An inequality for the maximum of trigonometric polynomials

by P. Erdös (Budapest)

Let

$$
f_{n}(\vartheta)=\sum_{k=1}^{n}\left(a_{k} \cos k \vartheta+b_{k} \sin k \vartheta\right)
$$

be a trigonometric polynomial with real coefficients. Put

$$
M=\max _{0 \leqslant \vartheta<2 \pi}\left|f_{n}(\vartheta)\right|
$$

It immediately follows from the Parseval relation that

$$
M \geqslant \frac{1}{\sqrt{2}}\left(\sum_{k=1}^{n}\left(a_{k}^{2}+b_{k}^{2}\right)\right)^{1 / 2} .
$$

S. Bernstein [1] gave an example of a polynomial for which

$$
M<C\left(\sum_{k=1}^{n}\left(a_{k}^{2}+b_{k}^{2}\right)\right)^{1 / 2}
$$

and (2) and (3) holds. I conjecture that there exists an absolute constant $c>0$ so that

$$
\begin{equation*}
M \geqslant \frac{1+c}{\sqrt{2}}\left(\sum_{k=1}^{n}\left(a_{k}^{2}+b_{k}^{2}\right)\right)^{1 / 2} . \tag{1}
\end{equation*}
$$

$c \leqslant \sqrt{2}-1$ as is shown by $f(\vartheta)=\cos \vartheta$. Perhaps $c=\sqrt{2}-1$. In this note I shall prove the following

Theorem. Assume that

$$
\begin{equation*}
\max _{1 \leqslant k \leqslant n}\left(\max \left|a_{k}\right|,\left|b_{k}\right|\right)=1 \tag{2}
\end{equation*}
$$

and that

$$
\begin{equation*}
\sum_{k=1}^{n}\left(a_{k}^{2}+b_{k}^{2}\right)=A n . \tag{3}
\end{equation*}
$$

Then there exists a $c=c_{A}>0$ depending only on A for which $\lim _{A \rightarrow 0} c_{A}=0$ and

$$
M>\frac{1+c_{A}}{\sqrt{2}}\left(\sum_{k=1}^{n}\left(a_{k}^{2}+b_{k}^{2}\right)\right)^{1 / 2}
$$

At present I cannot even prove that (1) holds for $b_{k}=0$ and $a_{k}=0$, or ± 1 (i.e. for the polynomials $\Sigma \varepsilon_{k} \cos m_{k} x$).

For rational polynomials one would conjecture that

$$
\begin{equation*}
\max _{|z|=1}\left|\sum_{k=1}^{n} \varepsilon_{k} z^{m_{k}}\right|>\left(1+c_{1}\right) n^{1 / 2}, \quad\left|\varepsilon_{k}\right|=1 \tag{4}
\end{equation*}
$$

where $c_{1}>0$ is an absolute constant, but I cannot even prove this for $m_{k}=k$. In this direction D. Newman [2] (${ }^{1}$) proved certain preliminary results. His result implies $n^{1 / 2}+c_{1} / n^{1 / 2}$ instead of (4). The analogon of (1) is of course false here as can be seen by the polynomial z. The most that one could hope is that if $\max _{1 \leqslant k \leqslant n}\left|a_{k}\right|=1$ and $\sum_{k=1}^{n}\left|a_{k}\right|^{2}=1+B$ (i.e. if the sum of the squares of the coefficients is appreciably greater than the largest coefficient), then

$$
\begin{equation*}
\max _{|z|=1}\left|\sum_{k=1}^{n} a_{k} z^{k}\right|^{\theta}>\left(1+c_{B}\right)\left(\sum_{k=1}^{n}\left|a_{k}\right|^{2}\right)^{1 / 2} \tag{5}
\end{equation*}
$$

It seems likely that (5) holds.
To prove our theorem we need three lemmas. Assume that $f_{n}(\vartheta)$ is a trigonometric polynomial satisfying (2) for which

$$
\begin{equation*}
\max _{0 \leqslant \vartheta<2 \pi}\left|f_{n}(\vartheta)\right|<\frac{1+\varepsilon}{\sqrt{2}}\left(\sum_{k=1}^{n}\left(a_{k}^{2}+b_{k}^{2}\right)\right)^{1 / 2} \quad(0<\varepsilon<1) . \tag{6}
\end{equation*}
$$

