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1. Introduction. In this paper ti-e are going to give a classification
of denumerable order types, namely we are going to prove that every
order type of a denumerable set which does not contain a dense subset
can be built up from the order types 0, 1 by a transfinite induction process
taking at every step the so-called (o-sic-m and *-stem of order types
previously defined . Thus every order type O of such kind can have an
ordinal number o (O) less than o) 17 called the rank o f O, associated with
it-and several properties of denumerable order types can be verified
by carrying out a transfinite induction on Q(0) ( 1 ) .

As an application of the above-mentioned result a problem in the
partition calculus for sets will be solved . Finally we are going to state
some unsolved problems concerning non denumerable types ( 2 ) .

2 . Notations. Definitions . We are going to use the usual no-
tations of set theory and we list only those where there is a danger of
misunderstanding .

Capital Roman letters denote sets, x, y, . . ., a, b, . . . denote elements
of sets, a, (3, denote ordinal numbers, O, 99, 0 denote order
types, n, k, i denote non-negative integers . -No distinction will be made
between finite cardinal numbers and ordinal numbers .

21 will denote the type of rational numbers ordered according to
magnitude .

X, ~ denote the cardinal number of X and T' respectively .
If S is a set ordered by a relation R, then for an arbitrary pair

x, y E S "x is less than y" will be denoted by x < y (R) and the order
type of X will be denoted by X (R) . If there is no danger of misunder-
standing (R) will be omitted .

(1 ) This classification seems to be so simple and natural that probably it is already
described somewhere in the literature ; however, the authors have been unable to find it .
Therefore it seems worthwhile to rive the proofs in detail .

(3) For another application of the classification see (1] .
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If an ordered set of type 0, contains a subset of type 0 2 we briefly
write 02 - 01 .

If S is a set ordered by the relation R and A, B C S then A B(R)
denotes that

a< b (R) for every pair a e A, b E B .

DEFINITION 2 .1. Let Z be a set 2 = T (T) and let Ox bee defined
for every x E Z. We define O = Z Ox as usual in the following way .

XCZ

Let 8x be a system of disjoint sets ordered by the relations Rx such that
AS;T = Ox (Rx ) for every x E Z. Then O is the type of the set S = U Sx

XEZ

ordered by the following relation R .
Let a, b E S, a E Sx , b E 5,,, a < b(R) if and only if either x < y(T)

or x = ?f and a < b (Rx ) .
It is well known that O depends only on the ordered set Z and on

the function Ox .
O will be briefly termed a sure of type 9) of the Ox's .
If T = w or (p = a)* we may denote the Ox's by O,, and we can speak

of the co-sunz, or w*-sum of the sequence

	

which will be denoted by

0, -; . . . + 0" -	+ 0.,, =- . . . = Oa ,

	

respectively .

R e m a r k s . 1 . It O, = y, for every x E w, then 0 depends only on 99
and r, , and %will be denoted by

	

~, as usual .
2 . Note that some of the Ox's may be equal to 0, and thus, e .g .

co < Oo + . . . + 0,z + . . . does not follow from Definition 2 .1 .
Now we are going to redefine the partition symbol defined in [2]

in the special cases needed for our purpose .
Let [X]"n denote the set IY : T C X and I = na}

DEFINITION 2.2 . 0 1 - (0,", O3 ) 2 indicates that the following statement
i true .

Whenever S is in ordered set, S = 0, and [S] 2 = I1 1, is a partition
of the set [S] 2 , then either there exists a set S' C S, S' = 0 2 such that
[S']2 C 11 or there exists an S" C S, S" = 03 such that [S" ] 2 C I2 .

O i v (0" 03 )' denotes the negation of the above statement.
If )ra 17 na27 rn. 3 are cardinal numbers, then the symbol 7n 1 -->-(rn. 27 m3 )2

has a similar self-explanatory meaning.
However, in this paper we are going to deal with the case when

types and cardinals may appear in the same symbol .
DEFINITION 2 .3 . Let O, 0, be types and let m be a cardinal number .
O-*(017 in)" indicates the following statement. Whenever S is an

ordered set, S = O and [S] 2 = 11 '-12 is an arbitrary partition of [S]2,
then either there exists an S' C S, S' = 0, such that [S']2 C 71 or there
exists an S" C S, S" = na such that [S"] 2 C I2 .
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(01',„1)2 indicates the negation of this statement .
The symbol just defined has the following obvious monotonicity

properties

0-_, (0I , )tt) 2

	

implies 0'--,(01, nt)2

	

for every 0 < 0' ,
O (017 m)2 implies

	

0 (O í, 7n')2 for every 01 < 017 111' < m .

