Written in the form a;i' + a!.) is greater than cn .

17) Let (a, b) = 1 . I conjectured and BIRCH proved that every suffi-
ciently large integer can be expressed as the sum of distinct integers of the
form akbi, 0 s k, l < oo

Let aI < a2 < . . . be an infinite sequence satisfyinga;+,/a; -* 1, I con-
jectured that if every arithmetic progression contains infinitely many integers
which are the sum of distinct a's then every sufficiently large integer is the
sum of distinct a's . This was disproved by CASSELS, who also proved a weaker
sufficient condition that every integer should be the sum of distinct a's .

CASSELS'S beautiful work (which incidentally contains BIRCH'S result
as a special case) leads one to the following conjecture : Let aI < a2 < .
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be an infinite sequence of integers satisfying

(1 .17 .1)

	

A(2x) - A(x)-*oo and N{ak a}= oo,

	

0 < a < 1
k=1

where {na} is the distance of a from the nearest integer. Then every suffi-
ciently large integer is the sum of distinct a's . CASSELS proved this under
the assumption of (c sufficiently large)

A(2 x) - A(x)

	

2-

	

0< a< 1(I . 17 .2)

	

> C, A{a k a} - oo,
log log x

	

k=1

I conjectured that for every P, 1 < P < 2 every sufficiently large
integer is the sum of distinct integers of the form [fl k ] . CASSELS observed
that this fails to be true if [#k] gets replaced by the nearest integer to #k .

B. J . BIRCH : „Note on a problem of Erdős." Proc . Cambridge Phil . Soc . 55 (1959)
370-373 .

J. W. S . CASSELS : „On the representation of integers as the sums of distinct
summands taken from a fixed set ." Acta Szeged 21 (1960) 111-124 .

18) Let al < a2 < . . . < an 5 2n be n arbitrary integers. Denote by
bl < b2 < . . . < b„ the other integers 5 2n . Denote by Mk the number
of solutions of a, - bj = k . Put

M =min max Mk
-2n$k < 2n

where the minimum is taken over all sequences al, a2 , . . . , an -
I proved M > n , SCHERS improved this to 1 - 1_ n and SWIERCZ-4	Y2

KOWSKI proved 4 - n .
5

MOSER proved in a very simple and ingenious way that

M> (n-1)

and by more complicated arguments he can prove

M > V 4 - y15 (n - 1) > 0 - 3570(n - 1) .

SELFRIDGE MOTZKIN and RALSTON showed that M < 2 n, which disproved
5

my conjecture M = n . The problem of determining the exact value of M is
2

open .
P . ERDÖS: -Some results in number theory." (In Hebrew) Riveon Lematematika

9 (1955) 48 .
S . SWIERCZKOWSKI : "On the intersection of a linear set with the translation

of its complement." Coll . Math. 5 (1957) 185-197 .
L . MOSER : "On the minimal overlap problem of Erdős." Acta Arith . 5 (1959)

117-119.
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T. S. MOTZKIN, K . E. RALSTON and J . L. SELFRIDGE : "Minimal overlap under
translation ." Abstract. Bull. Amer. Math . Soc . 62 (1956) 558 .

Now I state various problems on different topics of number theory .
19) Denote by rk(n) the maximum number of integers not exceeding

n which do not contain an arithmetical progression of k terms . The first
publication on r k(n) is due to TURÁN and myself where the conjecture
rk(n) < nI-ek was enunciated (the problem may be older but I can not
definitely trace it . SCHUR gave it to HILDEGARD ILLS around 1930) .

SALEM and SPENCER disproved rk(n) < n'-ek . In fact they shoved

(I. 19 .1)

ERDÖS

r3(n) > 7&I-choglogn .

BEHREND improved this to

(I. 19 .2)

	

r3(n) > n 1-009n .

and MOSER constructed and infinite Sequence which satisfies J.19.2) for every
n. ROTH proved r3(n) = o(n), more precisely he showed

(I. 19 .3)

	

r3(n) < cn/loglog n .

For k > 3 the plausible conjecture rk(n) = o(n) is still open .
The inequality, rk(n) < (1-s)n/log n, 1 5 k < oo, n > no(k), would

imply that for every k there are k primes in an arithmetic progression . Recently
W. A. GOLUBIEFF observed that 23143 + l. 300 30 is a prime for 0 S l < 11 .
CHOWLA proved that there are infinitely many triplets of primes in an
arithmetic progression .

VAN der WAERDEN proved that to every k there exists an 1(k) so that
if we split the integers S 1(k) into tWo classes at least one of them contains
an arithmetic progression of k terms . If we could show that for some n

nrk(n) < 2 , we clearly would have 1(k) 5 n, and in fact this observation

led TURIN and myself to the problem of estimating rk(n) . VAN der WAERDEN'S
upper estimate for f(k) is very bad, and unfortunately nobody succeeded in

giving a better one . RADO and I proved that 1(k) > ((k - 1)2k)Y2 (W. Schmídt
just showed 1(k) > 2k-ck'12log k , see Am. Math. Soc. Notices June 1961 p . 26 1 .)

P. ERDÖS and P . TURIN: ,On some sequences of integers ." Journal London Math.
Soc. 11 (1936) . 261-264 .

R. SALEM and D. C. SPENCER : "On sets of integers which contain no three terms
in an arithmetic prOgression." Proc. Nat. Acad. Sci . USA 28 (1942) 561-563 .

F. A. BEHREND : "On sets of integers which contain no three terms in arithmetical
progression." Ibid . 32 (1946) 331-332.

L. MOSER: "On non-averaging set Of integers ." Canadian Journal of Math . 5
(1953) 245-252 .

S. CHOWLA: "There exists an infinity of 3-combinations of primes in A . P.,"
Proc. Lahore Philos . Soc . 6 (1944) no. 2 15-16 .

B. L. PAN DER WAERDEN : "Beweis einer Baudet'schen Vermutung ." Nieuw
Archiu Viskunde (2) 15 (1928) 212-216.

P. ERDÖS and R . RADO : "Combinatorial theorems on classifications Of subsets
of a given set ." Proc. London Math. Soc . (3) 2 (1952) 438-439 .

20) SCHUR proved that if we split the integers < en I into n classes
the equation x + y = z is always solvable in integers of the same class .
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Denote by /(n) the smallest integer with this property. It seems likely that
/(n) is very much less than en!, in fact it has been conjectured that f (n) < cn
and f (n) l/n -+ C .
TURÁN proved (unpublished) that if one splits the integers n < k< 5n + 3
into two classes then in at least one of them the equation x + y = z, x y
is solvable, and that this is not true for n < k s 5n + 2 . The analogous
problem for three classes is not pet solved .

1 . SCHUR : Jahresberieht der Deutschen Math, . Ver . 25 (1916) 114 .
R. RADO : "Studien zur Kombinatorik" Math. Z . 36 (1933) 424-480.

In his interesting paper Rado considers very much more general problems .
21) Let f(n) be an arbitrary number theoretic function which only

assumes the values ± i . Is it true that to every cx there exists a d and an
m so that

(I . 21 .1)

	

g(m, d) _

n=W

lim sup
n=w

D(zl , z2 , . . . . zn) = mag

m
Z f(kd)
k=1

It is perhaps even true that

(I. 21 .2)

	

max g(m, d) > c 2 log n .
d,m
dm n

If we assume that /(a . b) = f (a)f (b) then J .21 .1) would imply
n

,Yf(k)
k=1

> cl 2

This conjecture is similar to the conjecture Of VAN DER CORPUT On
the discrepancy of sequences . Let lz k j = L 1 S k < oo . Denote by N(n ; a, b)
the number of z; , 1 < i < n on the are (a, b) . The discrepancy
D(zl , z2 , . . . , zn ) is defined as follows :

N(n ;a,b)- b- a n
2n

where the maximum is taken over all the arcs (a, b) of the unit circle .
VAN DER CORPUT conjectured and Mrs . VAN AARDENNE-EHRENFEST

proved that for every infinite sequence zi ; 1 5 i < oo, I zl = 1

(I . 21 .4)

	

lim sup D(z l , z 2 , . . . , zn) = oo .

