ON A THEOREM OF RADEMACHER-TURÁN

Dedicated to Hans Rademacher
on the occasion of his seventieth birthday

BY
P. Erdös

A set of points some of which are connected by an edge will be called a graph G. Two vertices are connected by at most one edge, and loops (i.e., edges whose endpoints coincide) will be excluded. Vertices will be denoted by α, β, \cdots, edges will be denoted by e_{1}, e_{2}, \cdots or by (α, β) where the edge (α, β) connects the vertices α and β.
$G-\epsilon_{1}-\cdots-e_{k}$ will denote the graph from which the edges e_{1}, \cdots, e_{k} have been omitted, and $G-\alpha_{1}-\cdots-\alpha_{k}$ denotes the graph from which the vertices $\alpha_{1}, \cdots, \alpha_{k}$ and all the edges emanating from them have been omitted; similarly $G+e_{1}+\cdots+e_{k}$ will denote the graph to which the edges e_{1}, \cdots, e_{k} have been added (without generating a new vertex).

The valency $v(\alpha)$ of a vertex will denote the number of edges emanating from it. $G_{u}^{(v)}$ will denote a graph having v vertices and u edges. The graph $G_{\left(\frac{1}{2}\right)}^{(k)}$ (i.e., the graph of k vertices any two of which are connected by an edge) will be called the complete k-gon.

A graph is called even if every circuit of it has an even number of edges.
Turán ${ }^{1}$ proved that every

$$
G_{v+1}^{(n)}, \quad V=\frac{k-2}{2(k-1)}\left(n^{2}-r^{2}\right)+\binom{r}{2}
$$

for $n=(k-1) t+r, 0 \leqq r<k-1$, contains a complete k-gon, and he determined the structure of the $G_{V}^{(n)}$'s which do not contain a complete k-gon. Thus if we put $f(2 m)=m^{2}, f(2 m+1)=m(m+1)$, a special case of Turán's theorem states that every $G_{f(n)+1}^{(n)}$ contains a triangle.

In 1941 Rademacher proved that for even n every $G_{f(n)+1}^{(n)}$ contains at least [$n / 2]$ triangles and that $[n / 2]$ is best possible. Rademacher's proof was not published. Later on ${ }^{2}$ I simplified Rademacher's proof and proved more generally that for $t \leqq 3, n>2 t$, every $G_{f(n)+t}^{(n)}$ contains at least $t[n / 2]$ triangles. Further I conjectured that for $t<[n / 2]$ every $G_{j(n)+t}^{(n)}$ contains at least $t[n / 2]$ triangles. It is easy to see that for $n=2 m, 2 m>4$, the conjecture is false for $t=n / 2$. To see this, consider a graph $G_{m}^{(2 m)}+m$ whose vertices are

[^0]$\alpha_{1}, \cdots, \alpha_{2 m}$ and whose edges are
$$
\left(\alpha_{i}, \alpha_{j}\right), \quad 1 \leqq i \leqq m+1<j \leqq 2 m,
$$
and the $m+1$ further edges
$$
\left(\alpha_{i}, \alpha_{i+1}\right), \quad 1 \leqq i \leqq m, \quad \text { and } \quad\left(\alpha_{1}, \alpha_{m+1}\right) .
$$

It is easy to see that this graph contains $m^{2}-1$ triangles (for $2 m=4$ an unwanted triangle ($\alpha_{1}, \alpha_{2}, \alpha_{3}$) enters and ruins the counting, and in fact it is easy to see that for $2 m=4$ the conjecture holds for $t=m=2$). For odd $n=2 m+1$ perhaps every $G_{f(2 m+1)+t}^{(2 m+1)}, t \leqq 2 m-2$, contains at least tm triangles. But here is a $G_{f(2 m+1)+2 m-1}^{(2 m+1)}, 2 m+1 \geqq 9$, which contains fewer than $m(2 m-1)$ triangles. The vertices of our graph are $\alpha_{1}, \cdots, \alpha_{2 m+1}$, the edges are

$$
\left(\alpha_{i}, \alpha_{j}\right), \quad 1 \leqq i \leqq m+2<j \leqq 2 m+1,
$$

and the following $2 m+1$ edges:

$$
\begin{aligned}
&\left(\alpha_{1}, \alpha_{k}\right), \quad\left(\alpha_{2}, \alpha_{k}\right), \quad\left(\alpha_{3}, \alpha_{4}\right), \quad\left(\alpha_{3}, \alpha_{5}\right), \quad\left(\alpha_{3}, \alpha_{6}\right), \\
& 3 \leqq k \leqq m+2 .
\end{aligned}
$$

