ON C_{1}-SUMMABILITY OF SERIES

Paul Erdös and Haim Hanani

1. INTRODUCTION

Let $\Sigma_{j=1}^{\infty} \mathrm{a}_{\mathrm{j}}$ be an infinite series of real, non-negative numbers, and let

$$
\begin{equation*}
(\varepsilon)=\left\{\varepsilon_{j}\right\}_{j=1}^{\infty} \quad\left(\varepsilon_{j}= \pm 1\right) \tag{1}
\end{equation*}
$$

be any sequence of signs. For any given sequence (ε), we denote by

$$
\begin{equation*}
s_{n}(\varepsilon)=\sum_{j=1}^{n} \varepsilon_{j} a_{j} \tag{2}
\end{equation*}
$$

the n-th partial sum of the series $\Sigma \varepsilon_{j} a_{j}$, and by

$$
\begin{equation*}
\sigma_{n}(\varepsilon)=\prod_{j=1}^{n} \varepsilon_{j} a_{j}=\frac{1}{n} \sum_{j=1}^{n} s_{j}(\varepsilon) \tag{3}
\end{equation*}
$$

the n-th partial C_{1}-sum of this series. If $s_{n}(\varepsilon)$, or $\sigma_{\mathrm{n}}(\varepsilon)$, converges, we call

$$
\begin{equation*}
s(\varepsilon)=\lim _{n \rightarrow \infty} s_{n}(\varepsilon)=\sum_{j=1}^{\infty} \varepsilon_{j} a_{j} \tag{4}
\end{equation*}
$$

an attainable point of $\Sigma \mathbf{a}_{j}$, or, respectively

$$
\begin{equation*}
\sigma(\varepsilon)=\lim _{n \rightarrow \infty} \sigma_{n}(\varepsilon)=\Gamma_{j=1}^{\infty} \varepsilon_{j} a_{j} \tag{5}
\end{equation*}
$$

a C_{1}-attainable point of $\Sigma \mathrm{a}_{\mathrm{j}}$.
The attainable set $\mathrm{S}\left\{\mathrm{a}_{\mathrm{j}}\right\}$ is the set of all attainable points $\mathrm{s}(\varepsilon)$ of $\Sigma \mathrm{a}_{\mathrm{j}}$, and the C_{1}-attainable set $\mathrm{SC}\left\{\mathrm{a}_{j}\right\}$ is the set of all C_{1}-attainable points $\sigma(\varepsilon)$ of $\Sigma \mathrm{a}_{j}$.

The sets $S\left\{a_{j}\right\}$ (and more generally the sets $S\left\{c_{j}\right\}, \Sigma c_{j}$ being a series of complex numbers) have been investigated by Hanani [4] and by Calabi and Dvoretzky [2].

Connected with the sets $\mathrm{S}\left\{\mathrm{a}_{\mathrm{j}}\right\}$ and $\operatorname{SC}\left\{\mathrm{a}_{j}\right\}$ are the sets $\mathrm{T}\left\{\mathrm{a}_{\mathrm{n}}\right\}$ and $\operatorname{TC}\left\{\mathrm{a}_{\mathrm{n}}\right\}$, $\mathrm{T}\left\{\mathrm{a}_{n}\right\}$ being a set of all numbers τ for which there exists a reordering $\Sigma \mathrm{a}_{\mathrm{n}_{\mathrm{i}}}$ of the series $\Sigma \mathrm{a}_{\mathrm{n}}$ such that $\tau=\Sigma \mathrm{a}_{\mathrm{n}_{\mathrm{i}}}$, and $\mathrm{TC}\left\{\mathrm{a}_{\mathrm{n}}\right\}$ being the set of numbers τ^{\prime} such that $\Sigma \mathrm{a}_{\mathrm{n}}$ can be reordered so that the new series shall be C_{1}-summable to τ^{\prime}. The sets $\mathrm{T}\left\{\mathrm{a}_{\mathrm{n}}\right\}$ have been investigated by Steinitz [7] and by Lorentz and Zeller [5], and the sets $\operatorname{TC}\left\{\mathrm{a}_{\mathrm{n}}\right\}$ by Mazur [6] and by Bagemihl and Erdös [1].

In this paper we investigate the sets $\operatorname{SC}\left\{\mathbf{a}_{\mathrm{j}}\right\}$.

2. PRELIMINARY PROPOSITIONS

Let $L(\delta)$, with $\delta>0$, be the family of series Σa_{j} such that for every j either $\mathrm{a}_{\mathrm{j}} \geq \delta$ or $\mathrm{a}_{\mathrm{j}}=0$; in particular, let $L\left(\delta,\left\{\mathrm{n}_{\mathrm{i}}\right\}\right)$ be the family of series $\Sigma \mathrm{a}_{\mathrm{j}}$ such that $a_{n_{i}} \geq \delta$ and $a_{j}=0$ for $j \neq n_{i}(i=1,2, \cdots)$.

The following propositions are well known:
PROPOSITION 1. If $\Sigma \varepsilon_{j} \mathrm{a}_{\mathrm{j}}$ converges, then it is also C_{1}-summable to its limit; that is, for every series $\Sigma \mathrm{a}_{\mathrm{j}}, \mathrm{S}\left\{\mathrm{a}_{\mathrm{j}}\right\} \subset \mathrm{SC}\left\{\mathrm{a}_{\mathrm{j}}\right\}$.

PROPOSITION 2. If $\mathrm{a}_{\mathrm{j}} \rightarrow 0$, then $\mathrm{SC}\left\{\mathrm{a}_{\mathrm{j}}\right\}=\mathrm{S}\left\{\mathrm{a}_{\mathrm{j}}\right\}$ is perfect.
In particular, the following proposition of Riemann is well known.
PROPOSITION 3. If $\mathrm{a}_{\mathrm{j}} \rightarrow 0$ and $\Sigma \mathrm{a}_{\mathrm{j}}=\infty$, then $\operatorname{SC}\left\{\mathrm{a}_{\mathrm{j}}\right\}=\mathrm{S}\left\{\mathrm{a}_{\mathrm{j}}\right\}$ is the whole line.