3 . Classification of the denumerable order types . Let S
be an ordered set ordered by the relation R, and let a. b (R) be two
arbitrary elements of S . (a, b)(R) denotes, as usual, the interval
{x : x E S and a. < x < b(R)} . The ordered set S is said to be dense if (a, b) 0
for every pair a < b E S. The order type 0 is said to be a discrete type if
S = 0 and S does not contain a dense subset .

Let 4 denote the set of all denumerable order types and let ,D be
the set of all discrete denumerable order types and put 4s = 4-

4D-Considering that every denumerable dense set is of type )j, 1=, q,
yl + 1, or 1 + 77 + 1, the following statements are immediate consequences
of the above definitions .

3 .1 . If 0 E _J them 0 E JD if awed only if

	

0 and 0 E 4s if and only

1)

	

0 .

Now we are going to define a class 0 of denumerable order types .
DEFINITION 3 .2 . We define the classes 0„ for every o < co, by trans-

finite induction on o as follows . O o consists of 0 and 1 . Suppose that 0e
is defined for every o' < o for a o < w1 . Put G„ _ U 0é . Let 0. consist

of the o)-sums and of the co*-sums of the sequences 0 0 , . . ., 0,, . . . satis-
fying the condition 0,, E G, for every n < w .

It is obvious that O a C . . . C Oo C . . . for o < 0' . Put 0 = J Oe .
e<u,

Then there exists a least o < w,, corresponding to every 0 E 0, such
that 0 E 0 9 . Put o = 0(0) for this o . 0(0) will be called the rank of 0 .

The main aim of this section is to prove the following
THEOREM 1 . The discrete denumerable order types coincide with tile
elements of 0 and the no-n-discrete ones are s- ms of type 11, 1 ty, 1) l, or
1 -i- 7j + I of non-vanishing discrete ones .

To prove Theorem 1 we have to verify the following statements .
3.3 . 0 = í'D .
3 .4. I f 0 E 4s the-it there exists a function Ox defined on a set Z of

type rt (or 1 fi 77, or ij + 1, or 1 + rt + 1) satisfying the conditions Ox

	

0,

0x E 0 for every x E Z and 0=

	

0x .
xeZ

Before proving these we need some further preliminaries .
3.5 . Every order type 0 E 0 of rank o(0) > 0 is either the w-sum or

the w-8-ion of order types 0,, E 0 of rank less than o(0) .
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In fact, 0 E 0é implies e (0) < o', hence the statement follows
from 3 .2 .

Considering that 0 and I are discrete types and that the o-) -sum as
well as the co*-sum of discrete types is again discrete, it follows from 3 .5
by transfinite induction on 9 (0) that the elements of 0 are discrete types,
i.e. we have

3.6 . 0 C 4D .

To prove the inverse inclusion we need another classification of the
elements of -ID-

Let S be a set ordered by a relation R.

DEFINITION 3.7 . The collection S* of subsets of S is briefly said
to be a splitting of S if it satisfies the following conditions :

UX=S,
X ES *

and either X < Y(R) or Y < X(R) for every pair X - Y E S* .
Then S* may be considered as a set ordered by the relation R*

defined by the stipulation

X < Y(R*) if and only if X < Y(R) .

Let S*(x) denote for every x E S the uniquely determined element
of S* for which x E S*(x) .

Let Si, S* be two splittings of S . Si is said to be a refinement
of S* if Si (x) C S*(x) for every x E S. Si is a proper refinement of S* if
there is an x E S such that Sl (x) C S*(x) 2 .

DEFINITION 3 .8 . Let (S*)~ <a be a sequence of splittings of S such
that S#* is a refinement Sst, for every < ~' < a . Put S,(x) = U Sg(x) .

Then the set Sá, which consists of all different Sá (x)'s, is a splitting of S
called the sum of Se's and every So* is a refinement of it .