(in fact she proved that D(zl , z2, . . . , zn ) > c log log n/log log log n i . o .) .
ROTH proved that i . o .
(1.21 .5)

	

D(zl , z2 , . . . , zn) > c l(log n)Y2 .

It is easy to see that there exists an infinite sequence for which
D(zl , z2, . . . , zn ) < 02 log n

r every and it seems possible that in (1.21.5) c l(log n)y= can be replaced
by cs tog n
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M(al , . . . , an ) = max
Izl=1

max

n
TI (1 - Z ., )
1=1

ERDÖS

As far as I know the following two problems are still unsolved : Let
z; = 1, 1 < i < oo be any infinite sequence . Does there exist a fixed are

(a, b) of the unit circle so that

(I . 21 .6)

	

lim sup N(n ; a, b) - b - a n = oo ?
27c

Is it true that
n

(I . 21 .7)

	

lim sup max H 1z - zi l = oo ?
n=-

	

J zJ=1 i=1
If (1.21 .7) and (1.21 .6) hold one could try to determine how fast the

left sides tend to infinity .
N. G . TCHUDAKOFF, quoted in problem 6 .
VAN AARDENNE-EHRENFEST : "On the impossibility of a just distribution ."

Indag . Math . 11 (1949) 264-269 .
K. F . ROTH : "On irregularities of distribution ." Matematika 1 (1954) 73-79 )
22) Let 1 5 al < a2 S . . . < an be n arbitrary integers . Denote :

where the minimum is to be taken over all sequences a,, a2 , . . . , an . SZEKERES
and I proved that

1.22.1)

	

lim f(n) 1/n = 1, f(n) > V2n .
Recently I proved (unpublished) that for some cl > 0

(1.22.2)

	

/(n) < exp (n1- c=) .

It is quite possible that for some c 2 /(n) > exp (n)1- c9), but we were not even
able to prove that /(n) > nk for every k if n > no(k) .

My proof of (1.22 .2) used probabilistic arguments . Very recently ATKIN-
SON proved /(n) > exp (cny= log n) in a surprisingly simple way, in fact
he proved that

n

.

	

(1 - zk)n-k{ I
k-1

, /(n) = min M(ai , . . . a n)

< exp (en log n) .

~n
P . ERDÖS and G. SZEKERES : "On the product 11 (1 - Zak) ." Acad. Serbe des

k=1
Sci . 13 (1959). 29-34 .

F. V. ATKINSON : "On a problem of Erdős and Szekeres" . Can. Math. Bull. 4
(1961) 7-12 .

23) Denote by 1(k) the minimum number of terms in the square of a
k

polynomial
i= 1

a i zni . Sharpening a result of RÉNYI and RÉDEI I proved;
that f(k) < kI- c for a suitable c > 0 . RÉNYI and I conjectured that
f(k) -* oo as k ->. oo . This seems most plausible, but we have not yet been
able to prove it .



A. RÉNYI, Hungarica Acta Math . 1 (1947) 30-34 .
P . ERDÖS : "On the number of terms of the square of a polynomial ." Nieuw Arch .

Wiskunde (1949). 63-65 .
W. VERDENIUS "On the number of terms of the square and cube of polynomials ."

Indag. Math. 11 (1949) 459-465 .

24) Does there exist to every c a system of congruences
(1.24 .1)

	

a,(mod n i ), c < n l < n2 < . . . < nk

	

(k - k(c))

so that every integer satisfies at least one of them? DEAN SWIFT and SELF-
RIDGE constructed such congruences for c < 8 .

Similarly one can ask if a system (1.24.1) exists where all the n; are
> 1 and odd (or not divisible by the first r primes)?

STEIN and I asked the following question : What is the maximum num-
ber of congruences a; (mod n,), nl < n2 < • . . < nk= S x so that no integer
should satisfy two of them (i . e. the arithmetic progressions a; + lnt , 15 i5kX
should be disjoint) . We proved (unpublished) kX > xl- e for every e > 0 if
x > xo(s) . We conjecture kx - o(x) .

P . ERDÖS : -On a problem on systems of congruences" . (In Hungarian) Matematikai
Lapok 4 (1952) 122-128 .

25) Let 1 < al <a2< . . . be an infinite sequence of real numbers
satisfying

(1.25 .1)

for every k and i * j . Is it then true that

(1.25.2)

and

(1.25 .3)

always exists .
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kai - aj ! Z 1

lim 1 ~ 1 0 ,
X-- log X ai<x at

~ 1 <
1 ' a, log a;

2
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If the a's are integers (1 .25.1) means that no a divides any other, in this
case (1.25 .2) was proved by BEHREND and (1.25.3) by me .

F. BEHREND: ,On sequences of numbers not divisible one by another ." London
Math. Soc. Journal 10 (1935) 42-45 .

P. ERDÖS: „Note On sequences of integers nO one of which is divisible by any
other." Ibid. 126-128.

26) Let al < a2 < . . . be an infinite sequence of integers, denote
by bl < b~ < . . . the sequence of integers no one of which is a multiple of
any of the a's . BESIKOVITCH constructed a sequence a ; for which the b 's
do not have a density. DAVENPORT and I proved that the b' s always have a
logaritmic density, i .e. that

lim1

	

1
log x

	

bI
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Make correspond to each ai a set of residues 01 1 < j < i, Denote
now by bl < b2 < . . . the integers which do not satisfy for any i

(I . 26 .1)

	

b - ujf'(mod a i),

	

b

	

ai .

Is it then true that

(I . 26 .2)

	

lim - 1

	

N, 1
log x `~ b;

exists? (1.26.2) if true is a generaliZation of (1.26.1), (i, = 1, uP = 0 for
all i) .

DAVENPORT and I also proved that if a l, as , . . . is a sequence of pos-
itive density, we can select an nfinite subsequence a,,,(1 S k < oo) satis-
fying ai,,, I a, k + t . It is an open problem if three distinct a's exist satisfying
[ai, aj ] = ar

A. S . BESICOVITCH : "On the density of certain sequences Of integers ." Math. .
Annalen 110 (1934) 336-341 .

H . DAVENPORT and P . ERDÖS : "On sequences Of positive integers ." Acta Arithme-
tica 2 (1937) 147-151, see also Indian Journal of Math .. 15 (1951) 19-24 .

P . ERDÖS : "Density of some sequences of integers ." Bull. Amer. Math. Soc.
64 (1948) 685-692 .

27) Is it true that the density of integers having two divisors dl and ds
for which dl < d2 < 2 dl is 1? In my paper just quoted in 26) I prove that
this density exists, but I can not show that it is 1 .

Let al < a2 < . . .

	

n be any sequence of integers, b, < b2 < . . . the
integers no one of which is a multiple of any a . B(x) =

	

1 . Is it true that
6{áx

for every m > n

(I . 27.1)
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B(m) < 2 B(n) 2
M

	

n

It is easy to see that in (1.27.1) 2 can not be replaced by any smaller
constant, to see this let the a' s consist of a,, n = 2 al - 1, m = 2 al .

28) BAMBAH and CHOWLA proved that for sufficiently large C the
interval (n, n -i- Cn"4) always contains in integer of the form a. 2 -i- y2 . It has
been often conjectured but never proved that this holds every C if n > n o(C) .
In fact it seems likely that for every e > 0 the interval (n, n + nE) contain
in integer of the form x2 + y 2 . I proved that for a suitable c > 0 and infinitely
many n the interval (n, n -}- c log n/(log log n)%) does not contain any
integers of the form x2 + y2 .

Denote by s l , s2 , . . . the squarefree integers . It is easy to prove (I do
not know who did it first) that i . o .

(1.28.1)

	

s;+i-s; > (1 -i- o(1))n2/6 log s,/tog log s, .