It is easy to see that this graph contains $2 m^{2}-m-1<m(2 m-1)$ triangles. For $2 m+1=5$ we must have $t \leqq 4$, and it is easy to see that the conjecture holds for all these t. For $2 m+1=7, t \leqq 9$, and by a little longer argument one can easily convince oneself that the conjecture holds for all these t.

In the present paper we are going to prove the following
Theorem. There exists a constant $c_{1}>0$ so that for $t<c_{1} n / 2$ every $G_{f(n)+t}^{(n)}$ contains at least $t[n / 2]$ triangles.

First we need three lemmas.
Lemma 1. Every $G_{f(n-1)+2}^{(n)}$ which is not even contains a triangle.
Lemma 1 was found jointly by Gallai and myself. (The lemma was also found by Mr. Andrásfai independently.)

Let G be a graph with n vertices which is not even and contains no triangle. Let $\alpha_{1}, \cdots, \alpha_{2 k+1}$ be the vertices of the odd circuit of our graph having the least number of vertices. We can assume $3<2 k+1 \leqq n$. The subgraph of G spanned by $\alpha_{1}, \cdots, \alpha_{2 k+1}$ can have no other edges; otherwise our graph would contain an odd circuit having fewer than $2 k+1$ edges. Let β_{1}, \cdots, $\beta_{n-2 k-1}$ be the other vertices of G. Any of the β^{\prime} s can be connected with at most two of the α 's, for otherwise G contains an odd circuit of fewer than $2 k+1$ edges. Finally by Turán's theorem the subgraph of G spanned by $\beta_{1}, \cdots, \beta_{n-2 k-1}$ can have at most $f(n-2 k-1)$ edges. Thus the number of edges of G is at most

$$
2 k+1+2(n-2 k-1)+f(n-2 k-1) \leqq f(n-1)+1
$$

by a simple calculation (equality only for $2 k+1=5$). This completes the proof of our lemma.

Our proof in fact gives that a graph G of n vertices whose smallest odd circuit has $2 k+1$ vertices, $k>1$, has at most $2 n-2 k-1+f(n-2 k-1)$ edges, and the following simple example shows that this result is best possible. Let the vertices of G be

$$
\begin{aligned}
\alpha_{1}, \cdots, \alpha_{v} & , \quad \beta_{1}, \cdots, \beta_{u}, \quad \gamma_{1}, \cdots, \gamma_{2 k+1} \\
v & =\left[\frac{n-2 k-1}{2}\right], \quad u=n-\left[\frac{n-2 k-1}{2}\right] .
\end{aligned}
$$

The edges of G are $\left(\alpha_{i}, \beta_{j}\right),\left(\gamma_{1}, \alpha_{i}\right),\left(\gamma_{3}, \alpha_{i}\right), 1 \leqq i \leqq v, \quad\left(\gamma_{2}, \beta_{i}\right),\left(\gamma_{4}, \beta_{i}\right)$, $1 \leqq i \leqq u$, further the edges $\left(\gamma_{i}, \gamma_{i+1}\right), 1 \leqq i \leqq 2 k,\left(\gamma_{1}, \gamma_{2 k+1}\right)$.

Lemma 2. There exists a constant $c_{2}>0$ so that every $G_{f(n)+1}^{(n)}$ contains at least $\left[c_{2} n\right]$ triangles having a common edge $\left(\alpha_{1}, \alpha_{2}\right)$ (i.e., all the edges $\left(\alpha_{1}, \beta_{i}\right)$, $\left(\alpha_{2}, \beta_{i}\right),\left(\alpha_{1}, \alpha_{2}\right), 1 \leqq i \leqq\left[c_{2} n\right]$, are in $\left.G_{f(n)+1}^{(n)}\right)$.