Proof. If Sá(x) = S0*(y) for a (3 < a then So,(x) = Sp,(y) for every
C g' < a, hence S. (x) = Sa(y) . If Sg(x) So(y) for every < a and,

for instance, x < ,y(R), then by 3.7,

and thus
SP*(x) < SP*(y) for every fl < a

Sa*(x) < Sa*(y)(R)

DEFINITION 3.9 . Let S be an ordered set .
Put AT(x) _ {y : (y < x and 1(yx)I < s,) or (x < y and I(xy)! < No)}.

It is easy to verify from 3.7 and 3 .9 that the set S', which consists
of all different IV(x)'s, is a splitting of S which satisfies S'(x) = -J-V(x)
for every x E S, and it is easy to see that

3.10 . S'(x) (R) = N (x) (R) is co, co *, r)* 4-- w, or finite for every x E S .
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DEFINITION 3 .11 . Suppose now that S is a set ordered by R and
that S* is a splitting of it . Consider the set S* ordered by R* . Apply to
it the operation defined in 3 .9 . Then w e get a splitting S*' of it . Define
the splitting S" of S induced by S* by the stipulation

811(
X) =

	

U

	

S*(y)
sw(~) E ~'(S•ix) i

It is obvious that S" is a splitting of S and S* is a refinement of it .
On the other hand. it follows immediately from the definitions 2 .1,

3 .10 and 3.11 that
3.12 . Under the notations of 3 .11, S"(x)(R) is an co-sum, an co*-sum,

an w* rcu-sum or a finite sum of the order types S*(y)(R) for S*(-y)
E N (S*(x})

DEFINITION 3 .13 . Let S be a denumerable set ordered by the re-
lation R, S = O (R) .

We are going to define a sequence Sá of splittings of S for every
a < o), by transfinite induction on a as follows .

Define S0* by the stipulation Só (x) _ {x, for every x E S. Suppose
that 0 < a < wl and that S0* is defined for every fl < a in such a way
that S0*- is a refinement of S3 for every fl' < 13 < a . Distinguish two cases

(i) a= y+ 1 for a y< a .

(ü) a is of the second kind .
In case (i .) let Sa be the splitting S" of S induced by S; (defined

in 3.11) .
In case (ü) let Sá be the sum of the splittings S,* ((3 < a) (defined

in 3 .8) .
It follows from 3 .8 and 3 .11 that Sf is a refinement of S, for every

13 < a in both cases, and thus Sa* is defined for every a < w l .
Put T(0, a) = Sa (Ra) for every a < wl .
In the rest of this section S denotes a fixed, non-empty denumerable

ordered set, S = O (R) . We need the following lemmas .

3.14 . If S; = S*+1 tor, a y < wl then either 99 (O, y) = 1 or T( 0- , ;r)
= r1 (or 1+r), or q+1, or 1 r1+1) .

Proof. By 3 .13, S,+l is the splitting S" of S induced by S ; defined
in 3.11 . But then by 3.11

S,*,+ 1 =

	

U

	

$*( :t/)

	

for every

	

x E S .
SY(J)EN(S*(x))

This means by 3.9 that in the ordered set SY(R*), 1b' (X) _ {X } for every
X E SY . But then again by 3 .9 either S .; contains exactly one element or,
for every pair X < Y E S* . I(X, Y) (M,)I > o . But this means that S* is
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either of type 1 or dense, and-being denumerable-it is of type q (or
1+-rt, or 7j+1, or 1-, .q-4-1) .

-Tow we prove that
3 .15 . There exists an ordinal number y, < w l such that S*o = S*p+l .
Proof. By the definitions 3 .7 and 3.11 corresponding to every

element x of S, S*(x) is a non decreasing sequence of subsets of S, and
thus-S being denumerable-there exists a y (x) < wl such that S*(x) = S*
for every > , , (x) . Using again the fact that S < do we infer that there
exists a y o < co, such that yo > y ( x) for every x E S and consequently S*.,(x)
= AS,;o ~(x) for every x e S, whence S,* = S;*~T ~ .