Lemma 1. Let $f_{n}(\vartheta)$ satisfy (3) and (6). Then the measure of the set in ϑ for which

$$
\begin{equation*}
\left|f_{n}(\vartheta)\right|<\frac{1-\varepsilon^{1 / 2}}{\sqrt{2}}\left(\sum_{k=1}^{n}\left(a_{k}^{2}+b_{k}^{2}\right)\right)^{1 / 2}=T \tag{7}
\end{equation*}
$$

is less than $20 \varepsilon^{1 / 2}$.
${ }^{(1)}$ D. Newman proves in fact that if in (4) $m_{k}=k$ and $\varepsilon_{k}= \pm 1$ then

$$
\int_{|z|=1}\left|\sum_{k=1}^{n} \varepsilon_{k} z^{k}\right| d z<\sqrt{n-c}
$$

A slight modification of our proof would show that if $f_{n}(\vartheta)$ satisfies (2) and (3) then

$$
\int_{0}^{2 \pi}\left|f_{n}(\vartheta)\right| d \theta<\left(1-c_{A}^{\prime}\right) n^{1 / 2}
$$

Denote by U the measure of the set satisfying (7). We evidently have for $\varepsilon<1$

$$
\begin{aligned}
\int_{0}^{2 \pi} f_{n}(\vartheta)^{2} d \vartheta & =\pi \sum_{k=1}^{n}\left(a_{k}^{2}+b_{k}^{2}\right)<U T^{2}+(2 \pi-U) \frac{(1+\varepsilon)^{2}}{2} \sum_{k=1}^{n}\left(a_{k}^{2}+b_{k}^{2}\right) \\
& =\sum_{k=1}^{n}\left(a_{k}^{2}+b_{k}^{2}\right)\left[\pi+\pi \frac{2 \varepsilon+\varepsilon^{2}}{2}-U \frac{2 \varepsilon^{1 / 2}+\varepsilon+\varepsilon^{2}}{2}\right] \\
& <\sum_{k=1}^{n}\left(a_{k}^{2}+b_{k}^{2}\right)\left[\pi+3 \varepsilon \pi-U \varepsilon^{1 / 2}\right]
\end{aligned}
$$

or

$$
U<3 \pi \varepsilon^{1 / 2}<10 \varepsilon^{1 / 2},
$$

which proves the lemma.
Lempa 2. Assume that (6) holds. Then

$$
\max _{0 \leqslant \vartheta<2 \pi}\left|j_{n}^{\prime}(\vartheta)\right|<\frac{n(1+\varepsilon)}{\sqrt{2}}\left(\sum_{k=1}^{n}\left(a_{k}^{2}+b_{k}^{2}\right)\right)^{1 / 2}=\frac{1+\varepsilon}{\sqrt{2}} A^{1 / 2} n^{3 / 2} .
$$

This is a well-known theorem of S. Bernstein, which states that

$$
\max _{0 \leqslant \theta<2 \pi}\left|f_{n}^{\prime}(\vartheta)\right| \leqslant n \max _{0 \leqslant \theta<2 \pi}\left|f_{n}(\vartheta)\right| .
$$

Lemina 3. Assume that (2) and (3) holds. Then

$$
\begin{aligned}
\int_{0}^{2 \pi} f_{n}^{\prime}(\vartheta)^{2} d \vartheta & =\pi \sum_{k=1}^{n} k^{2}\left(a_{k}^{2}+b_{k}^{2}\right) \\
& \geqslant \pi \sum_{1 \leq k \leq\lfloor A n / 2]} 2 k^{2}+2 \pi\left(\left[\frac{A n}{2}\right]+1\right)^{2}\left(\frac{A n}{2}-\left[\frac{A n}{2}\right]\right)>A^{3} \frac{n^{3}}{4} .
\end{aligned}
$$

The proof of lemma 3 follows immediately from the elementary observation that if (2) and (3) are satisfied, then $\sum_{k=1}^{n} k^{2}\left(a_{k}^{2}+b_{k}^{2}\right)$ is the minimum if the a 's and b 's with the smallest possible indices are as large as possible. That is if $a_{k}=b_{k}=1$ for $1 \leqslant k \leqslant[A n / 2]$.

