ACCAḊ̇MIA NAZIONALE DEI LINCEI

Estratto dai Rendiconti della Classe di Sciense fisiche, matematiche e naturali Serie VIII, vol. XXXIII, fasc. 3-4 - Ferie - Settembre-Ottobre 1962

Teoria dei numeri. - On a problem of Sierpinski. Nota ${ }^{(*)}$ di Paul Erdös, presentata dal Socio straniero W. Sierpiński.

Let n be a positive integer and denote by $s_{n}^{(k)}$ the sum of the digits of n written in the k-ary system, and denote by $2=p_{1}<p_{2}<\cdots$ the sequence of consecution primes. In a recent paper Sierpiński [1] investigated $s^{(k)}\left(p_{n}\right)$; he proves, among others, that for every k

$$
\begin{equation*}
\lim _{n=\infty} \sup s^{(k)}\left(p_{n}\right)=\infty \tag{I}
\end{equation*}
$$

and immediately deduces from (I) that for infinitely many n

$$
\begin{equation*}
s^{(k)}\left(p_{n_{-1}}\right)>s^{(k)}\left(p_{n}\right) . \tag{2}
\end{equation*}
$$

The question whether for infinitely many n the opposite inequality holds i.e. whether for infinitely many $n s^{(k)}\left(p_{n}\right)>s^{(k)}\left(p_{n-1}\right)$ remained open. In the present note we shall settle this question of Sierpinski by proving the following

Theorem. - For every k there are infinitely many n for which

$$
s^{(k)}\left(p_{n}\right)>s^{(k)}\left(p_{n+1}\right) .
$$

I can not decide if $s^{(k)}\left(p_{n}\right)=s^{(k)}\left(p_{n+1}\right)$ has infinitely many solutions. Sierpiński [r] deduces this from a conjecture of Schinzel [2]. Presumably
(3) $\quad \lim _{n=\infty} \sup \left(s^{(k)}\left(p_{n+1}\right)-s^{(k)}\left(p_{n}\right)\right)=\infty$ and $\lim _{n=\infty} \inf \left(s^{(k)}\left(p_{n+1}\right)-s^{(k)}\left(p_{n}\right)\right)=-\infty$ and even

$$
\begin{equation*}
\lim _{n=\infty} \sup \left(s^{(k)}\left(p_{n+1}\right)^{(k)} s_{n}^{(k)}\right)=\infty \text { and } \lim _{n=\infty} \inf \left(s^{(k)}\left(p_{n+1}\right)_{s\left(p_{n}\right)}^{(k)}\right)=0 \text {, } \tag{4}
\end{equation*}
$$

but I can not prove (3) or (4). In fact I can not disprove

$$
\left|s^{(k)}\left(p_{n+1}\right)-s^{(k)}\left(p_{n}\right)\right|<\mathrm{C}
$$

and

$$
\lim _{n+\infty}\left(s^{(k)}\left(p_{n+1}\right)_{j s\left(p_{n}\right)}^{(k)}\right)=1 .
$$

Put $d_{n}=p_{n+\mathrm{T}}-p_{n}$ Turán and I [3] proved that $d_{n+1}>d_{n}$ and $d_{n}<d_{n+r}$ have both infinitely many solutions and that $\lim _{n=\infty} \sup d_{n+1 / d_{n}}>\mathrm{I}$, $\lim \inf d_{n-\mathrm{z} / d_{n}}<\mathrm{I}$. But we were unable to exclude the possibility that there $n=\infty$ is an n_{o} so that the following inequalities hold:

$$
d_{n_{0}+1}>d_{n_{0}} \quad, \quad d_{n_{0}+2}<d_{n_{0}+1} \quad, \quad d_{n_{0}+3}>d_{n_{0}+2} \quad \text { etc. }
$$

(*) Pervenuta all'Accademia il I_{3} ottobre 1962 .

In other words $d_{n}>d_{n+1}>d_{n+2}$ and $d_{n}<d_{n+1}<d_{n+2}$ have both only a finite number of solutions. Similarly. I can not prove that at least one of the equations $s^{(k)}\left(p_{n}\right)>s^{(k)}\left(p_{n+1}\right)>s^{(k)}\left(p_{n+2}\right)$ and $s^{(k)}\left(p_{n}\right)<s^{(k)}\left(p_{n+1}\right)<$ $<s^{(k)}\left(p_{n+2}\right)$ have infinitely many solutions. Sierpiński deduces from the hypothesis of Schinzel that both these inequalities have infinitely many solutions [1].

Proof of the Theorem. I have not been able to find an elementary proof. We have to use the following well known theorem of Hoheisel-Ingham [4]: There exists an absolute constant c_{r} so that

$$
\begin{equation*}
\pi\left(x+x^{5 / 8}\right)-\pi(x)>c_{1} x^{558} / \log x \tag{5}
\end{equation*}
$$

$(\pi(x)$ denotes the number of primes $\leq x)$. Put $s^{(2)}(n)=s(n)$ for sake of simplicity: we will only prove our Theorem for $s(n)$. The proof of the general case is almost identical with the case $k=2$.