Also the following propositions are evidently true:
PROPOSITION 4. If $\Sigma \varepsilon_{\mathrm{j}} \mathrm{a}_{\mathrm{j}}=\mathrm{s}$ and $\Sigma \varepsilon_{\mathrm{j}}^{\prime} \mathrm{b}_{\mathrm{j}}=\mathrm{t}$ are two convergent series, then $\Sigma\left(\varepsilon_{\mathrm{j}} \mathrm{a}_{\mathrm{j}}+\varepsilon_{\mathrm{j}}^{\prime} \mathrm{b}_{\mathrm{j}}\right)$ is also convergent, and $\Sigma\left(\varepsilon_{\mathrm{j}} \mathrm{a}_{\mathrm{j}}+\varepsilon_{j}^{\prime} \mathrm{b}_{\mathrm{j}}\right)=\mathrm{s}+\mathrm{t}$.

PROPOSITION 5. If $\Sigma \varepsilon_{j} \mathrm{a}_{\mathrm{j}}$ and $\Sigma \varepsilon_{\mathrm{j}}^{\prime} \mathrm{b}_{\mathrm{j}}$ are two C_{1}-summable series with

$$
\Gamma_{j=1}^{\infty} \varepsilon_{j} a_{j}=\sigma \quad \text { and } \quad \Gamma_{j=1}^{\infty} \varepsilon_{j}^{\prime} b_{j}=\tau
$$

then $\Sigma\left(\varepsilon_{j} \mathrm{a}_{\mathrm{j}}+\varepsilon_{\mathrm{j}}^{\prime} \mathrm{b}_{\mathrm{j}}\right)$ is also C_{2}-summable and $\Gamma_{j=1}^{\infty}\left(\varepsilon_{j} \mathrm{a}_{\mathrm{j}}+\varepsilon_{j}^{\prime} \mathrm{b}_{\mathrm{j}}\right)=\sigma+\tau$.
PROPOSITION 6. Every series $\Sigma \mathrm{a}_{\mathrm{j}}$ either

1) has a divergent subseries whose general term tends to zero, or
2) is a sum of two subseries, one of which is an $\mathrm{L}(\delta)$ while the other converges absolutely.

3. DIVERGENT SUBSERIES WITH $\mathrm{a}_{\mathrm{j}} \rightarrow 0$

THEOREM 1. Let $\Sigma \mathrm{a}_{\mathrm{j}}$ be a series of non-negative terms having a subseries $\Sigma \mathrm{a}_{\mathrm{n}_{\mathrm{i}}}$ such that

$$
\begin{equation*}
\sum \mathrm{a}_{\mathrm{n}_{\mathrm{i}}}=\infty, \quad \mathrm{a}_{\mathrm{n}_{\mathrm{i}}} \rightarrow 0 \tag{6}
\end{equation*}
$$

If

$$
\begin{equation*}
\operatorname{SC}\left\{a_{j}\right\} \neq \emptyset, \tag{7}
\end{equation*}
$$

then $\operatorname{SC}\left\{\mathrm{a}_{\mathrm{j}}\right\}$ is the whole line.
Proof. By (7), there exists a sequence (1) such that $\Sigma \varepsilon_{j} a_{j}$ is C_{1}-summable. Write $\Gamma \varepsilon_{j} a_{j}=\sigma$. By (6), either

$$
\sum_{+} \varepsilon_{n_{i}} a_{n_{i}}=+\infty \quad \text { or } \quad \sum_{-} \varepsilon_{n_{i}} a_{n_{i}}=-\infty
$$

(\sum_{+}denotes the sum of the positive terms of the series, and $\underset{\sim}{\Sigma}$ the sum of the negative terms).

Suppose

$$
\begin{equation*}
\sum_{+} \varepsilon_{n_{i}} a_{n_{i}}=\infty \tag{8}
\end{equation*}
$$

(the proof for the other case is analogous); then the negative terms of the whole series must diverge:

$$
\begin{equation*}
\sum_{-} \varepsilon_{j} a_{j}=-\infty \tag{9}
\end{equation*}
$$

because otherwise $\Sigma \varepsilon_{j} a_{j}$ could not be C_{1}-summable.
Let now τ be any given real number. We shall construct a sequence $\left\{\varepsilon_{j}^{\prime}\right\}$ such that $\Gamma \varepsilon_{j}^{l} \mathrm{a}_{\mathrm{j}}=\tau$.

If $\sigma<\tau$, we change the sign of as many of the earliest terms of $\Sigma \varepsilon_{j} a_{j}$ as necessary until for the first time

$$
-\sum_{j=1}^{n} \varepsilon_{j} a_{j}=\kappa \geq \frac{\tau-\sigma}{2}
$$

which by (9) is possible, and we write

$$
\sum_{j=1}^{\infty} \varepsilon_{j}^{\prime \prime} a_{j}=\sum_{j=1}^{\infty} \varepsilon_{j} a_{j}-2 \sum_{j=1}^{n} \varepsilon_{j} a_{j}
$$

By Proposition 5, the series $\Sigma \varepsilon_{j}^{\prime \prime} a_{j}$ is C_{1}-summable and $\Gamma \varepsilon_{j}^{\prime \prime} a_{j}=\sigma+2 \kappa=\sigma^{n} \geq \tau$.
If $\sigma \geq \tau$, put $\varepsilon_{j}^{\prime \prime}=\varepsilon_{j}$ and $\sigma^{\prime \prime}=\sigma$.
Notice that so far the terms of the subseries (8) have not changed their signs.
We now change the sign of those terms of the subseries (8), in the order of their appearance, for which

$$
\sum_{i=1}^{m} \varepsilon_{n_{i}}^{\prime \prime} a_{n_{i}} \leq \frac{1}{2}\left(\sigma^{\prime \prime}-\tau\right)
$$

is satisfied, Σ^{\prime} being the sum of the terms whose signs have been changed. It follows from (8) and (6) that there exists a finite or infinite subseries $\sum_{+} \varepsilon_{n_{i}}^{\prime \prime} a_{n_{i}}=1 / 2\left(\sigma^{\prime \prime}-\tau\right)$.
Write

$$
\sum_{\varepsilon_{j}^{\prime} a_{j}}=\sum_{\varepsilon_{j}^{\prime \prime} a_{j}}-2 \sum_{+}^{\prime} \varepsilon_{n_{i}}^{\prime \prime} a_{n_{i}}
$$

By Proposition 5, the series $\Sigma \varepsilon_{j}^{\prime} \mathrm{a}_{\mathrm{j}}$ is C_{1}-summable and $\Gamma \varepsilon_{\mathrm{j}}^{\prime} \mathrm{a}_{\mathrm{j}}=\sigma^{\prime \prime}-\left(\sigma^{\prime \prime}-\tau\right)=\tau$.
Theorem 1 is valid for all totally permanent matrices.