Assume now that $f_{n}(\vartheta)$ satisfies (2) and (3). From lemmas 2 and 3 we evidently have

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|f_{n}^{\prime}(\vartheta)\right| d \vartheta \geqslant \int_{0}^{2 \pi} f_{n}^{\prime}(\vartheta)^{2} d \vartheta\left(\max _{0 \leqslant \theta<2 \pi}\left|f_{n}^{\prime}(\vartheta)\right|\right)^{-1}>\frac{A^{5 / 2} n^{3 / 2}}{2^{3 / 2}(1+\varepsilon)} . \tag{8}
\end{equation*}
$$

$\int_{0}^{2 \pi}\left|f_{n}^{\prime}(\vartheta)\right| d \vartheta$ is the total variation of $f_{n}(\vartheta)$ in $(0,2 \pi) . f_{n}(\vartheta)$ is a trigonometric polynomial of degree n, and thus it consists of at most $2 n$ monotonic ares. Hence its total variation on the set E for which $f_{n}(\vartheta)$ is in the intervals
(9) $\left(\frac{1-\varepsilon^{1 / 2}}{\sqrt{2}} A^{1 / 2} n^{1 / 2}, \frac{1+\varepsilon}{\sqrt{2}} A^{1 / 2} n^{1 / 2}\right)$ and $\left(-\frac{1+\varepsilon}{\sqrt{2}} A^{1 / 2} n^{1 / 2},-\frac{1-\varepsilon^{1 / 2}}{\sqrt{2}} A^{1 / 2} n^{1 / 2}\right)$ is at most $4\left(\varepsilon^{1 / 2}+\varepsilon\right) A^{1 / 2} n^{3 / 2}$, or

$$
\begin{equation*}
\int_{E}\left|f_{n}^{\prime}(\vartheta)\right| d \vartheta \leqslant 4 A^{1 / 2}\left(\varepsilon+\varepsilon^{1 / 2}\right) n^{3 / 2} . \tag{10}
\end{equation*}
$$

From (8) and (10) we have for $\varepsilon<A^{4} / 1000$ (\bar{E} is the complement of E)

$$
\begin{equation*}
\int_{\bar{E}}\left|f_{n}^{\prime}(\vartheta)\right| d \vartheta>\frac{A^{5 / 2} n^{3 / 2}}{2^{3 / 2}(1+\varepsilon)}-4 A^{1 / 2}\left(\varepsilon+\varepsilon^{1 / 2}\right) n^{3 / 2}>\frac{A^{5 / 2} n^{3 / 2}}{10} \tag{11}
\end{equation*}
$$

From lemma 2 and (11) it follows that the measure of the set \bar{E} (which has been denoted by U in lemma 1) is greater than

$$
\begin{equation*}
U>\frac{A^{5 / 2} n^{3 / 2}}{10}\left(\frac{1+\varepsilon}{\sqrt{2}} A^{1 / 2} n^{3 / 2}\right)^{-1}>\frac{A^{2}}{10} . \tag{12}
\end{equation*}
$$

By assumption $f_{n}(\vartheta)$ satisfies (2), (3) and (6). Thus from (12) and lemma 1

$$
\begin{equation*}
10 \varepsilon^{1 / 2}>A^{2} / 10 \quad \text { or } \quad \varepsilon>A^{4} / 10000 . \tag{13}
\end{equation*}
$$

(13) implies our theorem with $c_{A} \geqslant A^{4} / 10000$. It would be easy to improve this value of c_{A}, but at present I see no way to determine the best possible value of c_{A}.

References

[1] S. Bernstein, Sur la convergence absolue des séries trigonométriques, Comptes Rendus 158 (1914), p. 1661-1663.
[2] D. J. Newman, Norms of polynomials, Amer, Math. Monthly 67 (1960), p. 778-779.