DEFINITION 3.16 . By 3.15 we can make the following definition .
Let y(O) = y be the least ordinal number y < wl for which S* = S*+l .
y(0) will be called the order of O .

remark . It is obvious from the above considerations that So* is
a: proper refinement of S* for every ( < a < y (0) and that S* (e ) = S.*
for every y > y(O) . It follows that the sequence g!(O, y) is non-increasing
(cp(O, ) < (O, for ; > y') but it is not strictly decreasing even if O
is ,in ordinal number . For example, put O

	

S = (ww) . Then
(ww) = o-), y. (o')w , w ) = 1 but V (c)w , n) = cow for every integer

By 3.14 we have V( O, y (O)) =1, )7, 1--i) i ip 1 or 1+)j+1 . Con-

sidering that S.,**(x)

	

0 for every x E x5', y < w l , IT (0, y(O)) T 1 implies
~~

	

O. It follows from 3 .1 that

3.17 . -If O E 4D then T (O, Y (O)) = 1 .

Vow we need preliminaries concerning the class 0 .

3.18 . Suppose that Z = , ~VE 0, and O, E 0 for every x E Z. Then
0= S OX E0 .

;f.EL

Proof: By induction on 0(9?) . The statement is obvious for p(T) = 0 .
Suppose that it is true for every type T,' with P((p)' < P for a 0 < Q < wz .

Then, by 3.5, Z is either the co - sum or the o)* - sum of the sets Zn
of type T,, of rank less than o .

The types On = Z O„ then belong to 0 by the induction hypothesis
XEZ,l

and O is either the o) -sum or the co* -sum of them, whence O E 0 .

3 .19 . a, a* E 0 for every a < w, .
Proof. By symmetry it is enough to prove this for a . We use in-

duction on a. O .E 0 and if a > 0 then either a = # + I or a is of the second
kind and consequently is cofinal with a). Hence in both cases it is the
co-sum of ordinals less than a which belong to 0 by the induction hypo-
thesis .

Now we are going to prove that
3.20 . JD C 0, 'T (0, y (O)) = 1 implies 0 E 0 for every 0 E 4 .
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Proof . If O E dD then, by 3.17, cp(O, y(O)) = 1. We are going to
prove by induction on y (0) that T, (0, y (O)) = 1 implies O e 0. If y (0) = 0
then, by 3 .13, S(R) = So (Ro) = 1, whence O = 1, O E 0.

Suppose that y (0) = y > 0, y < co, and that O' E 0 for every 0
provided y(O') < y and q? (0', y(O')) = 1.

We distinguish two cases : (i) y = # + 1, (ü) y is of the second kind .
Ad (i) . S* = 1 (R*) . Hence S*(x) = S for every x E S. By 3 .13,

S* is the splitting S" of $ induced by the splitting S;* (defined in 3 .11)
and thus

S = SY(x) =

	

U

	

SO(y)
8d(y) e N(S;(x»

It is obvious that the order of the sets S ;(y) ordered by R is < p < y,
and thus S*(y) (R) belongs to 0 by the induction hypothesis . Considering
that by 3 .12 O is the co - sum, the w* - sum, the w* + w - sum, or a finite sum
of them, O belongs to 0 .

Ad (ü) . S* = 1 (R*), whence by 3.8 and 3.13 S = S**(xo ) _

	

Sá(xo )

for an arbitrary fixed x,, e S. Considering that the order of every Ss(x)
is < Í3 < a, we infer from the induction hypothesis that S,*(x,) (R) belongs
to 0 for every # < a. Put

AO _ {x : x E S and x < x, (R) and x E 80(xo)- U S;*'(xo)J

BO ={x: x E S and x>x, and xES,3(xo)-USá(xo )f .
91<9

Considering that every section of an element of 0 belongs to 0, we
get Ap(R), BO(R) e 0. y, y* E 0 by 3.19, hence the sum of type y or y*
of the sets BO , A~ as well as their sum O belongs to 0 by 3.18 .

3.6 and 3.20 prove 0 = 4D, hence 3.3, which is the first part of
Theorem 1, is proved . If we replace in Definition 3.2 the o-)-sums and
w*-sums by w*+w-sums, then it, is easy to verify that 2(O) = y(0)
for every O E 0 = 4D , butt we do not need this and so we omit the proof .

r~ =1 or 1 T tÍ + 1 . By the definition 3 .7, S* consists of the different S*(x)'s
for x c S and thus by the definitions 2 .1, 3 .7, O the type of S(R) is an

77, 1 + il l i7 + 1 or 1 +)I + I sum of their types . Thus to prove 3 .4 it is suf-
ficient to see that S,*(x) (R) E 0 for every x E S. Put Ox = S*(x) (R) . It
is obvious that y(Ox) y and q.,(Ox , y ) = 1, whence rp(OX , y(0,,,)) = 1
and consequently Ox E 0 by 3.20 .