The case of a series having a subseries (6) has thus been settled. According to Proposition 6, any other series $\Sigma \mathrm{a}_{\mathrm{j}}$ is a sum of an $\mathrm{L}(\delta)$ and an absolutely convergent series. Denoting by P the perfect attainable set of the absolutely convergent series (see Proposition 2) and by R the C_{1}-attainable set of the $L(\delta)$, we see in accordance with Proposition 5 that

$$
\begin{equation*}
\operatorname{SC}\left\{\mathrm{a}_{\mathrm{j}}\right\}=\mathrm{R}+\mathrm{P}=\{\mathrm{r}+\mathrm{p}: \mathrm{r} \in \mathrm{R}, \mathrm{p} \in \mathrm{P}\} \tag{10}
\end{equation*}
$$

4. SERIES FOR WHICH SC $\left\{\mathrm{a}_{\mathrm{j}}\right\}$ IS THE WHOLE LINE

THEOREM 2. Let $\Sigma \mathrm{a}_{\mathrm{j}}$ be a series (of non-negative terms) satisfying

$$
\begin{equation*}
\sum \mathrm{a}_{\mathrm{j}}=\infty . \tag{11}
\end{equation*}
$$

If there exists an η_{0} with the property that to each η in $0<\eta \leq \eta_{0}$ there corresponds an

$$
\begin{equation*}
\mathrm{n}_{0}=\mathrm{n}_{0}(\eta) \tag{12}
\end{equation*}
$$

such that for every $n>n_{0}$

$$
\left[\sum_{i=1}^{\left[\eta / a_{n}\right]} a_{n+i}>2 a_{n}+\eta\right.
$$

then $\operatorname{SC}\left\{\mathrm{a}_{\mathrm{j}}\right\}$ is the whole line.
Proof. Let σ be any real number. We shall construct a sequence (1) such that

$$
\begin{equation*}
\boldsymbol{\Gamma} \varepsilon_{\mathrm{j}} \mathrm{a}_{\mathrm{j}}=\sigma \tag{14}
\end{equation*}
$$

According to (12) there exists for every $\eta=2^{-i}\left(i=i_{0}, i_{0}+1, \cdots\right)$ a number

$$
\begin{equation*}
n_{i}=n_{i}\left(2^{-i}\right) \tag{15}
\end{equation*}
$$

such that for every $n>n_{i}$, (13) is satisfied with $\eta=2^{-i}$.
Choose $\varepsilon_{j}\left(j=1,2, \cdots, n_{i_{0}}-1\right)$ arbitrarily. For

$$
\begin{equation*}
\mathrm{n}_{\mathrm{i}} \leq \mathrm{j}<\mathrm{n}_{\mathrm{i}+1} \quad\left(\mathrm{i}=\mathrm{i}_{0}, \mathrm{i}_{0}+1, \cdots\right) \tag{16}
\end{equation*}
$$

we fix the signs ε_{j} as follows:
(a) if $\sigma_{j-1}(\varepsilon) \leq \sigma$ and
(aa) if $s_{j-1}(\varepsilon) \leq \sigma+2^{-i}$, we put $\varepsilon_{j}=1$;
(ab) if $\mathrm{s}_{\mathrm{j}-1}(\varepsilon)>\sigma+2^{-1}$, we choose ε_{j} so as to make $\mathrm{s}_{\mathrm{j}}(\varepsilon)$ as small as possible but not less than $\sigma+2^{-i}$;
(b) if $\sigma_{j-1}(\varepsilon)>\sigma$ and
(ba) if $\mathrm{s}_{\mathrm{j}-1}{ }^{(\varepsilon)} \geq \sigma-2^{-i}$, we put $\varepsilon_{j}=-1$;
(bb) if $\mathrm{s}_{\mathrm{j}-1}(\varepsilon)<\sigma-2^{-\mathrm{i}}$, we choose ε_{j} so as to make $\mathrm{s}_{\mathrm{j}}(\varepsilon)$ as large as possible but not greater than $\sigma-2^{-i}$.

Either σ_{j} ultimately approaches σ from one side, or else, by the construction of (ε) and condition (11), $\sigma_{j}(\varepsilon)-\sigma$ changes sign infinitely often.

Suppose that for some $\mathrm{j}^{\prime}, \mathrm{s}_{\mathrm{j}^{\prime}}(\varepsilon)<\sigma_{\mathrm{j}^{\prime}}(\varepsilon)<\sigma$. According to our construction, the partial sums $s_{j}(\varepsilon)$ for $j \geq j^{\prime}$ must be monotonically increasing until they become greater than $\sigma+2^{-i}$ (for some i which depends on j according to (16)), and then they remain greater than $\sigma+2^{-\mathrm{i}^{\dagger}}$ ($\mathrm{i}^{\prime} \geq \mathrm{i}$) until $\sigma_{j}(\varepsilon)$ becomes greater than σ. As long as $s_{j}(\varepsilon)<\sigma_{j}(\varepsilon), \sigma_{j}(\varepsilon)$ is monotonically decreasing, but at the moment the increasing sequence $s_{j}(\varepsilon)$ overtakes the sequence $\sigma_{j}(\varepsilon)$, the sequence $\sigma_{j}(\varepsilon)$ begins to increase, and it increases until it reaches a peak value greater than σ. It follows easily that the sequence $\sigma_{j}(\varepsilon)$ attains alternately minima (say $\sigma_{j_{1}}(\varepsilon), \sigma_{j_{2}}(\varepsilon), \cdots$) and maxima $\left(\sigma_{k_{1}}(\varepsilon), \sigma_{\mathrm{k}_{2}}(\varepsilon), \cdots\right)$ with $\mathrm{j}_{1}<\mathrm{k}_{1}<\mathrm{j}_{2}<\mathrm{k}_{2}<\cdots$, such that

$$
\sigma_{\mathrm{j}_{\mathrm{h}}}(\varepsilon) \leq \sigma \quad \text { and } \quad \sigma_{\mathrm{k}_{\mathrm{h}}}(\varepsilon)>\sigma \quad(\mathrm{h}=1,2, \cdots) .
$$