The question if (1 + 0(1)) in (1.28 .1) can be replaced by 1 -+- c has not yet
been decided . I proved that

(I . 28.2)

	

lim 1 Z (s ; +l - si) 2
n sq<n
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exists. More generally one could ask the following question : Let aI < a2 < . . .
be any sequence of integers satisfying aklk 2 -* co and denote by bI < b2 < • • .
the sequence of integers no one of which is a multiple of any of the a' s .
Is it then true that

(I. 28 .3)

	

lim1

	

(bl+I - b,) 2
n bt<n

exists and is finite (in (1.28 .2) a; = p2)? It is easy to see that if we only require
ak < ck2 then (1.28.3) does not hold in general .

R. P. BAMBAH and S . CHOWLA : "On numbers which can be expressed as a sum
of two squares ." Proc. Nat. Inst . Sci . India 13 (1947) 101-103 .

P. ERDÖS : -Some problems and results in elementary number theory ." Publ .
Math . Debrecen 2 (1951-52) 103-109 .

As far as I know the best upper bound for s ; +I -s; is due to RICHERT,
who improved a previous result of K . F . ROTH. RICHERT proved sj+I - st <
< c si'9 log Si .

H . E. RICHERT : "On the difference between consecutive squarefree numbers ."
London math. Soc. Journal 29 (1954) 16-20 .

29) Denote by A(n) the number of integers not exceeding n which are
the product of two integers not exceeding nY= I proved that for every e > 0
if n > no(s)

(log n)-8 n (elog2)loglognllog 2 < A(n) <(log n)8 n (elog2)loglogn/ log 2 .
log n

	

log n
(I . 29 .1)

Let a, <a2< . . . <a,,< Vn; bI < b2 < . . . < by < Vn be two sequen-
ces of integers so that all the products a i b j are distinct . Is it then true that

nxy < c	
n

? This if true is certainly best possible, to see this choose theto
g

a's to be the integers not exceeding 1 n'y- and the b's the primes in i n%, nY2 .
2

	

(2
P. ERDŐS : „06 0AHOM acHMHTOTH9eCKOM HepaBeHCTBe B TeopmH 9HCen ." BecmnUK

AeHuHZpadcxo2o yHHBepCHTeTa 3 (1960) 41-49 ; for a weaker result see P. ERDŐS :
„Some remarks in number theory" (In Hebrew .) Riveon Lematematika (1955) 45-48 .

30) Let /(n) be an additive function, i . e . f(ab) = /(a) + 1(b) if (a, b) = 1 .
Assume that I f(n + 1)-f(n) I < cI . Is it true that f(n) = c2 log n + g(n),
where

(I
>(n) Ic CI proved that if /(n + 1)-f (n) -* 0 or if /(n + 1) z /(n)

then

	

log n .
P. ERDÖS : "on the distribution function of additive functions ." Annale of Math .

47 (1946) 1-20 . My proofs of the above theorems were unnecessarily complicated and
have been simplified by various authors .

Many interesting problems and results on additive functions can be
found in the following three papers

M. KAC : "Probability methods in some problems of analysis and number theory ."
Bull. Amer. Math. Soc . 55 (1949) 641-665 .

KUBILJUS, Uspehi Matem. Nauk. 11 (1956) 31-66 .
P. ERDÖS, Proc. International Congress of Math . Amsterdam (1954) Vol. 3,13-19.
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31) The following problem is due to W . LE VEQUE: Let a l < a2 < . . ,
be an infinite sequence tending to infinity satisfying a;+,/a; 1. Let
a i S 1n< ai+I, put yn = xn - a ` , 0 < yn < 1 . We say that the sequence

a,+I - a,
xn , 1 < n < oo is uniformly distributed mod a,, a2 , . . . if yn 1 s n < co is
uniformly distributed . Is it true that for almost all a the sequence n a, 1 <n < 00
is uniformly distributed mod al, a2 , . . .? LE VEQUE proved this in some
s pecial cases .

W. J . LE VEQUE : '°On uniform distribution modulo a subdivision ." Pacific J .
of Math. 3 (1953) 757-771 .

32) STRAUS and I conjectured that for every integer n > 1

4 _ 1

	

1

	

1
n x + y + z

is solvable in positive integers x, y, z . SCHINZEL conjectured that for every
a > 0 if n > no(a) n = I + + z- is solvable in positive integers x, y, z .

SCHINZEL conjectured that there exists a k so that every sufficiently
large integer can be written in the form (ai are integers)

k

	

k

Ha;-Za;, a i ~_> 2, 1<i5k .
t=1

	

t=1

33) Problem of SELFRIDGE and STRAUS . Let ZI, Z2 , . . . , Zn be n complex
numbers, aI , a2 , . . . , a (k) , are the products of Z's taken k at a time. The
authors prove that if k = 2, n + 2 1 and the a's are given, there can be at
most one set of Z;, 1 s i < n which generate them. For n = 2 1 this is not
true, here they conjecture that there can be at most two sets of Z's which
generate the a's .

If k > 2 they conjecture the Z's (if they exist) are determined uniquely
by the a's and they prove this in many cases, but the general problem is
unsolved .

J. L. SELFRIDGE and E. Straus : ,On the determination of numbers by their
sums of a fixed order." Pacific Journal of Math. 8 (1958). 847-856 .

34) Problem of LITTLEWOOD . Let a and # be two real numbers . Is
it true that
(1 .34.1)

	

lim inf n(n a) (n ~) = 0
where (na) denotes the distance of na from the nearest integer? (1 .34.1) is
trivial except if both a and P have bounded partial quotients in their con-
tinued fraction development . (1.34.1) seems very deep, even if a = Y2, = Y3
say.

Another very difficult problem in the theory of diophantine approxim-
ation is the following one : DAVENPORT and HEILBRONN proved the
inequality

5

(1.34.2)

	

Yak nk < E
k=1
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is solvable for every e > 0 in positive integers nk if not all the a k are of the
same sign and at least two of them have irrational ratios .

It is not known if for every irrational a and E > 0 the inequalities

l(x2 +y2)a-z2 l < s and lx2+y2-zeal <E

are solvable in integers . The case a = V2 is also undecided .
H. DAVENRORT and H. HEILBRONN : "On indefinite quadratic forms in five

variables," London Math . Soc. Journal 21 (1946) 185-193 .

Several unsolved arithmetical problems are stated in a recent paper of
SIERPINSKI L'Enseignement Mathématique 5 (1960) 221-235, an English
version appeared in Scripta Math. 25 (1960) 125-136 .

II. Problems in combinatorial analysis and set theory

1) Let al , a2 , . . . , ak be n elements . Al, A2 , . . . , An are k sets formed
from the a's so that no A can contain any other . SPERNER proved that

max k - n
(n]
2

(II.1.1) has several applications in number theory, e . g . BEHREND'S result
(L25.1) is proved by using (IL1 .1) .

The question has been considered that in how many ways can one
select sets At so that no A should contain any other. Denote this number
by A(n) . From (IL1 .1) we have

n

2 [211

~

< A(n) < ~
2a

~ , where T,, = n
T„

	

[21
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It seems that A(n) < exp (c Tn ), perhaps c can be chosen to be
(1 + E~ log 2 for every E > 0 if n > na(E) .

How many sets AI, A2 , . . . , Al can one give so that the union of two
of them never equals a third? (all three sets are supposed to be distinct i . e .
A; C Ai , A, U Aj = Aj is not permitted) . I conjectured for a long time that
l = 0(2") . If I could prove this the following result in number theory would
follow : Let al < a2 < . . . be an infinite sequence of positive density, then
there are infinitely many triplets of distinct integers a;, aj , a k satisfying
[a;, aJ] - ak (see problem I 26) .

It is possible that l < (1 + 0(1)) Tn .
Several other problems can be asked e, g . How many sets can one give

so that the union of any two of them never contains a third? How many sets
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A; can one give so that the symmetric difference of any two sets should con-
tain at least r elements?