Thus the proof of Theorem 1 is finished .

Vow we are going to prove 3 .4 . Suppose that O e 4s , y(O) = y .
Then n < O by 3 .1 . By 3.20, q (O . , (0)) = I implies O e 0 = 1D, whence
we have (0,

	

+ n n + l or 1 TÍ + 1 . Thus S* (R*) _ ~Í, 1 + li,
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It is obvious that the above constructions can be generalized to
non-denumerable ordered sets . If in the definition 3.2 we replace the w-

and w*-sums by wQ - and o),-sums we get a class 0(m.) of order types of
power at most sQ (0 = O(so)) . One can associate with every 0 E O(NJ
a rank P (0) < w,_}. 1 and one can prove in the same way as in case a = 0
that O (s,,) consists of all discrete types of power at most s,, and further
that every type O sQ is a sum 10, of discrete types where the ordered

xeZ

set Z is dense .
However, here the dense sets cannot be characterized so simply

as in the case of denumerable sets and therefore we do not give the detailed
proof of this result .

4. Results concerning the partition symbol . As a con-
sequence of the well-known theorem of Ramsay we have K o ~(xo , so) 2

and this clearly implies w xo )2 and so ) 2 . On the other hand,
it is proved in [2] that 7)-,(q, s o )2 holds. Considering that 0 < n for every
denumerable type, it follows that

0 -~ (0, so)2 holds for every 0 E ds .

The following problem arises now : are there any other denumerable
order types 0 satisfying 0 (0, s o ) 2 ? We are going to prove that the
answer is negative .
THEOREM 2 . If 0 E 4 then 0 (0, s o ) 2 holds if and only if 0 = w
or O=w* or 7) <0.

We have to prove that if 0 E 4 D and 0 - w or O w*, then 0-- (0, so )2
holds .

Instead of this we are going to prove the following
THEOREM 3. Suppose 0 E 4D . Then there exists a partition [S] 2 = I, v

12 of [S]2 satisfying the following conditions :
(a) Whenever S', S" C S, S' < S", S' = S" = so, then

[S', S"] 2

	

I,

	

where

	

[S', S"]2 = {{xy} : x c S' and y' E S"f .

(aa) Whenever S' C S, S' = so , then

[S']2

	

I2 .
First we prove that Theorem 3 implies Theorem 2 . The implication

is obvious if 0 CAD is such that w • 2 < 0, w* • 2 < 0, w* + w < 0 or
w + w* < 0 . But it is easy to see that if none of these conditions hold,
then either 0 = w + n or 0 = n + w*, and a trivial construction shows
that w + n -- (w + n, N0 ) 2 , n + w *

	

('n + w* , X 0 ) 2

Proof of Theorem 3 : By Theorem 1 . 0 = 4D, hence we may
prove our theorem by induction on p(0) = g . For e = 0, 0 = 0 or
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0 = 1 and the statement is trivial. Suppose that e = Q(0) > 0 and that
the statement is true for every order type D' E 4D of rank less than O .

By 3 .5 there exists a sequence 0,,,E 4 of types of rank less than
such that 0 is either the w - sum or the w* - sum of the sequence ( On}n<w .
By symmetry, we may suppose that

(1}

	

D = Do+ . .+O,t+ . . .

Then there exists a sequence (Sn},z<W of subsets of S satisfying the
following conditions :

(2) U Sn, = S , Sn < Sn' and Sn = 0,,. , provided n < it' < ru .
n<m

By the induction hypothesis, for every n < w there exists a partition
[Sn] 2 = Ii +I2 of the Set [Sn] 2 satisfying the following conditions :

(3)	Whenever S', S" C S,z, S'< S", S'= S" = x o , then [S', S"]2 ~
In .

(4)

	

Whenever S' C Sn, S' = x o , then [S']2

	

I2 .

The sets Sn are denumerable, whence there exists a & < w such that

(5)

	

Sn = {xn,k}k<e„

	

(if Sn is empty 6n = 0),

xn,k 1 4. -'On, k'

	

for

	

k•

	

k' < Sn ,

Define the partition [S] 2 = h v 12 of [S]- as follows .

(6)

	

Let {x, y} E [S] 2 be arbitrary . Then x = x,,,,k , y = xn -, k, o some
k < S n., k' < bn- .