For $\mathrm{j}_{\mathrm{h}} \leq \mathrm{j} \leq \mathrm{k}_{\mathrm{h}}$, the sequence $\left\{\sigma_{\mathrm{j}}(\varepsilon)\right\}$ is monotonically increasing, and for $\mathrm{k}_{\mathrm{h}} \leq \mathrm{j} \leq \mathrm{j}_{\mathrm{h}+1}$ monotonically decreasing.

For our purpose it is now sufficient to prove that for every $\eta>0$ there exists an index j^{*} such that for every $\mathrm{j}_{\mathrm{h}}>\mathrm{j}^{*}$

$$
\begin{equation*}
0 \leq \sigma-\sigma_{\mathrm{j}_{\mathrm{h}}}(\varepsilon)<\eta \tag{17}
\end{equation*}
$$

and for every $k_{h}>j^{*}$

$$
\begin{equation*}
0<\sigma_{\mathrm{k}_{\mathrm{h}}}(\varepsilon)-\sigma<\eta \tag{18}
\end{equation*}
$$

holds. We shall prove (18), the proof of (17) being analogous.
Let t be an integer such that

$$
\begin{equation*}
2^{-\mathrm{t}}<\eta / 6 \tag{19}
\end{equation*}
$$

and let n_{t} be the corresponding index fixed by (15). Further, let h be an integer such that $\mathrm{k}_{\mathrm{h}-1}>\mathrm{n}_{\mathrm{t}}$, and m the greatest index $\mathrm{m} \leq \mathrm{k}_{\mathrm{h}}$ such that $\varepsilon_{\mathrm{m}}=1$. According to our construction

$$
\begin{equation*}
\sigma_{m-1}(\varepsilon) \leq \sigma \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma<\mathrm{s}_{\mathrm{j}}(\varepsilon)<\sigma+2^{-\mathrm{t}}+2 \mathrm{a}_{\mathrm{m}} \quad\left(\mathrm{~m} \leq \mathrm{j} \leq \mathrm{k}_{\mathrm{h}}\right) . \tag{21}
\end{equation*}
$$

By definition of $\sigma_{\mathrm{k}_{\mathrm{h}}}(\varepsilon)$, we have

$$
\sigma_{\mathrm{k}_{\mathrm{h}}}(\varepsilon)=\frac{1}{\mathrm{k}_{\mathrm{h}}}\left[(\mathrm{~m}-1) \sigma_{\mathrm{m}-1}(\varepsilon)+\sum_{j=m}^{\mathrm{k}_{\mathrm{h}}} \mathrm{~s}_{\mathrm{j}}(\varepsilon)\right]
$$

and by (20) and (21)

$$
\begin{equation*}
\sigma_{\mathrm{k}_{\mathrm{h}}}(\varepsilon) \leq \sigma+\frac{1}{\mathrm{k}_{\mathrm{h}}}\left(2^{-\mathrm{t}}+2 \mathrm{a}_{\mathrm{m}}\right)\left(\mathrm{k}_{\mathrm{h}}-\mathrm{m}+1\right) . \tag{22}
\end{equation*}
$$

If $\mathrm{a}_{\mathrm{m}} \leq 2^{-\mathrm{t}}$, (18) now follows immediately from (19). If $\mathrm{a}_{\mathrm{m}}>2^{-\mathrm{t}}$, we observe that $\varepsilon_{j}=-1$ for $\mathrm{m}<\mathrm{j} \leq \mathrm{k}_{\mathrm{h}}$ and therefore by (21),

$$
\sum_{j=m+1}^{k_{h}} a_{j}<2^{-t}+2 a_{m} .
$$

Clearly $\mathrm{m}>\mathrm{n}_{\mathrm{t}}$ and consequently, by (13), $\mathrm{k}_{\mathrm{h}}-\mathrm{m}<2^{-\mathrm{t}} \mathrm{m} / \mathrm{a}_{\mathrm{m}}$. From (13), we also evidently have $1 \leq 2^{-\mathrm{t}} \mathrm{m} / \mathrm{a}_{\mathrm{m}}$, and from (22), we obtain

$$
\sigma_{\mathrm{k}_{\mathrm{h}}}(\varepsilon) \leq \sigma+\frac{1}{\mathrm{k}_{\mathrm{h}}} \cdot 3 \mathrm{a}_{\mathrm{m}} \cdot 2 \cdot 2^{-\mathrm{t}} \frac{\mathrm{~m}}{\mathrm{a}_{\mathrm{m}}}
$$

which by (19) implies (18).
For series belonging to $L(\delta)$, we obtain from Theorem 2 the following COROLLARY 1. Let $\Sigma \mathrm{a}_{\mathrm{j}} \in \mathrm{L}\left(\delta,\left\{\mathrm{n}_{\mathrm{i}}\right\}\right)$. If
(a)

$$
\mathrm{n}_{\mathrm{i}+1}-\mathrm{n}_{\mathrm{i}}=\mathrm{o}\left(\mathrm{n}_{\mathrm{i}}^{\gamma}\right) \quad \text { and } \quad \mathrm{a}_{\mathrm{n}_{\mathrm{i}}}=\mathrm{O}\left(\mathrm{n}_{\mathrm{i}}^{(1-\gamma) / 2}\right) \quad(0<\gamma \leq 1) \text {, }
$$