E. SPERNER : »Ein Satz über Untermengen einer endlichen Menge .t Math. Zeit-
schrift 27 (1928) 544-548 .

2) As far as I know R . PELTESOHN and SUTHERLAND (unpublished)
were the first to construct an infinite sequence formed from the symbols
0, 1, 2 where no two consecutive blocks were identical . It is easy to .see that
in a sequence of length four formed from the symbols 0 and 1 two consecutive
blocks will be identical, I understand that EUWE proved that in an infinite
sequence formed from 0 and 1 there will be arbitrarily large identical conse-
cutive blocks, but that there do not have to be three consecutive identical
blocks .

Let us now call two consecutive blocks „identical" if each symbol
occurs the same number of times in both of them (i.e. we disregard order) .
I conjectured that in a sequence of length 2k-1 formed from k symbols
there must be two "identical" blocks . This is true for k 5 3, but for k 4
de BRUIJN and I disproved it and perhaps an infinite sequence of four symbols
can be formed without consecutive "identical" blocks .

3) LITTLEWOOD and OFFORD proved the following result : Let Z ;,
1 < i < n be n complex numbers . Then there exists an absolute constant
c so that the number of sums

n

i=J

ERDÖS

which fall into the interior of an arbitrary circle of radius 1 is less than
c 2n log n I proved that if Z; > 1, 1 < i s n (i . e. the Z; 's are real) thenn%
the number of sums (IL3 .1) which fall into the interior of any interval of
length two is at most n and this estimation is best possible . The proof

~2
uses the theorem ofSPERNER (see problem 11 .1 . ) . I do not know if this inequality
remains true if the Z; are complex numbers (my proof gives for complex z
c 2l y ), or more generally vectors of Hilbert space of norm >- 1 . In this case
I can only prove that the number of summands (11.3.1) falling into an
arbitrary unit sphere is o(2n) .

J. E . LITTLEWOOD and C. OFFORD, Mat. Sbornik . 12 (1943) 277-285.
P. ERDÖS : "On a Lemma of Littlewood and Offord ." Bull. Amer. Math. Soc .

51 (1945) 898-902 .

4) RAMSAY proved that there exists a function 1(i, k, l) so that if we
split the i-tuples of a set of f(i, k, l) elements into two classes then either
there are k elements all whose i-tuplets are in the first class or l elements
al whose i-tuples are in the second class . SZEKERES and I proved that

(II . 4 .1)

	

2k12 < f( 2, k , k) < (2k- 2

	

f(2, k, l) 5 k + l - 2)

-1 k-1 )

	

( k-1 )'

The best estimation for f(i, k, k), i > 2 is due to RADO and myself.
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It would be interesting to determine /(i, k, l) explicitely, this seems
very difficult even for i = 2 .1 have not even be able to prove that lim /(2, k, k)Vk
exists . I can prove that

	

i=-

(11. 4 .2)

	

/(2, 3, k) > ck 2/(log k)2
but could not decide whether /(2, 3, k) > C 2 k 2 is true .

I do not wish to mention here the many problems connected with the
generalisations of RAMSAY'S theorem to cardinal and ordinal numbers and
just state one of the simplest unsolved problems in this subject .

Let 99 be ú well ordered set of ordinal number 0)a, a. < D. Split the
pairs a E 99, b E 99 into two classes so that there is no triplet all whose pairs are
in the first class . Does there then exist a set q?' C 99 of type u>° all whose
pairs are in the second class?

For a = 2 this was proved by SPECKER, for 2 < a < w it was dis-
proved by him, for a > w the problem is open . The most interesting unsolved
case is a = co .

E. P . RAMSAY : "On a problem of formal logic ." Collected papers, 82-111 . See
also T. H. SKOLEM: *Ein kombinatorischer Satz mit Anwendung auf ein logisches Ent-
scheidungsproblem. Fund. Math . 20 (1933) 254-261 .

P. ERDÖS and G . SZEKERES : '°A Combinatorial Problem in geometry ." Compositio
Math . 2 (1935) 463- 470 .

P. ERDÖS : -Remarks on a theorem of Ramsay ." Bull. Res. Council . Israel (1957)
21-24. See also -Graph theory and probability ." Can. Journal of Math . I and II,11 (1959)
34-38, 13 (1961) 346-352 .

E. SPECKER: *Teilmengen von Mengen mit Relationeme Comm. Math. Hely .
31 (1956--57) 302-314.

P. ERDÖS and R. RADO : „A partition calculus in set theory ." Bull. Amer. Math .
Soc . 62 (1956) 427-489 . (See also the forthcoming triple paper of ERDÖS-HAJNAL-RADO .)

5) Let aI, a2 , . . . , a,, be n elements AI , A2 , . . . , Ak , k > 1 sets whose
elements are the a's . Assume that each pair (a ;, aj ) is contained in one and
only one A . Then k > n . This is a result of de BRUIJN and myself (also proved
by SZEKERES and HANANI) . We can not determine the smallest l so that
there should exist sets AI , A2 , . . . , A,, l > 1 so that every triplet (ai , a j , a,)
is contained in one and only one A .

N. G . DE BRUIJN and P. ERDÖS : -On a combinatorial problem." Ind . Math .
(1948) 421-423 .

C. STEINER conjectured that if n = 6k + 1 or 6k + 3 there exists a
system of triplets of n elements so that every pair is contained in one and
only one triplet (if n is not of the above form it is easy to see that such a
system can not exist) . STEINER'S conjecture was first proved by REISS and
later independently by MOORE.

Let now 2 S r < s be any two integers . For which n is there a system
of combinations taken s at a time formed from n elements so that all r tuples
should be contained in one and only one s tiuple . The case r = 2, s = 3 is
STEINER'S . The only other case which has been settled is r = 3, s = 4
H. HANANI recently proved that such a system exists if and only if n = 2
or 4(mod 6) . (Very recently HANANI settled the cases r = 2, s = 4 and
r=2, s=5) .

It has been known for a long time that if n = p2l + pi }- 1 (p prime),
r -= 2, s = 1) t + 1, then there exist n (p l + 1) - tuplets so that every pair
is contained in one and only one (p i + 1)-tuplet . If n = k 2 + k + 1, k _* pa

16 A Matematikai Butató Intézet Közleményei VI . 1-2.
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it has been conjectured that such a system of (k + 1)-tuplets does not exist .
Special cases of this conjecture have been proved by BRUCK and RYSER, the
first unsettled case is k - 10 (see 1.10) .

Connected with this problem is the following conjecture of SYLVESTER :
For every n - 0 (mod 4) there exists an orthogonal matrix of order n all
whose elements are ± 1 (it is easy to see that if n $. 0 (mod 4) such a matrix
does not exist .) If n = 2k SYLVESTER showed that such a matrix exists,
if p - - 1 (mod 4). PALEY proved that such a matrix exists for p + 1, the
general case is still unsolved.

Denote by Mn the maximum value of an n by n determinant Whose
elements are + 1 . From HADAMARD'S theorem it follows that Mn s nn/2
and if a SYLVESTER matrix exists Mn = nn/2 . It follows easily from the prime
number theorem for arithmetic progressions that for every n > no(E)

(IL6 .1)

	

Mn > (1-E)n nn/2 .

COLUCCI and BARBA proved that if n :?L- 0 (mod 4) then

(11 . 6.2 .)

	

Mn G (2n - I)YQ (n - 1)(n-1)12= (1 +0(1)) 2
fY2
nn/2

e

M. REISS : »Über eine Steinersche kombinatorische Aufgabe . J . rein and an-
gewandte Math . 56 (1859) 326-344 .

E. H . MOORE : "Concerning triple systems." Math. Annalen 43 (1893) 271-285 .
See also „Practical memoranda." Amer. J. Math . 18 (1896) 264-303 .