Distinguish two cases : (i) n = 'n', (ü) n

	

n' .
In case (i) put {xn,k, xn',k'} E I; if and only if

{x n , k , x„',x`} E I';

	

for

	

j = 1, 2 .

In case (ü) we may suppose n < n' and put

{x,,,k, xn',k'} E I,

{xn,k, xn',k'} E 12

if and only if

	

k < k' ,

if and only if

	

k > k' .

Suppose now that S', S" C S, 8'< S", S' = S" = x, . Then by (2)
there exist -np < nó such that 8' . Sno = x, and S" • Sn , = m, .

If no = no then [S', S"]2 ~ I, by (3) and (6) . If 'no < no, then there
is a ko such that 0q%'kp E S", and considering that S' . Sno = xo there is
a ko > kó such that x„,,, k , E S', whence {xn,,,k,, xn o,ko} É I, by (6), and con-
sequently [S', S"] 2 I, also in this case . This proves that (a)holds .

Suppose now, that S' C S, ' = xo and [S'] 2 C 12 . Then S' . Sn < xo
for every n < w by (4) and (6) . Hence there exists an increasing sequence
{n;} ;<w of integers such that {xn,k,,,,} ;<. C S' . But then [S']2 C 12 would
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imply by (6) that k., > kn,- for every

	

< o.), but this is a contra-
diction, whence (aa) holds . Q.e.d .

We obtain from Theorem 3, the following

COROLLARY 1 . 0 (0', N0)2 for every 0 E JD provided 0' w + n or
0'

	

n 1- w*.

Thus to complete our results it would be necessary to decide under
what conditions for 0 we have O , (W+n, h0)2 or O~(n U)*, x0)2 for
1 < n < w . Here we have the following

THEOREM 4 . (a) 0 ,(oj+17,, 8 0 ) 2 if and only if u~ •w*

	

0 .

(b) 0~(n--w*, t4 o ) 2 if and only if w*-w < 0 for every 1 < n < e)

and for every denumerable type 0 .

Proof (in outline) . By symmetry it is sufficient to prove part (a)
of our theorem . First we prove the negative part of it .

(1)

~'~) S=USv,
Y<4

(1)

0> «I) + 1, .;0 ) 2

	

provided

	

w - w* - 0.

By w • w* A 0, 0 is discrete and by Theorem 1 it has a rank o (0) . It is
easy to verify, for example by induction on g (0), that 0 is of the form

Y, pv , where a and (, (v < a) are ordinal numbers .
v<a

Suppose S = 0 (R) . Then there exists a sequence {S,}v<Q of subsets
of S satisfying the following conditions .

S v = /3* (R) ,

	

Sv < Sv , (R) for every v < v' < a .

Let _W (a) _ {v.j,,<u, be a well-ordering of type w of the denumerable
set W(a) .

Define the partition 1,-" 12 of [S]2 as follows . Let {x, y; E [S]2 be
arbitrary. Suppose X E S,n , y E S,„',

{3)

	

Put {x, y} E h if v,,, = vn , . If v,, # v .,,, , and, for instance, n < ra', put
{x, y} E I, if v z < vn , and put {x, y} E h if vn > vn"

_ Suppose S' C S, [S']2 C h, S' w +I (R). Then considering that
wn = (3v, (R) for every n < w we have S' . Sv ,, < w for every n < w . Thus
we may suppose 8'- S,,n = 1 for every •n < w and then, by (3), S' < w (R),

which contradicts our assumptions . Hence we have

S' C S' ,

	

[S']2 C h

	

implies that

	

S'

	

w-17 I .

On the other hand, suppose that S' C S, [S'] 2 C L, . Then 8'- S,. = 1 for
every to < w by (3) .



(5)

	

$, C$,

(4) and (5) prove (1) .
To prove the positive

to prove
(6)

	

w w*- . (u~) L n, ,o )

	

for every-

	

~1 < w .

For n = 0 this follows from Theorem 2 . We prove it by induction
on n for every n < a) . Suppose that the theorem is true for an n < o)
and let S be an ordered set S = o) • w* (R) .