or if
(b)

$$
\mathrm{n}_{\mathrm{i}+1}-\mathrm{n}_{\mathrm{i}}=\mathrm{O}\left(\mathrm{n}_{\mathrm{i}}^{\gamma}\right) \quad \text { and } \quad \mathrm{a}_{\mathrm{n}_{\mathrm{i}}}=\mathrm{o}\left(\mathrm{n}_{\mathrm{i}}^{(1-\gamma) / 2}\right) \quad(0 \leq \gamma<1) \text {, }
$$

then $\operatorname{SC}\left\{\mathrm{a}_{\mathrm{j}}\right\}$ is the whole line.
Proof. For $n \neq n_{i}$, (13) is evidently satisfied. It remains to show that, for sufficiently large i, the inequality

$$
\begin{equation*}
\sum_{\alpha=1}^{k_{i}} a_{n_{i+\alpha}}>2 a_{n_{i}}+\delta \tag{23}
\end{equation*}
$$

holds, for some k_{i} with

$$
\begin{equation*}
n_{i+k_{i}}-n_{i}=o\left(n_{i} / a_{n_{i}}\right) \tag{24}
\end{equation*}
$$

In view of the inequality $\mathrm{a}_{\mathrm{n}_{\mathrm{i}+\alpha}} \geq \delta$, (23) will be satisfied for

$$
k_{i} \geq \frac{2 a_{n_{i}}}{\delta}+2
$$

that is, for $k_{i}=\left[C a_{n_{i}}\right]$ with a sufficiently large constant C. Now, if $n_{i+1}-n_{i}<p_{i} n_{i}$, where $p_{i+1} \leq p_{i}$, then

$$
n_{i+1}=n_{i}\left(1+\frac{n_{i+1}-n_{i}}{n_{i}}\right) \leq n_{i}\left(1+p_{i} n_{i}^{\gamma-1}\right),
$$

and since $n_{i+1}^{\gamma-1}<n_{i}^{\gamma-1}, n_{i+k_{i}} \leq n_{i}\left(1+p_{i} n_{i}^{\gamma-1}\right)^{k_{i}}$, hence

$$
\log \frac{\mathrm{n}_{\mathrm{i}+\mathrm{k}_{\mathrm{i}}}}{\mathrm{n}_{\mathrm{i}}} \leq \mathrm{k}_{\mathrm{i}} \mathrm{p}_{\mathrm{i}} \mathrm{n}_{\mathrm{i}}^{\gamma-1}
$$

Suppose now that $\mathrm{k}_{\mathrm{i}}<\mathrm{q}_{\mathrm{i}} \mathrm{n}_{\mathrm{i}}^{(1-\gamma) / 2}\left(\mathrm{q}_{\mathrm{i}+1} \leq \mathrm{q}_{\mathrm{i}}\right)$. Then

$$
\frac{n_{i+k_{i}}}{n_{i}}<\exp p_{i} q_{i} n_{i}^{(\gamma-1) / 2}<1+2 p_{i} q_{i} n_{i}^{(\gamma-1) / 2}
$$

for sufficiently large i. Since we may assume that $p_{i} \rightarrow 0$ in case (a), and that $\mathrm{q}_{\mathrm{i}} \rightarrow 0$ in case (b), it follows that (24) is satisfied.

Putting, in Corollary 1, $\gamma=1$ and $\gamma=0$, respectively, we obtain the still more special

COROLLARY 2. Let $\Sigma \mathrm{a}_{\mathrm{j}} \in \mathrm{L}\left(\delta,\left\{\mathrm{n}_{\mathrm{i}}\right\}\right)$. If
(a)

$$
n_{i+1}-n_{i}=o\left(n_{i}\right) \quad \text { and } \quad a_{n_{i}}=O(1) \text {, }
$$

or if
(b)

$$
\mathrm{n}_{\mathrm{i}+1}-\mathrm{n}_{\mathrm{i}}=\mathrm{O}(1) \quad \text { and } \quad \mathrm{a}_{\mathrm{n}_{\mathrm{i}}}=\mathrm{o}\left(\sqrt{\mathrm{n}_{\mathrm{i}}}\right) \text {, }
$$

then $\operatorname{SC}\left\{\mathrm{a}_{\mathrm{j}}\right\}$ is the whole line.

5. SERIES FOR WHICH SC $\left\{a_{j}\right\}$ IS EMPTY

The next theorem will be stated generally for series Σb_{j} of elements of a Banach space. The definitions given in Section 1 will apply also under these general conditions. In particular, our theorem will be true when the b_{j} are real positive numbers, and in this case the norm signs may be omitted.

THEOREM 3. Let $\Sigma \mathrm{b}_{\mathrm{j}}$ be a series of elements of a Banach space. If there exist a function $\mathrm{f}(\mathrm{n})(1 \leq \mathrm{f}(\mathrm{n}) \leq \mathrm{n})$ and a positive number $\eta>0$ such that for every N there exists an $\mathrm{n}>\mathrm{N}$ satisfying

$$
\begin{equation*}
\left\|b_{n}\right\|-\sum_{0<|i|<f(n)}\left\|b_{n+i}\right\|>\frac{\eta n}{f(n)}, \tag{25}
\end{equation*}
$$

then $\operatorname{SC}\left\{\mathrm{b}_{\mathrm{j}}\right\}$ is empty.
Proof. Assume that $\operatorname{SC}\left\{b_{j}\right\} \neq \emptyset$. Without loss of generality, we may then assume that $0 \in S C\left\{b_{j}\right\}$, in other words, that there exists a sequence (1) such that $\Gamma \varepsilon_{j} \mathrm{~b}_{\mathrm{j}}=0$. Hence for every $\eta_{1}>0$ and for sufficiently large n we have, for every m $(\mathrm{m}<\mathrm{f}(\mathrm{n}) \leq \mathrm{n})$,

$$
\begin{equation*}
\sum_{i=0}^{m} s_{n+i}(\varepsilon)\left\|<\eta_{1} n, \quad\right\| \sum_{i=1}^{m} s_{n-i}(\varepsilon) \|<\eta_{1} n \tag{26}
\end{equation*}
$$

In particular, we may choose

$$
\begin{equation*}
\eta_{1}=\eta / 2 . \tag{27}
\end{equation*}
$$

When η_{1} has thus been fixed, there exist indices n satisfying both (25) and (26), and we shall assume in the sequel that n is such an index.