H. HANANI: "On quadruple systems ." Can. J. Math . 12 (1960) 145-157 .
J. H . SYLVESTER : "Thoughts on inverse orthogonal matrices." Phil . Mag. (4)

24 (1867) 461-475.
R. E. A . C . PALEY : "On orthogonal matrices ." Journal of Math . and Phys (1933)

311-320 .
COLUCCI: Sui valori massimi dei determinants ad elements ± 1 .» Gior. di Matem .
di Battaglini 54 . See also G . BARBA ibid . 71 .

See also G . SZEKERES and P. TURÁN : ,An extremal problem in the theory of
determinants ." (In Hungarian, German summary) Sitzungsber. III. Klaase Ung . Akad .
54 (1937) 796-806.

7) Problem of VAN der WAERDEN : Let , a í, k I be an n by n doubly

stochastic matrix (i . e . a ík Z 0 and ; aí,k = Aaík = 1 for every i and k .
í=1

	

k=1

Then the value of the permanent is ? n !! , equality only for aí ,k = 1 . The
nn

	

n
permanent (a terminology of SYLVESTER) is the sum of the expansion terms
of the determinant . The fact that the permanent of a doubly stochastic
matrix can not be 0 is a theorem of FROBENIUS-KÖNIG . VAN der WAERDEN'S
problem seems to be difficult .

I made the following two weaker conjectures : The value of at least

one term of the permanent is > 1 , and the still weaker one: There is at- nn
least one non-zero expansion term of the permanent where the sum the

factors is Z 1 . This was proved by R . REE and S . MARCUS (in fact they prove

that the sum is ? 1

	

Okl .
n l~i,k~n
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R . REE and S. MARCUS : „Diagonals of doubly stochastic matrices." Quarterly
Journal of Math. 10 (1959) 296-301 .

8) A special case of a theorem of TURÁN states that if in a graph of n
vertices the number of edges is greater than n n + 1 , then the

2

	

2
graph always contains a triangle . He points out that the following analogous
problem is unsolved : Let there be given n elements what is the smallest
number /(n) so that to every system (p of /(n) triplets formed from the n
elements there are always four elements all four triplets of which occur in 99 .

P. TURÁN : "On the theory of graphs ." Coll . Math. 3 (1954) 19-30 .
D . KÖNIG: Theorie der endlichen and unendlichen Graphen .

9) HAJNAL and I proved the following theorem : To every real x make
correspond a bounded set of real numbers /(x) whose outer measure is less
than 1 . Then for every finite k there exists an independent set of k elements

-
e- a set xI, x2 , . . . , xk so that for every 1 5 i, j 5 k, i + j, xi J f(xi )) .

We can not prove that there always exists an infinite independent set (not
even if we also assume that the sets /(x) are compact .)

If we assume that the sets /(x) are closed and of measure < 1, we can
not even prove that there are two independent points . (Recently GLADYSZ
proved in a very ingenious way the existence of two independent points .
The existence of an independent triplet is open) .

P. ERDŐS and A . HAJNAL : „Some remarks on set theory, VIII." Michigan
Math Journal 7 (1960) 187-191, for further problems in this direction see P . ERDÖS and
A . HAJNAL : -On the structure of set mappings . Acts Math. Hung. 9 (1958) 111-131 .
and P . ERDÖS : -Some remarks on set theory ." 3 (1953) 51-57 .

111. Problems in elementary geometry
1) Let xI , x2	xn be n points in the plane . Denote by M„(xl, x2	x„)

the number of distinct distances betWeen any tWo of the points . Put
/(n) = min Mn(x1, x2	xn),

where xI , x 2 , . . . , x„ ranges over all sets of n distinct points of the plane .
It seems to be difficult to get a good estimate for /(n), the best results (due
to MOSER and myself are)
(III . 1 .)

	

c1n 21 3 < /(n) < C2n/Vlog n.
I would guess that the upper bound is the right one and perhaps even

the following result holds : There is one point x l so that amongst the distances
(xj , x,) there are at least c3 n/Vlog n distinct ones .

If the set xI, x2 , . . . , xn is convex it seems that /(n) - n ; despite
2

its seeming simplicity I have not been able to prove this . A somewhat stronger
conjecture is : In every convex polygon there is a vertex Which has no three
vertices equi distant from it .

How often can the same distance occur between n points of the
plane? Denote this maximum by g(n) . I proved

nl+c,/loglogn < g(n) < n"2 .

I believe that the lower bound is close to being the correct one .

16*
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COXETER asked me how many points does one have to have in n-dimen-
sional space so that one should be sure to have more than two distinct distances
between them . I stated that for c b sufficiently large nc- points suffice, but
my proof was wrong and if corrected it only gave exp (nl-E) .

One can show that from 7 points in the plane one can always find three
of them which do not determine an isosceles triangle, it is easy to see that
this is false for 6 points . How many points does one have to have in n-dimen-
sional space to be sure that one can find three of them which do not determine
an isosceles triangle? This is not even known for n = 3 .

P. ERDŐS : "On sets of distances of n points." Amer. Math. Monthly . 54 (1946)
248-250 .

L . MOSER : "On the different distances determined by n points." Ibid . 59 (1952)
85-91 .

P. ERDÖS: "On some problems in geometry." (In Hungarian) Mat . Lapok (1954)
86-92 . Many further problems are stated in this paper .

2) BLUMENTHAL'S problem. Let there be given n points in the plane,
denote by A(xl , x2 , . . . , x„) the largest angle (S n) determined by the n
points, and define

a„ = inf A(x,, x2 , . . . , xn )
where the minimum is taken over all sets of n points . SZEKERES proved
that a2.. + 1 > ~T (I - 1 -i-

	

1

	

and that for every e > 0,2" points can bel

	

n

	

n(2" + 1) 2
given with A(x,, x2 , . . . , x2 .) > n (1 - i + e (this implies a2" 5 n (1 - 1

1
.

l

	

n

	

J l

	

,

	

n
SZEKERES and I recently proved that a2n = n (1 - 1I and in fact for

l

	

n

every 2" points A(x,, x2 , . . . , x2n) > n 1 - n 1
, we also showed a2"-' l

=nf 1- n~ .
I Let there be given 2" + 1 points in n dimensional space . I conjectured

that there are always three of them which determine an angle > n . This
2

is trivial for n = 2, for n = 3 it was proved by (unpublished) N . H . KAIPER
and A . H . BOERDIJK . For n > 3 the problem is open . (Recently this con-
jecture was proved by L . DANZER and G. GRÜNBAUM in a simple and
ingenious way .)

G. SZEKERES : "On an extremism problem in the plane ." Amer. Journal of Math .
S3 (1941) 208-210 . Our paper with SZEKERES will appear in the Annales of the Univ .
of Budapest 3 (1961) .

3) BORSUK's problem . Is it true that every set of diameter one in n
dimensional space is the union of n + 1 sets of diameter < 1? This is trivial
for n = 1, easy for n = 2 . For n = 3 it was first proved by Eggleston and
later simultaneously and independently GRÜNBAUM and HEPPES found a
considerably simpler proof . The problem is open for n > 3 .
BORSUK and ULAM proved that the n dimensional sphere is not the
union of n sets of smaller diameter .
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K. BORSUK : xDrei Sátze fiber die n-dimensionale euklidische Spháre .« Fundaments
Math . 20 (1933) 177-190 .

H. G. EGGLESTON . "Covering a three dimensional set with sets of smaller dia-
meter ." Journal of Lond. Math. Soc . 30 (1955) 11-24 .

B . GRÜNBAUM : „A simple proof of Borsuk's conjecture in three dimensions ."
Proc. of Cambridge Phil. Soc . 53 (1957) 776-778 .

A. HEPPES-P . RÉVÉSZ: »Zum Borsukschen Zerteilungsproblem ." Acta Math .
Acad. Sci. Hung. 7 (1956) 159-162 .

A. HEPPES : „Térbeli ponthalmazok felosztása kisebb ármérőjű részhalmazok
összegére." MTA III . Oszt . Közl . 7 (1957) 413-416 .