Let $\left(\alpha_{i}, \beta_{i}, \gamma_{i}\right), 1 \leqq i \leqq r$, be a maximal system of disjoint triangles of our $\operatorname{graph} G_{f(n)+1}^{(n)}$. In other words if we omit the vertices $\alpha_{i}, \beta_{i}, \gamma_{i}, 1 \leqq i \leqq r$, the subgraph of $G_{f(n)+1}^{(n)}$ spanned by the remaining $n-3 r$ vertices contains no triangle and has therefore at most $f(n-3 r$) edges (by Turán's theorem).

Denote by $G(n, i)$ the graph $G_{f(n)+1}^{(n)}-\sum_{j=1}^{i-1}\left(\alpha_{j}+\beta_{j}+\gamma_{j}\right)$, and let $v^{(i)}\left(a_{i}\right), v^{(i)}\left(\beta_{i}\right), v^{(i)}\left(\gamma_{i}\right)$ be the valencies of $\alpha_{i}, \beta_{i}, \gamma_{i}$ in $G(n, i)$. Now we show that for some $i, 1 \leqq i \leqq r$, we must have

$$
\begin{equation*}
v^{(i)}\left(\alpha_{i}\right)+v^{(i)}\left(\beta_{i}\right)+v^{(i)}\left(\gamma_{i}\right)>n\left(1+9 c_{2}\right)-3 i . \tag{1}
\end{equation*}
$$

For if (1) would not hold for any $i, 1 \leqq i \leqq r$, then the number of edges of $G_{f(n)+1}^{(n)}$ would be not greater than

$$
\begin{equation*}
\sum_{i=1}^{r}\left(n\left(1+9 c_{2}\right)-3 i\right)+f(n-3 r)<f(n) \tag{2}
\end{equation*}
$$

by a simple calculation for sufficiently small c_{2}. But (2) is an evident contradiction since $G_{f(n)+1}^{(n)}$ has by definition $f(n)+1$ edges.

Thus (1) holds for say $i=i_{0}$. Then a simple computation shows that there are at least $3\left[c_{2} n\right]$ vertices of $G\left(n, i_{0}\right)$ which are connected with more than one of the vertices $\alpha_{i_{0}}, \beta_{i_{0}}, \gamma_{i_{0}}$. Therefore there are at least [$\left.c_{2} n\right]$ of them which are connected with the same pair, i.e., $G\left(n, i_{0}\right)$, and therefore $G_{f(n)+1}^{(n)}$, contains the configuration required by Lemma 2, which completes the proof of the lemma.

By more careful considerations we can prove that every $G_{f(n)+1}^{(n)}$ contains $n / 6+O(1)$ triangles $\left(\alpha_{1}, \alpha_{2}, \beta_{i}\right), 1 \leqq i \leqq n / 6+O(1)$, and that this result is best possible.

Lemma 3. Let $\delta>0$ be a fixed number. Consider any graph

$$
G_{u}^{(n)}, \quad u>f(n)-(n / 2)(1-\delta), \quad n>n_{0}(\delta)
$$

which contains a triangle. Then $G_{u}^{(n)}$ contains an edge $\left(\alpha_{1}, \alpha_{2}\right)$ and $\left[c_{3} n\right]+1, c_{3}=$ $c_{3}(\delta)$, vertices $\beta_{1}, \cdots, \beta_{r}, r=\left[c_{3} n\right]+1$, so that all the triangles $\left(\alpha_{1}, \alpha_{2}, \beta_{i}\right)$, $1 \leqq i \leqq r$, are in $G_{u}^{(n)}$.

By assumption $G_{u}^{(n)}$ contains a triangle $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$. Assume first that

$$
\begin{equation*}
v\left(\alpha_{1}\right)+v\left(\alpha_{2}\right)+v\left(\alpha_{3}\right)>n\left(1+9 c_{3}\right)+9 \tag{3}
\end{equation*}
$$

Then as in the proof of Lemma 2 we can show that $G_{u}^{(n)}$ contains the required configuration.