In order to simplify notation, we shall denote by f_{n} the integer satisfying

$$
\begin{equation*}
\mathrm{f}(\mathrm{n})-1 \leq \mathrm{f}_{\mathrm{n}}<\mathrm{f}(\mathrm{n}), \tag{28}
\end{equation*}
$$

and for $m \leq f_{n}$, we put

$$
\begin{equation*}
A_{m}=\sum_{i=1}^{m} \varepsilon_{n+i} b_{n+i}, \quad B_{m}=\sum_{i=1}^{m} \varepsilon_{n-i} b_{n-i}, \quad A_{0}=B_{0}=0 . \tag{29}
\end{equation*}
$$

From (26) and (27) follows

$$
\begin{equation*}
\left\|\sum_{k=0}^{f_{n}}\left(s_{n-1}(\varepsilon)+\varepsilon_{n} b_{n}+A_{k}\right)\right\|<\eta n / 2 . \tag{30}
\end{equation*}
$$

On the other hand, considering

$$
\left\|\varepsilon_{n} b_{n}+A_{k}\right\| \geq\left\|b_{n}\right\|-\sum_{i=1}^{k}\left\|b_{n+i}\right\|
$$

we have by (25)

$$
\begin{equation*}
\left\|\varepsilon_{\mathrm{n}} \mathrm{~b}_{\mathrm{n}}+\mathrm{A}_{\mathrm{k}}\right\|>\left\|\mathrm{B}_{\mathrm{f}_{\mathrm{n}}}\right\|+\eta \mathrm{n} / \mathrm{f}(\mathrm{n}) \quad\left(\mathrm{k}=0,1, \cdots, \mathrm{f}_{\mathrm{n}}\right) \tag{31}
\end{equation*}
$$

We shall now prove that

$$
\begin{equation*}
\left\|s_{n-1}(\varepsilon)\right\|>\left\|B_{j}\right\|+\frac{\eta}{2} \frac{n}{f(n)} \quad\left(j=0,1, \cdots, f_{n}\right) . \tag{32}
\end{equation*}
$$

Suppose that it is not so, in other words, that

$$
\begin{equation*}
\left\|s_{n-1}(\varepsilon)\right\| \leq\left\|B_{j}\right\|+\frac{\eta}{2} \frac{n}{f(n)} \tag{33}
\end{equation*}
$$

for some $\mathrm{j}\left(0 \leq \mathrm{j} \leq \mathrm{f}_{\mathrm{n}}\right)$. We evidently have

$$
\begin{align*}
\left\|\sum_{k=0}^{f_{n}}\left(s_{n-1}(\varepsilon)+\varepsilon_{n} b_{n}+A_{k}\right)\right\| & =\left\|\left(f_{n}+1\right) \varepsilon_{n} b_{n}+\sum_{k=0}^{f_{n}}\left(s_{n-1}(\varepsilon)+A_{k}\right)\right\| \tag{34}\\
& \geq\left(f_{n}+1\right)\left\|b_{n}\right\|-\sum_{k=0}^{f_{n}}\left\|s_{n-1}(\varepsilon)+A_{k}\right\| .
\end{align*}
$$

By (33) and (25),

$$
\begin{aligned}
\left\|s_{n-1}(\varepsilon)+A_{k}\right\| & \leq\left\|s_{n-1}(\varepsilon)\right\|+\left\|A_{k}\right\| \leq\left\|B_{j}\right\|+\frac{\eta}{2} \frac{n}{f(n)}+\left\|A_{k}\right\| \\
& <\left\|b_{n}\right\|-\frac{\eta}{2} \frac{n}{f(n)} \quad\left(j=0,1, \cdots, f_{n}\right)
\end{aligned}
$$

and thus, from (34),

$$
\left\|\sum_{k=0}^{f_{n}}\left(s_{n-1}(\varepsilon)+\varepsilon_{n} b_{n}+A_{k}\right)\right\| \geq\left(f_{n}+1\right) \frac{\eta}{2} \frac{n}{f(n)} \geq \eta n / 2
$$

which contradicts (30). Consequently (32) is established.
Finally, by (32),

$$
\begin{aligned}
\left\|\sum_{i=1}^{f_{n}} s_{n-i}(\varepsilon)\right\| & =\left\|\sum_{i=0}^{f_{n}-1}\left(s_{n-1}(\varepsilon)-B_{i}\right)\right\|=\left\|f_{n} s_{n-1}(\varepsilon)-\sum_{i=0}^{f_{n}-1} B_{i}\right\| \\
& \geq f_{n}\left\|s_{n-1}(\varepsilon)\right\|-\sum_{i=0}^{f_{n}-1}\left\|B_{i}\right\|>\eta n / 2
\end{aligned}
$$

which contradicts (26), and thus our theorem is proved.
Putting $f(n)=1$, in Theorem 3, we obtain the well-known, almost trivial result:
COROLLARY 3. Let $\Sigma \mathrm{b}_{\mathrm{j}}$ be a series of elements of a Banach space. If there exists a positive number η such that $\left\|\mathrm{b}_{\mathrm{n}}\right\|>\eta \mathrm{n}$ for infinitely many n , then $\operatorname{SC}\left\{\mathrm{b}_{\mathrm{j}}\right\}$ is empty.