Let $2^{k}<q_{\mathrm{I}}<\cdots<q_{t_{k}}<2^{k}+2^{s{ }^{k}{ }^{k 8}}$ be the primes in $\left(2^{k}, 2^{k}+2^{5 k_{i 8}}\right)$, further let $2^{k}-2^{5 k j 8}<r_{1}<\cdots<r_{s_{k}}<2^{k}$ be the primes in $\left(2^{k}-2^{5^{k ; 8}}, 2^{k}\right)^{(1)}$. By (5) we have

$$
\begin{equation*}
t_{k}>c_{2} 2^{5 k i 8} / k \quad, \quad s_{k}>c_{2} 2^{5 k i 8} / k . \tag{6}
\end{equation*}
$$

Now we prove the following
Lemma. - For all but $o\left(2^{5 / / 8 / k)}\right.$ primes q_{i} and r_{j} we have for every $\varepsilon>0$ and $k>k_{0}(\varepsilon)$

$$
\begin{equation*}
s\left(q_{i}\right)<(\mathrm{I}+\varepsilon) \frac{5 k}{16} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
s\left(r_{j}\right)>\frac{3 k}{8}+(\mathrm{I}-\varepsilon) \frac{5 k}{16}>\frac{11 k}{16}-\varepsilon k . \tag{8}
\end{equation*}
$$

Assume that the Lemma is already proved. Then from (6), (7) and (8) it follows that for all sufficiently large k there are primes r_{j} and q_{i} satisfying

$$
\begin{equation*}
s\left(r_{j}\right)>s\left(q_{i}\right) \tag{9}
\end{equation*}
$$

From (9) and $q_{i}>r_{j}$ it clearly follows that for every $k>k_{0}$ there is a prime p_{n} satisfying

$$
r_{j} \leqq p_{n}<q_{i}
$$

and

$$
s\left(p_{n}\right)>s\left(p_{n+\mathrm{I}}\right)
$$

which proves our Theorem.
Thus we only have to prove our Lemma.
First we prove (7). The primes q_{i} are all of the form.

$$
\begin{equation*}
2^{k}+\sum_{i=0}^{l} \varepsilon_{i} 2^{i} \quad, \quad \varepsilon_{i}=0 \text { or } 1 \quad, \quad l=\left[\frac{5 k}{8}\right] \tag{10}
\end{equation*}
$$

(t) The primes q_{i} and r_{j} depend on k, but since there is no danger of confusion we do not indicate this.

If (7) does not hold we clearly must have for $\frac{c_{3} 2^{l}}{l}$ primes q_{i}

$$
\begin{equation*}
\sum_{i=0}^{l} \varepsilon_{i}>\left(\frac{1}{2}+\frac{\varepsilon}{4}\right) l . \tag{II}
\end{equation*}
$$

The number of integers of the form (IO) for which (II) holds clearly equals

$$
\sum_{r>\left(\frac{1}{2}+\frac{\varepsilon}{4}\right)^{2}}\binom{l}{r}
$$

By a simple and well known computation we obtain ($\eta=\eta_{1}(\varepsilon)$ depends only on ε)

$$
\sum_{r>\left(\frac{z}{2}+\frac{\varepsilon}{4}\right) l}\binom{l}{r}<2^{(x-\eta) l}=o\left(\frac{z^{l}}{l}\right)=o\left(\frac{z^{5 k / 8}}{l}\right)
$$

which proves (7).
The primes r_{j} are all of the form

$$
2^{k-x}+2^{k-2}+\cdots+2^{l+x}+\sum_{i=0}^{l} \varepsilon_{i} 2^{i}
$$

and the proof of (8) proceeds as in the proof of (7). Hence the proof of the Lemma and of our Theorem is complete.

Referexces.

[r] W. Sierpiński, Sur la somme des chiffres de nombres premiers, «Rend. del Circ. Mat., Palermon, ser. II, TO, 1-4 (1961).
[2] A. Schinzel et W. Sierpiński, Sur certaines hypothèses concernant les nombres premiers, «Acta Arithmetica», 4, 185-207 (1958).
[3] P. Erdős and P. Turáx, On some sequences of integers, "Bull. Amer. Math. Soc.», 54, $37 \mathrm{I}-378$ (1948); and P. Erdös, On the difference of consecutive primes, Ibid., 885-889.
[4] G. Hoheisel, Primzahlprobleme in der Analysis, "Sitzungsberichte der Preuss. Akad. der Wiss. Phys. Math. Klasse», $580-588$ (I930); see also A. E. Ingham, On the difference between consecutive primes, "Quarterly Journal of Math.", 8, 255-266 (1937).