H. HADWIGER : Über die ZerstÜckung eines Eikörpers . # Math. Zeitschr . 51
(1949) 161-165 .

H. LENZ : -Zur Zerlegung von Punktmengen in solche kleineren Durchmessers . <i
Arch . Math. 6 (1955) 413-416 .

4) SYLVESTER conjectured and GALLAI first proved that if we have
n points, not all on a line then there is at least one line which goes through
exactly two of the points . Denote by GR the minimum number of such lines,
de BRUIJN and I conjectured that G„ -* oo as n -*. oo . This was proved
by MOTZKIN (his paper contains many more problems and results in this

direction). MOSER and KELLY proved that G„ Z 13
n
~ and this is best pos-

7
Bible for n - 7 . For n > no perhaps G„ = n - l . For large n perhaps there
always is a triangle all whose lines goes through only two of our points (except
if n-1 of them- are on a line) .

SYLVESTER asked : Let there be given n points no four on a line . What
is the maximum number of lines which goes through three of them? He proved

that this maximum is greater than -3 12
~ - en on the other hand the maximum

ís<
3(2)
Let there be given n points not all on a line I observed that it easily

follows from GALLAI'S result that these points determine at least n lines
(see also IL5). G . DIRAC conjectured that there always exists a point which
is connected with the other points by more than cn lines .

Let there be given n points not all on a circle . What is the minimum
number of circles these points determine? This problem is unsolved (see also
IL5) .

T. H. MOTZKIN : "The lines and planes connecting the points of a finite set ."
Tram. Amer. Math. Soc . 70 (1951) 451-464 . This paper contains many more problems
and results and also the history of this problem and many references to the literature .

5) Miss KLEIN asked: Does there exist for every n an /(n) so that if
f (n) points in the plane are given no three on a line then there always exist
n of them which are the vertices of a convex polygon . She proved /(4) = 5
and MAKAI and TURÁN proved that /(5) = 9 . SZEKERES conjectured /(n) _
= 2n-2 + 1 . He and I proved

-
2`2 s Í(n)

	

2 n 4
- ~ n-2
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P. ERDÖS and G . SZEKERES : "A combinatorial problem in geometry", Compositio
Math. 2 (1935) 463-470 . The proof of the lower bound in (III . 5 . 1) will appear in
the Annales o f the Univ. of Budapest .

6) HEILBRONN'S problem. Let there be given n points in the unit
circle . Denote by A(xl, x2 , . . . , xn ) the smallest area of all the triangles deter-
mined by the xi . Estimate max A(xl , . . . , xJ2 ) where the maximum is taken
over all the x; in the unit circle . An < cl/n is trivial . ROTH proved

1
A„ = o

n
, more precisely

A,, < c2 n(loglog n)~z ,
and I observed that A„ > c 3/n2 . It seems to be a difficult and interesting
problem to improve these inequalities for A,

K. F. ROTH: -On a problem of Heilbronn ." London Math. Soc . Journal 26 (1951
198-209.

7) Recently it was asked if the plane can be split into four sets Ti, 1 < i < 4
so that no cp i should contain two points whose distance is 1 . Several
mathematicians observed that this certainly can not be done with three sets .
(I can not trace the origin of this problem .)

8) ANNING and I proved that if in an infinite set of points in the plane
all the distances between the points are integers then the points all are on
a line . On the other hand it is known that one can give an infinite set of points,
not all on a line so that all the distances should be rational . ULAM asked :
Does there exist a set T dense in the plane so that all the distances between
points of T are rational? I think the answer is no, but the question seems
very difficult . SCHOENBERG asked if to every polygon and every e there
exists a polygon whose vertices are at distance < e from the corresponding
vertices of the original polygon and all whose sides and diagonals have rational
length. Clearly if ULAM'S problem has an affirmative answer, then the same
holds for SCHOENBERG'S problem . BESICOVITCH dealt with some special
cases of this problem .

P. ERDŐS and A . ANNING : -Integral distances ." Bull . Amer. Math. Soc. (1945)
598-600 and 996 .

A. S . BESICOVITCH : "Rational polygons ." Mathematika 6 (1959) . 98 .
Further literature on these similar problems and results : L . FEJES TÓTH: Lagerun-

gen in der Ebene auf der Kugel and im Raum . Berlin, 1953 and H. HADWIGER and H .
DEBRUNNER : Kombinatorische Geometric in der Ebene.« L'Enseignement Math . 1
(1955) 56-67 . The paper also appeared in French a more detailed version of this paper
recently appeared in book form Monographies de L'Enseignement Mathématique No 2 .
See also a forthcoming book of HADWIGER on these subjects .

IV. Problems in analysis

1) Let z° + . . . be a polynomial of degree n. H . CARTAN proved that
the set I f(z) I < 1 (which we will call Ef' can be covered by a set of circles
the sum of whose radii is < 2 e . It seems likely that 2 e can be replaced by
2 (which if true is known to be best possible) . If Ef' is connected this was
proved by POMMERENKE, and in the general case he recently proved this
with 2.59 instead of 2 .
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Assume that Eli" is connected . Is it true that

(IV . 1 .1)

	

max I /'(z) I < n2 ?
zcE> >

	

2

POMMERENKE proved this with e n2 . (IV . 1 .1) if true is best possible as is
2

shown by the n-th TCHEBICHEFF polynomial T„(z) .
Is it true that to every c > 0 there exists an A(c) independent of n

so that Ef' can have at most A(c) components of diameter > Y + c 2 ,
Is it true that the length of the curve 11,(z) I = 1 is maximal for &(z) _

= z °-1 .
Let I zi i < 1 . Estimate from below the area of Ej"' . HERZOG, PIRANIAN

and I prove that for every a there exists an no so that for n > n o(s)
the area of Ej"' can be made to be < s, but we have not succeeded in getting
an a good estimate of the area from below .

Let -1 < xl < x2 < . . . < x, < 1 . Is it true that the measure of the
set on the real line for which I I (x) i < 1 is < 2 V2- ? (We can prove that the
diameter of this set is less than 3) . Most of these problems are discussed in
our paper with Herzog and Piranian .

P. ERDŐS, F . HERZOG and G . PIRANIAN : -Metric properties of polynomials ."
Journal d'Analyse Math . 6 (1958) 125-148 .

CHRISTIAN POMMERENKE : -On some problems of Erdős, Herzog and Piranian."
Michigan Math . Journal 6 (1959) 221-225 ; ,On the derivative of a polynomial ." Ibid .
373-375 ; "On some metric properties of polynomials with real zeros ." Ibid . 377-380 ;
Einige Satze über die Kapazitat ebener Mengen .<~ Math. Annalen 141 (1960) 143-152 .

2) Littlewood conjectured that for every sequence of integers n l <
< n2 < . . . < nk

(IV . 2 .1)

(IV. 2 .2)

2n

i '

k

.ycosni x
i=1

n i = i shows that if true this is best possible . It was not even known that
the integral (IV.2 .1) tends to infinity with k . Recently P . COHEN proved
(IV .2 .1) with c (log k/loglog k)' 1 8 and DAVENPORT improved this to
c (log k/loglog k)"4

ANKENY and CHOWLA conjectured that to every c > 0 there exists a
k so that for

k

min 2 cos ni x
O_~x<2n i=1

dx > clog k

1~i<j:!~;k
cos (n i f nj) x

(IV .2 .2) immediately follows from the result Of COHEN.
CHOWLA observed that if nl < n2 < . . . < nk is a sequence for which

(

	

k

	

2
the sums ni

	

nj are all distinct then l i . e . (
t=1
,' cos n i x)

1
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gives a trigonometric polynomial of k2 - k terms whose minimum is -VF.
He then asked : is it true that the minimum of (IV . 2 .2) is less than - c Vk
for a suitable absolute constant c > 0?

