Reprint from

The Bulletin of the Research Council of Israel, Section F: Mathematics and Physics,
 August 1961, Vol. 10 F1
 THE ISRAEL MATHEMATICAL UNION

Theorem in the additive number theory

P. Erdös, A. Ginzburg and A. Ziv, Division of Mathematics, Technion-Israel Institute of Technalogy, Haifa
Theorem. Each set of $2 n-1$ integers contains some subset of n elements the sum of which is a multiple of n.

Proof. Assume first $n=p$ (p prime). Our theorem is trivial for $p=2$, thus henceforth $p>2$. We need the following

Lemma. Let $p>2$ be a prime and $A=\left\{a_{1}, a_{2}, \ldots, a_{3}\right\} 2 \leqq s<p$ a set of s integers each prime to p satisfying $a_{1} \neq a_{2}(\bmod p)$. Then the set $\sum_{i=1}^{s} \varepsilon_{i} a_{i}, \varepsilon=10$
or 1 contains at least $s+1$ distinct congruence classes. or 1 contains at least $s+1$ distinct congruence classes.

We use induction. If $s=2, a_{1}, a_{2}, a_{1}+a_{2}$ are all incongruent (since $a_{1} \neq a_{2}$, $a_{1} \neq 0, a_{2} \neq 0$). Thus the lemma holds for $s=2$. Assume that it holds for $s-1$, we shall prove it for s.

Let $b_{1}, b_{2}, \ldots, b_{k}$ be all the congruence classes of the form $\sum_{i=1}^{s-1} \varepsilon_{i} a_{i}$. By assumption $k \geqq s$. If $k \geqq s+1$ there is nothing to prove. Thus we can asvume $k=s<p$. But then since $a_{s} \neq 0(\bmod p)$ it is easy to see (see e.g. [1]) that at least one of the integers $b_{i}+a_{s}, 1 \leqq i \leqq k$ is incongruent to all the b 's. Thus the number of integers of the form $\sum_{i=1}^{s} \varepsilon_{i} a_{i}, \varepsilon_{i}=0$ or 1 is at least $s+1$, which proves the Lemma.

Let there be given $2 p-1$ residues $(\bmod p)$. Arrange them according to size $0 \leqq a_{1} \leqq a_{2} \leqq \ldots \leqq a_{2 p-1}<p$.

We can assume $a_{i} \neq a_{i+p-1}\left(\right.$ for otherwise $\left.\sum_{j=i}^{i+p-1} a_{j}=p a_{i} \equiv 0(\bmod p)\right)$ and that $\sum_{i=1}^{p} a_{i} \equiv c \neq 0(\bmod p)$. Put $b_{i}=a_{p+i}-a_{i+1}, 1 \leqq i \leqq p-1$. Clearly $-c \equiv$ $\sum_{i=1}^{p-1} \varepsilon_{i} b_{i}, \varepsilon_{i}=0$ or 1 is solvable. If the b 's are not all congruent this follows from our Lemma and if the b 's are all congruent the statement is evident. Clearly

$$
\sum_{i=1}^{p} a_{i}+\sum_{i=1}^{p-1} \varepsilon_{i} b_{i} \equiv 0(\bmod p)
$$

is the sum of $p a$'s. Thus our Theorem is proved for $n=p$.
Now we prove that if our Theorem is true for $n=u$ and $n=v$ it also holds for $n=u v$, and this will clearly prove our Theorem for composite n.

Let there be given $2 u v-1$ integers $a_{1}, a_{2}, \ldots, a_{2 v v-1}$. Since our Theorem holds for u we can find u of them whose sum is a multiple of u. Omitting these u integers we repeat the same procedure. If we repeated it $2 v-2$ times we are left with $2 u v-1-(2 v-2) u=2 u-1 a$'s and since our Theorem holds for u we can again find u of them whose sum is a multiple of u. Thus we have obtained $2 v-1$ distinct sets $a_{1}^{(i)}, \ldots, a_{u}^{(i)}, 1 \leqq i \leqq 2 v-1$ of the a 's satisfying $\sum_{j=1}^{w} a_{j}^{(i)}=c_{i} u, 1 \leqq i \leqq 2 v-1$. Now, since our theorem holds for v too, we can find $v c^{\prime}$'s say c_{1}, \ldots, c_{v} satisfying $\sum_{r=1}^{\infty} c_{r} \equiv 0(\bmod v)$.
But then clearly

$$
\sum_{r=1}^{v} \sum_{j=1}^{u} a_{j}^{\left({ }^{(r)}\right.}=u \sum_{r=1}^{v} c_{r} \equiv 0(\bmod u v)
$$

which completes the proof of our Theorem. Prof. N. G. de Bruijn gave a similar proof of the above Theorem.

The same proof gives the following result:
Let G_{n} be an abelian group of n elements and $a_{1}, a_{2}, \ldots, a_{2 n-1}$ are any $2 n-1$ of its elements. Then the unit of G_{n} can be represented as the product of n of the a 's.

We do not know if the theorem holds for non-abelian groups too.
refrrence

1. Landaw, Neuere Ergebsisse in Zahlen theorie.