Further, putting $f(n)=\eta_{2} n /\left\|b_{n}\right\|$, in Theorem 3, we obtain
COROLLARY 4. Let $\Sigma \mathrm{b}_{\mathrm{j}}$ be a series of elements of a Banach space. If there exist positive numbers η_{1}, η_{2} such that for infinitely many n

$$
\begin{equation*}
\left\|b_{n}\right\|>\left(1+\eta_{1}\right)_{0<|i|<\eta_{2} n /\left\|b_{n}\right\|}\left\|b_{n+i}\right\| \tag{35}
\end{equation*}
$$

then $\operatorname{SC}\left\{\mathrm{b}_{\mathrm{j}}\right\}$ is empty.
Corollary 4 enables us to show that, in the case of real series, the conditions of Corollary 1 are, in some respects, the best possible:

COROLLARY 5. For each $\gamma(0 \leq \gamma \leq 1)$, there exists a sequence $\left\{n_{i}\right\}$ and a series $\Sigma a_{j} \in L\left(1,\left\{n_{i}\right\}\right)$ such that

$$
\begin{equation*}
\mathrm{n}_{\mathrm{i}+1}-\mathrm{n}_{\mathrm{i}}=\mathrm{O}\left(\mathrm{n}_{\mathrm{i}}^{\gamma}\right) \quad \text { and } \quad \mathrm{a}_{\mathrm{n}_{\mathrm{i}}}=\mathrm{O}\left(\mathrm{n}_{\mathrm{i}}^{(1-\gamma) / 2}\right) \tag{36}
\end{equation*}
$$

and $\operatorname{Cs}\left\{\mathrm{a}_{\mathrm{j}}\right\}$ is empty.
For $\mathrm{m}=1,2, \cdots$, put

$$
a_{2^{m}}=2^{m(1-\gamma) / 2}, \quad a_{2^{m}+\left[k \cdot 2^{m} \gamma\right]}=1 \quad\left(1 \leq k<2^{m(1-\gamma)}\right)
$$

and let $\mathrm{a}_{\mathrm{j}}=0$ for all other j 's. Then apply Corollary 4 with $\mathrm{n}=2^{\mathrm{m}}$ and $\eta_{1}=\eta_{2}=1 / 4$.

There seems to be no hope of finding a reasonably good converse of Theorem 3 or Corollary 4, for elements of a general Banach space or even for complex numbers. We shall return to the case of complex series in Section 7.

For real series the following question arises:
Problem 1. Let $\Sigma \mathrm{a}_{\mathrm{j}}$ be a series of real numbers satisfying (11). What is the smallest constant C such that, if for every $\eta>0$ and sufficiently large n

$$
\sum_{i=1}^{\left[\eta n / a_{n}\right]} a_{n+i}>C a_{n}+\eta
$$

holds, then $\operatorname{SC}\left\{\mathrm{a}_{\mathrm{n}}\right\}$ is the whole line?
From Corollary 4 it follows easily that $\mathrm{C} \geq 1$. On the other hand, we were only able to prove (in Theorem 2) that $C \leq 2$. It seems very likely that this is not the best possible result. Perhaps $\mathrm{C}=1$ or $\mathrm{C}=1+\eta$ would suffice.

Another problem which we were unable to solve is
Problem 2. Let $\Sigma \mathrm{a}_{\mathrm{j}}$ be a series of real numbers. Are the conditions stated in Theorem 3 and Corollary 4 for $\operatorname{SC}\left\{\mathrm{a}_{\mathrm{j}}\right\}$ to be empty not only sufficient but also necessary?

6. THE STRUCTURE OF $\operatorname{SC}\left\{\mathrm{a}_{\mathrm{j}}\right\}$

We know very little about the structure of all the possible sets $\operatorname{SC}\left\{\mathrm{a}_{\mathrm{j}}\right\}$. The following remarks are rather trivial:

Remark 1. If $\operatorname{SC}\left\{\mathrm{a}_{\mathrm{j}}\right\} \neq \emptyset$, then the set $\operatorname{SC}\left\{\mathrm{a}_{\mathrm{j}}\right\}$ is infinite.
There exists a sequence (ε) such that $\Sigma_{\varepsilon_{j}} a_{j}$ is C_{1}-summable, and we may change the sign of any finite number of elements of $\Sigma \varepsilon_{j} a_{j}$.

Remark 2. There exists a series $\Sigma \mathrm{a}_{\mathrm{j}} \in \mathrm{L}(1)$ such that $\mathrm{SC}\left\{\mathrm{a}_{\mathrm{j}}\right\}$ contains an interval but does not contain the whole line.

Put

$$
a_{2^{n}}=2, \quad a_{2^{n}+1}=2+2^{-n}, \quad a_{j}=0 \text { for } j \neq 2^{n}, 2^{n}+1 \quad(n=0,1, \cdots)
$$

Remark 3. Even if $\lim \sup _{\mathrm{i} \rightarrow \infty} \mathrm{n}_{\mathrm{i}+1} / \mathrm{n}_{\mathrm{i}}$ is as large as we please, we may construct a series $\Sigma a_{j} \in L\left(1,\left\{n_{i}\right\}\right)$ such that $\operatorname{SC}\left\{a_{j}\right\}$ is the whole line.

Put $n_{2 i}=n_{2 i-1}+1, a_{n_{2 i-1}}=o\left(n_{2 i}\right), a_{n_{2 i}}=a_{n_{2 i-1}}+b_{i}$ with $\Sigma\left|b_{i}\right|=\infty, b_{i} \rightarrow 0$.
With respect to the sets $\operatorname{SC}\left\{\mathrm{a}_{j}\right\}$ of series $\Sigma \mathrm{a}_{\mathrm{j}} \in \mathrm{L}\left(\delta,\left\{\mathrm{n}_{\mathrm{i}}\right\}\right)$ for which (36) is satisfied, we conjecture that the following question has an affirmative answer, in the case $0 \leq \gamma<1$:

Problem 3. If $\Sigma \mathrm{a}_{\mathrm{j}} \in \mathrm{L}\left(\delta,\left\{\mathrm{n}_{\mathrm{i}}\right\}\right)$ and

$$
n_{i+1}-n_{i}=O\left(n_{i}^{\gamma}\right), \quad a_{n_{i}}=O\left(n_{i}^{(1-\gamma) / 2}\right) \quad(0 \leq \gamma<1)
$$

is it true that $\operatorname{SC}\left\{\mathrm{a}_{\mathrm{j}}\right\}$ is either empty or the whole line?

