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An inequality for the maximum of trigonometric
polynomials

Let
n

fn(o) = I (a k cos W+ bk sin kO)
k=1

be a trigonometric polynomial with real coefficients . Put

M = max Ifn(t9)I0<9<2n

It immediately follows from the Parseval relation that
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S. Bernstein [1] gave an example of a polynomial for which
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and that
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n
2

	

2 112
M < C 1 (ak+bk)

k=1

k=1

and (2) and (3) holds. I conjecture that there exists an absolute constant
c > 0 so that

n
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M>	
c
(~(ak+bk))112 .

j 2 k=1

c <_ j/2 -1 as is shown by f (0) = cos 0. Perhaps c = j/2 -1 . In this note I
shall prove the following

THEOREM. Assume that
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max (maxlakl, lbkl) = 1
1--<k-<n
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2 2+bk) =In .
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Then there exists a e = cA > 0 depending only on A for which lim cj = 0
a-0

and

M > 1+cam (

	

(ak+bk))
1/2

~2 k=1

At present I cannot even prove that (1) holds for bk = O and a k = 0,
or +1 (i.e . for the polynomials EE k cosmkx) .

For rational polynomials one would conjecture that

(6)

2R

fo

where c i > 0 is an absolute constant, but I cannot even prove this for
Mk = k . In this direction D . Newman [2] ( 1 ) proved certain preliminary
results. His result implies n1 / 2 +el/n1 /2 instead of (4) . The analogon of (1)
is of course false here as can be seen by the polynomial z . The most that

n

one could hope is that if mag Ia kl = 1 and

	

Ia k l 2 = 1+B (i.e . if the
1-<k-<n

	

k=1
sum of the squares of the coefficients is appreciably greater than the
largest coefficient), then
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n
(5)

	

mag J
akzk 'q> (1 +cB) ( flak 1 2 ) 1/2

1z1 =1 k=1

	

k=i

It seems likely that (5) holds .
To prove our theorem we need three lemmas . Assume that fn ( ?~ ) is

a trigonometric polynomial satisfying (2) for which

n

maxR lfn(1%)I < 1	
2E
(I (ak+bk))i 1 y

	

(0 < E < 1) .2
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k=1

LEMMA 1. Let f n(P) satisfy (3) and (6) . Then the measure of the set
in 19 for which

(7)

is less than 20 8 1/2 .

n

Iln(?9 )I < 1	
~21/s (

	

(
a2k+bk))iJs-

T

( 1 ) D. Newman proves in fact that if in (4) mk = k and Q = f 1 then
n

f ix~ Ekzk I dz < Vn - c .
JzJ=1

	

=i

A slight modification of our proof would show that if fn (O) satisfies (2) and (3) then

Ifn(z%)Id0 < (1-c~)n1J2 .
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> (1+e,)n112,

	

IEkl = 1~ ; ' k=1



Denote by U the measure of the set satisfying (7). W e evidently
have for 8 < 1

0

2n

f fn(19) 2d1 _
0

2n

f fn(0) 2d~9
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2+ bk)
[7C + 3e7r- Ue1 2 ]

or
U < 37r81 /2 < 10 81/2 ,

which proves the lemma .
LEMMA 2 . Assume that (6) holds. Then

n (1+8)
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1+E 1/2 3/2mag Ifn(~) I <	
( ~, ( a- + b k )) =	A ~a

0<0<27
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mag Ifn(~) I
< n mag Ifn(ft
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LEMMA 3 . Assume that (2) and (3) holds . Then
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f fn(~)I dO % f
f
n
(0) 2

do( max 1 fn(~)1 ) 1> 2 3//22(1+8)0<0<2n

ak + k)

> 7r

	

2k2+27r(L n +1)2 ( 2n [ 2n ]) >A3 4
1<k<[An/2]
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This is a well-known theorem of S . Bernstein, which states that

The proof of lemma 3 follows immediately from the elementary
n

observation that if (2) and (3) are satisfied, then Y k2(a 2k+b k) is the
k=1

minimum if the a's and b's with the smallest possible indices are as large
as possible . That is if ak = bk = 1 for 1 < k < [An/2] .

Assume now that fn(O) satisfies (2) and (3) . From lemmas 2 and 3
we evidently have
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2n
f If' (0)1 dO is the total variation of fn(P) in (0,2n) . fn(~) is a trigonometric
o
polynomial of degree n, and thus it consists of at most 2n monotone
arcs. Hence its total variation on the set E for which fn (a~) is in the
intervals

(9 ) (1 , /~ 1/2 AI/2n 1/2 ,	

V 2E

A1/2n112) and (-	 ,2E A1/2n1/2 ' _ 1

Y 1/2

A1/2n1/21

is at most 4 (81/2+ s)A112n3/2' or

(10)

	

f I fn(O) 10 < 4A 1/2 ( E
+S

11'.. ) n 3/2 .
E

From (8) and (10) we have for E < A 4/1000 (E is the complement of E)

-/2423 2
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3/2

	

-45/2n3/2

(11)

	

L~ ' Ifn(t9)I dO >
23/2(1+8)

-4A

	

+8111 ) n > 10 .

From lemma 2 and (11) it follows that the measure of the set E (which
has been denoted by U in lemma 1) is greater than

( 12)

	

U >
A5r2n3/2 1+8A 1/2

n 3 /2

Y

1> A 2 .

10 ( 1~2

	

io
By assumption /.(0) satisfies (2), (3) and (6) . Thus from (12) and lemma 1

(13)

	

10£112 > A2/10

	

or

	

s > A4/10 000 .

(13) implies our theorem with cA, A4/10 000. It would be easy to improve
this value of c.A , but at present I see no way to determine the best possible
value of c.A .
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