PAUL COHEN : "On a conjecture of Littlewood and idempotent measures." Amer .
Journal of Math . 82 (1960) 190-212 .

FI . DAVENPORT : „On a theorem of P . J. Cohen." Mathematika 7 (1960) 93-97 .

3) Let fn(O) be a trigonometric polynomial of degree n all whose roots
are real. Is it true that

2n
(IV . 3.1)

	

S Ifn(0)I < 4 .
0

In(O) = cos n0 shoWs that if (IV-3-1) is true, it certainly is best possible
For similar problems see P . ERDÖS : "Note on some elementary properties of

polynomials." Bull . Amer. Math . Soc . 46 (1940) 954-958 .
n

4) It is known that there exists a polynomial 2 Ek zk, Ek= 1 for which

(IV . 4.1)

	

max
1z1=1

(IV . 4.2) min
Ix1=1

n

	

I

Z' k
zk < cl Vn .

k=1

n

G Ek z k

k-1
>c 2 Vn .

k=1

As far as I know it is not known if there exists a polynomial of the above
form which besides (IV.4 .1) also satisfies

In fact it is (as far as I know) not known if a polynomial satisfying
(IV.4.2) exists .

Does there exist an absolute constant c > 0 so that

(IV . 4 .3)

	

max
Izl=1

(IV.4 .3) is trivial for c = 0 (PARSEVAL'S inequality) .
I can prove (my paper will appear in Annales Poloníci Math .)

the analogous inequality for trigonometric polynomials i . e .

(IV . 4 .4)

	

max ZEk cos k 0 1 >
1
+ Vn .

056<2n k=1

	

V2

A generalisation of (IV .4 .3) would be

(IV . 4.5)

	

max
Izl=1

Here I can not even prove

(IV. 4 .6)

	

max
056<2n

n
~Ekzk
k=1

n
Z Ek znx
k=1

n

ZE,cosnko
k=1

>(1+C)Vn?

>(1+C)Vn .

1+c
>-V2

	 Vn .



J. CLUNIE : "The minimum modulus of a polynomial on the unit circle ." Quarterly
Journal of Math . 10 (1959) 95-08 .

5) Let f f z) _

	

an zn be an entire function
n=0

M(r) = mag
I
/(z)

I ,

	

m(r) = max
I
an rn I .

121=r
Is it true that if lim m(r)IM(r) exists it must .be 0? CLUNIE (unpublished)

r=-
proved this if an z 0. Determine

max limm(r)/M(r) = c .
f

1 << c < 1 is trivial . KŐVÁRI observed c > 1 , but the exact value of c
2 -

	

2
is not known .

S . M. SHAH : „The behavior of entire and a conjecture of Erdős" Amer. Math .
Monthly 68 (1961) 419-425 .

6) Let f(z) be an entire function. I conjectured and BOAS proved (un-
published) that there exists a path L so that for every n

(IV . 6 .1)

	

lim I f(z)/z" I - o0

where z 00 on L . Can one estimate the length of this path in terms of
M(r)? Does there exist a path along of which I f(z) I tends to 0o faster than
a fixed function of M(r) e. g. M(r)g?

HUBER proved the following theorem : Let f(z) be an entire function,
not a polynomial. Then to every A > 0 there exists a locally rectifiable
path C X tending to infinity, such that
(IV. 6 .2)

	

f /(z)1 -1 dz I < o o .
CX

Does there exist a path C independent of I so that for every . > 0
(IV . (6.3)

SOME UNSOLVED PROBLEMS

f If(z) ;, I IdzI < -?

c
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A. HUBER : "On subharmonic functions and differential geometry in the large ."
Comment. Math . Hely . 32 (1957) 13-72 .

7) Pólya's problem. Let 1(z) _ Z ak znx be an entire function of finite
k=1

order . Assume that lim n klk = oc . Does it then follow that
k-+-

(IV . 7 .1)

	

lim log m(r)/log M(r) = I?
PÓLYA remarks that WIMAN'S results (Acta Math. 37 (1914) 305-326,
and 41 (1916)1-28) imply that if
(IV. 7 .2)

	

log (nk+1 - nk)/Iog nk > 1/2,

then

(IV . 7 .3)

	

limm(r)/M(r) = 1
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holds (also for functions of inifinite order) . MACINTYRE and I proved that if

< oo then (IV-7.3) holds and that if	 1 = oo there
k=2 nk+I - nk

	

k=2 nk+I - nk

always exists an entire function

	

ak Znk for which

W

2~
1

nk+, - nk

G . PÓLYA : °'Lücken und Singularitaten der Potenzreihen." Math. Zeitschrift
29 (1929) 549-640 .

P . ERDŐS and A. J. MACINTYRE : "Integral functions with gap power series ."
Edinburgh Math . Proc . Ser . 2 . 10 (1954) 62-70 .

8) FEJÉR proved that if 2 1/nk < co then the entire function Zak znk
k=1

	

k=1
assumes every value at least once and BIERNACKI proved that it assumes
every value infinitely often . FEJÉR and PÓLYA conjectured that if n k/k -* oo

then 2 ak znk assumes every value infinitely often .
k=1

L. FEAR : "Über die Wurzel vom kleinsten absolutes Betrage einer algebraischen
Gleichung. °' , Math . Annales 65 (1908) 413-423 .

M. BIERNACKI : "Sur les equations algébriques contenant des parametres arbitra .
ires . ,, Thése, Paris, 1928 .

9) Let q9k , 1 < k < oo be a set of complex numbers which has no limit
point in the finite part of the plane . Does there exist an entire function /(z)
and a sequence n, < n2 < . . . so that for every z E T k , /0k)(z) = 0, 1 <_ k < co
(i . e . the set of zeros of /010(2) contains cpk?)

10) HANANI and I proved (unpublished) that if anI > c > 0, lim I an I/Vn =
= 0, an real, then to every real a there exists a sequence en = ± 1

so that the series L En an is CI-summable to a . It is easy to see that
n=1

	

_

lanl/Vn , 0 can not be replaced by I an I < s Vn . But we conjectured that if

an Í > c > 0 and the series 2 a n is Cl-summable to a finite number then
n=1

the conclusion of our result remains true . We were unable to prove this, even
if we assume I an I < E Vn.

Let an , 1 < n < oo be a sequence of real numbers . Assume thatZa,
n=1

is Cl -summable. Denote by 99 the set of values to which some rearrangement

< oo implies (IV. 7 .2) ) .

k=1

lim m(r)/M(r) = 0 .

ERDÖS

of Zan is C-summable . BAGEMIHL and I proved that 99 either consists of
n=1

a single number, or is the whole real axis or is the set o£ all numbers
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max (sk I > c .
1 _~ k ;~ n
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a + v fl, v = 0, ± 1, ± 2 . . . . It would be interesting to extend this for C k

summability and for series With complex terms .

P . ERDÖS and F.BAGEMIHL, ,Rearrangements ofC l-summableSeries . "Acta Math .
92 (1954) 35-53. The problem has been considered previously by S . MAZUR, Soc . Sav .
Sci . Lett . Lwow 4 (1929) 411-424. See also K . ZELLER and G. G . LORENTZ: "Series
rearrangements and analytic sets ." Acta Math . 100 (1958) 144-169 .

11) TURÁN'S problem. Let zl = 1, z2, . . . , zn be any complex numbers
n

Put sk = Z zk . TURIN conjectured that there exists an absolute constant c
i=1

so that

(IV . 11 .1)

About 20 years ago TURIN proved max sk >
cl

, this was improved by
l~k~n

	

n

me to 1 , by TURÁN to log 2/log n and by de BRUIJN and UCHIJAMA
2 log n

to c2 loglog n/log n . Very recently ATKINSON proved TURÁN'S conjecture
with c = 1 . The best value of c is unknown .