Put

(8)
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Then S' _ s o would imply by (3) the existence of a decreasing in-
finite sequence of ordinal numbers, which would be a contradiction ;
thus we find that

[S ' ] 2 C I,

	

implies

	

S' < s„ .

part of part (a) of Theorem 4 it is sufficient

-TI (x) _ {y : y E 8 , y < x (R) and

T2(x) _ {y: y E S , y < x (R) and {xy} E I2 }

{xy} E h; ,

for an arbitrary x E S. It is obvious that either T,(x) = w • w* (R) or
T 2(x) = co • w* (R) for an arbitrary x E S. Suppose that T,(x) = w • w* for
an x E S. Then by the induction hypothesis there exists a subset S' C T,(x),
S' = w + n (R) such that [S'] 2 C h, and then S" = S'+ {x} satisfies the
condition
(7)

	

S"CS,

	

[S"]2 C I,,

	

S"= w +11,, +1(R) .

Thus we may suppose that T,(x) (R) < o-) • w* for every x E AJ .

We define a sequence {xk}k, . by induction on k, xp is an ar-
bitrary element of S. Suppose that xo , . . ., x k are already defined ; then
Ti(xp ) v . . . v Ti (xk ) (R) < w • w*, whence there exists an xk-1 1 E S such that
xk+I E T2(xa ) for every i < k -{- 1. The set S' _ { xk} j.,, then satisfies the
condition

S' C S ,

	

S' = No ,

	

[S']2 C 12 .

(7) and (8) prove (6) and thus Theorem 4 is proved .
As to the case of non-denumerable types, the problems are more

difficult. Generally one can ask the following question : which are the
order types D, O = p satisfying the condition O ~ (0, na) 2 ? It is obvious
that if we have p

	

(p,,z)2 , then there are no such order types. Thus the
genuine cases are when the corresponding partition symbol for cardinals
is true .

For the results concerning this symbol see [2] (a complete discussion
of it will be given in a forthcoming paper by P. Erdős, A. Hajnal and
R. Rado) .

If m > x,, then we have m » (m, •m ) 2 , at least if in is not strongly
inaccessible, and it is not known whether m-~(m, m)2 holds for any m > ,z o .



128

	

P. Erdős and A . Hajnal

Thus a direct generalization of the question treated in Theorem 2 cannot
be asked .

However, using the generalized continuum hypothesis, one can
prove that

xQ+1 _(xa+1 j X Q ) 2 is true provided xa is regular ( 3 ) ,

and this implies that

0-->.(O, N Q ) 2 holds provided O = wQ+, or O = wa+, .

P. Erdős and R. Rado have proved (4 ) that the same is true for
O = i)Q+, provided x Q is regular and the generalized continuum hypothesis
holds where q,+, is the normal type of power 28' given by Hausdorff ( 5 ) .

It is not known whether there are other types i1a+1 O of power
xa+, (= 2"') for which O (O, xa ) 2 holds .

Thus the simplest unsolved problem is

PROBLEM 1 . Suppose that (2 x° = NJ, O = xl . It is true that
O (O, x o )2 holds if and only if 0 = o), or O = a)1 4 ! or ~1 O

Remark. Using the methods of this paper it is easy to prove that
under the condition of Problem 1 O_/_> (O, x o ) 2 holds for every discrete
type O .

We would like to mention a few further results without proof .
colw*-*(wl-;-a, xo ) 2 for every a < col , but oj lw*-1> (co, .2, x o ) 2 ; in fact the
same holds if wlw* is replaced by any discrete type .

We further have w2" > (w 2 á-9b, x1 ) 2 for every n < w provided the
generalized continuum hypothesis holds. We can not decide whether
w201-->(a)2+c0, x 1 )2 is true or not . Clearly many more problems could
be stated, but we do not discuss them here .

The investigation of the statement 0 -> (0', 9a) 2 for n < w leads to
more ramified problems, even in cases where 0 is a denumerable ordinal
number or order type. For a recapitulation of problems and results of
this kind see a forthcoming paper of E . C . 'Milner and R . Rado and [4] .

Here we mention only one problem of this kind . Let 2 denote the
order type of the continuum . It is easy to see that for every 0 ~< A, > No
we have 0=H (0, 3)2 provided 2x° = x l . It would be interesting to charac-
terize those non-denumerable order types for which 3)2 holds .
Although we have x l -->(x,, 3)2 , we do not even know whether such O's
exist .

( 3 ) For singular NQ's this is false .
(°) See a forthcoming paper of P . Erdős and R . Rado .
( 5 ) See [3], § 8, Normaltypen .
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