If (3) is not satisfied, then $G_{u}^{(n)}-\alpha_{1}-\alpha_{2}-\alpha_{3}$ has $n-3$ vertices and at least $u-n\left(1+9 c_{3}\right)-9$ edges. But if $c_{3}<\delta / 18$, then for $n>n_{0}$

$$
\begin{aligned}
& u-n\left(1+9 c_{3}\right)-9 \\
& \quad>f(n)-(n / 2)(1-\alpha)-n\left(1+9 c_{3}\right)-9>f(n-3)
\end{aligned}
$$

Thus by Lemma 2, $G_{u}^{(n)}-\alpha_{1}-\alpha_{2}-\alpha_{3}$, and therefore $G_{u}^{(n)}$, contains the configuration required by Lemma 3, which completes the proof of Lemma 3.

Now we can prove our Theorem. Let there be given a $G_{f(n)+t}^{(n)}, t<c_{1} n / 2$. Assume first that after the omission of any $r=\left[c_{1} n / 2 c_{3}\right], c_{3}=c_{3}\left(\frac{1}{4}\right)\left(\delta=\frac{1}{4}\right.$ in Lemma3), edges the graph will still contain a triangle. For sufficiently small $c_{1}, c_{1} / 2 c_{3}<\frac{1}{4}$; thus it will be permissible to apply Lemma 3 during the omission of these edges.

By Lemma 3 (or Lemma 2) there exists an edge e_{1} which is contained in at least $\left[c_{3} n\right]+1$ triangles of $G_{f(n)+t}^{(n)}$; again by Lemma 3 in $G_{f(n)+t}^{(n)}-e_{1}$ there exists an edge e_{2} which is contained in $\left[c_{3} n\right]+1$ triangles of $G_{f(n)+t}^{(n)}-e_{1}$. Suppose we have already chosen the edges e_{1}, \cdots, e_{r} each of which is contained in at least $\left[c_{3} n\right]+1$ triangles. By our assumption $G_{f(n)+t}^{(n)}-e_{1}-\cdots-e_{r}$ contains at least one triangle; thus by Lemma 3 there is an edge e_{r+1} in $G_{f(n)+t}^{(n)}-e_{1}-\cdots-e_{r}$ which is contained in at least $\left[c_{3} n\right]+1$ triangles in this graph. These triangles incident on the edges e_{1}, \cdots, e_{r+1} are evidently distinct; thus $G_{f(n)+t}^{(n)}$ contains at least $(r+1)\left(\left[c_{3} n\right]+1\right)>c_{1} n^{2} / 2>t n / 2$ triangles, which proves our Theorem in this case.

Therefore we can assume that there are $l \leqq r<n / 4$ edges e_{1}, \cdots, e_{l} so that $G=G_{f(n)+t}^{(n)}-e_{1}-\cdots-e_{l}$ contains no triangle, and we can assume that l is the smallest integer with this property. By $l \leqq r<n / 4, G$ has

$$
f(n)+t-l>f(n)-n / 4>f(n-1)+1
$$

edges. Thus by Lemma $1, G$ is even.
By Turán's theorem, $l \geqq t$. Assume first $l=t$ (it is not necessary to treat the cases $l=t$ and $l>t$ separately, but perhaps it will be easier for the reader to do so). Then G has $f(n)$ edges, and by Turán's theorem G is of the following form: The vertices of G are $\alpha_{1}, \cdots, \alpha_{[n / 2]}, \beta_{1}, \cdots, \beta_{n-[n / 2]}$, and the edges are $\left(\alpha_{i}, \beta_{j}\right), 1 \leqq i \leqq[n / 2], 1 \leqq j \leqq n-[n / 2]$. A simple argument shows that the addition of every further edge introduces at least
[$n / 2$] triangles and that these triangles are distinct. Thus $G_{f(n)+t}^{(n)}$ contains at least $t[n / 2]$ triangles, and our Theorem is proved in this case too.

Assume finally $l=t+w, 0<w<n / 4$ (since $l<n / 4$). It will be more convenient to assume first that n is even. Put $n=2 m$. Since G is even, it is contained in a graph $G(E, u)$ whose vertices are $\alpha_{1}, \cdots, \alpha_{m-u}, \beta_{1}, \cdots, \beta_{m+u}$ and whose edges are $\left(\alpha_{i}, \beta_{j}\right), 1 \leqq i \leqq m-u, 1 \leqq j \leqq m+u$ (since G has more than $f(2 m)-m / 2=m^{2}-m / 2$ edges, we have $\left.0 \leqq u<(m / 2)^{1 / 2}\right)$.