6
For problems of this type and their application see P . TURÁN'S book:

Eine neue Methode in der Analysis and deren Anwendungen . The book also
appeared in Hungarian and there is a Chinese edition which contains new
material. A new American edition of the book will appear soon . I would like
to mention just one problem I proved (see TURÁN'S book) that one can find
n complex numbers zl = 1, J z i s 1, 2 S i S n for which

(IV. 11 .2)

	

Max 1skI < ( 1 + c3)-n'
2~kdntl

where c3 > 0 is an absolute constant. Can one find n complex numbers z;
satisfying (IV . 11.2) and I z; j z 1, 1 S i S n?

F. V . ATKINSON : On sums of powers of complex numbers ." Acta Math. Hung .
12 (1961) 185-188 .

V. Problems on probability
1) Let r n (t) be the sequence of Rademacher functions i . e . r„(t)=± 1 with

probability 1 and the r n (t) are independent functions . The well known law
2

of the iterated logarithm states that for almost all t

(V. 1 .1)
n

Jim sup

	

rk(t)/V 2 n log log n = 1 .
n=- k=1

Assume now that 99P (t) (p prime) is a sequence of independent functions
TP(t) _

	

1 with probability 1
2

. Further assume that for n = a • b, 99,,(t) -

= T a (t) 9p b (t) . Thus if the T's are defined for all primes they are defined for
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all integers . WINTNER proved that for all e and almost all t
n

(V . 1 .2)

	

Jim X 99 k(t)/n'/2+e = 0 ,
n-.- k=1

and I improved this (unpublished) to
n

(V . 1 .3)

	

lim 299k(t)/n'/2 (logn)c = 0 .
n->- k=1

It would be interesting to prove a result analogous to (V .1 .1) . I can
not even prove that

n
(V . 1 .4)

	

lim sup 299k(t)/n'/2 = oo .
n- -

	

k-1

I was unable to locate the paper Of WINTNER.
The next few questions deal with random polynomials and power series .

2) Let E k = ±1* Completing previous results of LITTLEWOOD,
n

OFFORD and KAC, OFFORD and I proved that if we neglect o	
(log

2
log n)'2

n
polynomials

	

E k zk the number of real roots of the remaining polynomials
k=0

is of the form 2 log n + o((log n)"s loglog n) .
a

Our result was not quite strong enough to prove the following conjecture
(which as far as I know is still open) : Put 0 < t < l, let the binary expansion

of t bet

	

sk(t)
. Denote by R n (t) the number of real roots of the n-th

k=1 2k

partial sum of

	

E k (t) zk . Then for almost all t
k=0

(V. 2 .1)

	

lim Rn (t)l 2 log n = 1 .
n--

	

n

Denote by Rn(t) the number of roots in the unit circle of the n-th

partial sum Of Z Ek (t) zk. Is it true that
k=0

(V. 2 .2)

	

R' (t)/n -* 1
2

for almost all t? Here I can not even prove that for all but o(2n) polynomials
n

Ek zk the number of roots in
I
z < 1 is Z + o(n) .

k=0
J. E. LITTLEWOOD and C . OFFORD, Proc. Cambridge Phil. Soc . 35 (1939) 133-148 .
M. KAC, Bull. Amer. Math. Soc . 49 (1943) 314-320 and 938, see also Proc. London

Math. Soc . 50 (1948) 390-408 .
P. ERDÖS and C . OFFORD : "On the number of real roots of a random algebraic

equation." Proc. London Math . Soc. 139-160 .



3) SALEM and ZYGMUND proved the following theorem : For almost
all t and n > n° ( t)

n
(V. 3 .1)

	

c, (n log n) Yz < max

	

Ek(t) zk < c,(n log n)Y2 .
Izl=1 k=0

The proof of the upper bound in (V .3 .1) is easy, the difficult part was
the proof of the lower bound . One would except that for almost all t

n

2 ek(t) Zk

(V. 3 .2)

	

lira mag --k=0

	

= C
n=- 121=1 nyz (log n)Y2

where C does not depend on t . The following weaker statement has also not
n

been proved so far: For every E if we neglect o(2n) polynomials 2 Ek Zk we have
k=0

n
(V . 3 .3)

	

(C - e) (n log n)y= < max 2"k zk < (C + E) (n log n) Y2 .
Izl =1 k=0

Denote
n

Mn(t) = max 2 Ek(t) xk
15x1 k=0

The upper bound for Mn (t) is given by the law of the iterated logarithm,
but the lower bound is much more difficult . I proved (unpublished) that
for almost all t and every e > 0
(V. 3 .4)

	

lim Mn(t)/n'Y=-e = oo .
n=-

A theorem of CHUNG implies that for almost all t there are infinitely
many n for which

~_(V . 3 .5)

	

Mn (t) < C	n
loglog n

The exact lower bound for Mn (t) seems very difficult (the problem i,
Clue to SALEM and ZYGMUND) .

Is it true that for all but o(2n ) polynomials .2E k zk .
k=0

SOME UNSOLVED PROBLEMS

(V. 3 .6)

	

min
I21=1

n

Z ek Z k
k=0

<1?

or more precisely how can one estimate the minimum (V.3 .6) as accurately
as possible .

R. SALEM and A . ZYGMUND : "Some properties of trigonometric series whose
terms have random signs ." Acta Math 91 (1954) 245-301 .

4) DVORETZKY'S problem. Let

(V.4 .1)

	

a n >-0,an ->0,Zan =oo .
n=1

253

Place on the circle of circumference 1 at random arcs of length an . It
is easy to see that if (V.4 .1) is satisfied then with probability one almost all
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points of the unit circle are covered by the arcs . DVORETZKY showed that
for suitable choice of an all points of the unit circle are covered for almost
all choices of the arcs of length an (satisfying (V .4 .1)], and that for suitable
choice of the an for almost all choices of the arcs there are points not covered
by them. The first case we shall call the case of covering, the second of not

covering . an = 1+
c

where c > 0 was shown by KAHANE to be in the case of
n

covering. I proved (unpublished) that an = 1 is in the case of covering but
n

an - 1 - c
in the case of not covering . At present no necessary and suffi-

n
dent condition for the case of covering is known .

Let 2 1 b,,1 2 = 00 . It is well known that for almost all choices of
n=1

ERDÖS

m

En =

	

1, 2 -n b,, Z n diverges for almost all points of the unit circle . Sharpen-
k=1

ing previous results of DVORETZKY, he and I proved that if i b,, i >

	

then
n

for almost all choices of En = 1, Z En bn zn diverges for all points iz~= 1 .
n=1
m

We have an example of a series Z I bn i2

	

i bn+I i s 1bn 1 so that for
n=1

almost all choices of en =

	

1 there exists a z o , I z o i = 1, (zo depends on

the sequence En ) so that 2 En bn Zn converges . Perhaps every series satisfying
n=1

02 I bn

	

0 has this property.

A. DVORETZKY: "On the covering of the circle by randomly placed arcs ." Proc .
Nat. Acad. Sci. USA 42 (1956) 199-203 .

J. P. KAHANE : ' ,Sur le recouvrement d'un circle par des arcs disposés au hasard ."
Comptes rendus 248 (1959) 184--,186 .

A. DVORETZKY and P. ERDÖS : "Divergence of random power series ." Michigan
Math. Journal 6 (1959) 343-347 .

5) Denote by /(n, k) the number of random walk paths of n steps in
k dimensional space where we assume that the path does not intersect itself .
It has been obeserved that lim /(n, k)l/n = Ck exists, but no sharper inequalities

n=-
are known for f(n, k) even for k = 2 .

The expected position and distribution of the point after n steps has
also not been determined. It has often been conjectured that for k = 2 the
expected distances from the origin divided by n/= tends to 00 and divided
by n tends to 0, for k z 3 the expected distance was supposed to be O(ny=) .

I do not know the origin of these problems (probably applications in
polymer chemistry, I first heard of them in 1949) . See the forthcoming paper
of B. Rennie in the Publications of the Mathematical Institute of the Hun-
garian Academy of Sciences, Series A .

(Received October 5, 1960.)


	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34