Clearly every one of the edges e_{1}, \cdots, e_{l} connect two α 's or two β 's. For if say e_{i} would connect an α with a β, then

$$
G_{f(n)+t}^{(n)}-e_{1}-\cdots-e_{1-1}-e_{i+1}-\cdots-e_{l}
$$

would be even, and hence would contain no triangle, which contradicts the minimum property of l.

By our assumption G is a subgraph of $G(E, u)$. Assume that G is obtained from $G(E, u)$ by the omission of x edges. Then we evidently have

$$
l=x+u^{2}+t \quad\left(\text { or } w=x+u^{2}\right)
$$

and $G_{f(n)+t}^{(n)}$ is obtained from G by adding l edges e_{1}, \cdots, e_{l} which are all of the form $\left(\alpha_{i_{1}}, \alpha_{i_{2}}\right)$ or $\left(\beta_{i_{1}}, \beta_{i_{2}}\right)$. Put $e_{i}=\left(\beta_{i_{1}}, \beta_{i_{2}}\right)$, and let us estimate the number of triangles $\left(\beta_{i_{1}}, \beta_{i_{2}}, \alpha_{j}\right)$ in $G(E, u)+e_{i}$. Clearly at most x of the edges $\left(\beta_{i_{1}}, \alpha_{j}\right),\left(\beta_{i_{2}}, \alpha_{j}\right)$ are not in $G(E, u)$; thus $G(E, u)+e_{i}$ contains at least

$$
m-u-x
$$

triangles (if e_{i} connects two α 's, then $G(E, u)+e_{i}$ contains at least $m+u-x$ triangles). For different e_{i} 's these triangles are clearly different; thus

$$
G_{f(n)+t}^{(n)}=G+e_{1}+\cdots+e_{l}
$$

contains at least

$$
\begin{equation*}
(m-u-x) l=(m-u-x)\left(x+u^{2}+t\right) \geqq t m=t(n / 2) \tag{4}
\end{equation*}
$$

triangles. (4) follows by simple computation from $l=u^{2}+x+t<m / 2$. (4) completes the proof of our Theorem for $n=2 m$. For $n=2 m+1$ the proof is almost identical and can be omitted. Thus the proof of our Theorem is complete.

It seems possible that a slight improvement of this proof will give the conjecture that every $G_{f(n)+t}^{(n)}, t<[n / 2]$ contains at least $t[n / 2]$ triangles, but I have not been successful in doing this.

I have not succeeded in formulating a reasonable conjecture about the minimum number of trianglesa $G_{f(n)+t}^{(n)}$ must contain if $[n / 2] \leqq t \leqq\binom{ n}{2}-f(n)$. It is easy to see that if t is close to $\binom{n}{2}-f(n)$, then $G_{f(n)+t}^{(n)}$ contains more than $t[n / 2]$ triangles, and it would be easy to obtain a best possible result in this case. But I have not investigated the range of t for which this is possible. I just remark that $G_{\left(\begin{array}{l}(2)-l\end{array}\right.}^{(n)}, l \leqq 2$, contains at least $\binom{n}{3}-l(n-2)$ triangles
and that $G_{\binom{n}{2}-3}^{(n)}$ contains at least $\binom{n}{3}-3(n-2)+1$ triangles, and that these results are best possible. The simple proofs are left to the reader.

Turán's theorem implies that every $G_{3 n^{2}+1}^{(3 n)}$ contains a complete 4 -gon. As an analogue of the theorem of Rademacher I can prove by very much more complicated arguments that it contains at least n^{2} complete 4 -gons; this result is easily seen to be best possible.

Budapest, Hungary

[^0]: Received March 20, 1961.
 ${ }^{1}$ P. Tcrán, Matematikai és Fizikai Lapok, vol. 48 (1941), pp. 436-452 (in Hungarian); see also On the theory of graphs, Colloq. Math., vol. 3 (1954), pp. 19-30.
 ${ }^{2}$ P. Erdös, Some theorems on graphs, Riveon Lematematika, vol. 9 (1955), pp. 13-17 (in Hebrew with English summary).