Perhaps even a stronger conjecture holds:
Problem 4. If $\Sigma \mathrm{a}_{\mathrm{j}} \in \mathrm{L}\left(\delta,\left\{\mathrm{n}_{\mathrm{i}}\right\}\right)$ and

$$
\begin{equation*}
n_{i+1}-n_{i}=o\left(n_{i}^{\gamma}\right) \quad \text { and } \quad a_{n_{i}}=O\left(n_{i}^{1}-\gamma\right) \quad(0<\gamma \leq 1), \tag{a}
\end{equation*}
$$

or
(b) $\quad n_{i+1}-n_{i}=O\left(n_{1}^{\gamma}\right) \quad$ and $\quad a_{n_{i}}=o\left(n_{i}^{1-\gamma}\right) \quad(0 \leq \gamma<1)$,
is it true that $\operatorname{SC}\left\{\mathbf{a}_{\mathrm{j}}\right\}$ is either empty or the whole line?
By Corollary 1, we can give a positive answer for the case (a) with $\gamma=1$. On the other hand we cannot solve Problem 3 even in the case $\gamma=0$.

In connection with Problem 4, we can prove the following theorem:
THEOREM 4. Corresponding to each denumerable set

$$
\begin{equation*}
b_{1}, b_{2}, \cdots \tag{38}
\end{equation*}
$$

each $\delta>0$, and each $\gamma(0<\gamma \leq 1)$, there exists a series $\Sigma a_{j} \in L\left(\delta,\left\{n_{i}\right\}\right)$, with

$$
n_{i+1}-n_{i}=O\left(n_{i}^{\gamma}\right) \quad \text { and } \quad a_{n_{i}}=O\left(n_{i}^{1-\gamma}\right) \text {, }
$$

such that $\operatorname{SC}\left\{\mathrm{a}_{\mathrm{j}}\right\}$ is denumerable and $\mathrm{SC}\left\{\mathrm{a}_{\mathrm{j}}\right\} \supset\left\{\mathrm{b}_{\mathrm{h}}\right\}_{\mathrm{h}=1}^{\infty}$.
Proof. We shall construct a series $\Sigma \mathrm{a}_{\mathrm{j}}$ satisfying the conditions of the theorem. Evidently there exists a sequence

$$
\begin{equation*}
d_{1}, d_{2}, \cdots \tag{39}
\end{equation*}
$$

such that $0<d_{m} \leq 2 \delta(n=1,2, \cdots)$ and such that every term of the set (38) is a sum (or difference) of a finite number of terms of (39). We shall fix the indices $\mathrm{n}_{4 \mathrm{i}}$ by induction as follows: let n_{4} be the smallest integer such that $n_{4}^{\gamma}>4$ and, $n_{4 i}$ being fixed, we choose $n_{4(i+1)}=n_{4 i}+\left[n_{4 i}^{\gamma}\right]$. The indices $n_{h}(h \neq 0(\bmod 4))$ we fix by the rule

$$
n_{4 i-3}+3=n_{4 i-2}+2=n_{4 i-1}+1=n_{4 i}
$$

Further, we put

$$
a_{n_{4 i-3}}=a_{n_{4 i-2}}=n_{4 \mathrm{i}}^{1-\gamma} \quad(i=1,2, \cdots),
$$

and if i is the smallest integer such that $n_{4 i} \geq 2^{m+2}$ for some m, we put

$$
\mathrm{a}_{\mathrm{n}_{4 \mathrm{i}-1}}=\mathrm{a}_{\mathrm{n}_{4 \mathrm{i}}}=\mathrm{n}_{4 \mathrm{i}}^{1-\gamma}+\frac{1}{2} \mathrm{~d}_{\mathrm{m}}
$$

otherwise we put

$$
a_{n_{4 i-1}}=a_{n_{4 i}}=n_{4 i}^{1-\gamma}
$$

In order that this series should be C_{1}-summable, the sums $\Sigma_{h=0}^{3} \varepsilon_{n_{4 i-h}} a_{n_{4 i-h}}$ must differ from zero for at most a finite number of values of i; hence $\operatorname{SC}\left\{\mathrm{a}_{j}\right\}$ is denumerable. It is also easy to see that all the finite sums (and differences) of the sequence (39) are elements of $\operatorname{SC}\left\{\mathrm{a}_{\mathrm{j}}\right\}$, which proves our theorem.

Problem 5. Is $\mathrm{SC}\left\{\mathrm{a}_{\mathrm{j}}\right\}$ a Borel set, and what are the possible Baire classes into which the sets $\operatorname{SC}\left\{\mathrm{a}_{\mathrm{j}}\right\}$ can fall? In particular, is it true that if $\operatorname{SC}\left\{\mathrm{a}_{\mathrm{j}}\right\}$ is of second category in every point of an interval (a, b) then it contains (a, b)? We do not even have an example where $\operatorname{SC}\left\{\mathrm{a}_{\mathrm{j}}\right\}$ is not an F_{σ}.

7. SERIES WITH COMPLEX TERMS

In this section we shall formulate, without proofs, some general ideas on series Σc_{j} with complex terms. Here again (as in Section 5), all the definitions of Section 1 retain their meaning. The following theorem, similar to Theorem 2, is true.

THEOREM 5. Let $\Sigma \mathrm{c}_{\mathrm{j}}$ be a series of complex numbers. Assume that there exists, for some fixed $\delta>0$ and for each $\eta>0$, an integer $\mathrm{N}=\mathrm{N}(\eta)$ such that, for every $\mathrm{n}>\mathrm{N}$ and for every $\alpha(0 \leq \alpha<2 \pi)$,

$$
\begin{equation*}
\sum_{h=1}^{\left[\eta n /\left|c_{n}\right|\right]}\left|c_{n+h}\right|>C(\delta) \cdot\left|c_{n}\right| \tag{40}
\end{equation*}
$$

where the α indicates that those $\mathrm{c}_{\mathrm{n}+\mathrm{h}}$ are omitted for which $\left|\arg \mathrm{c}_{\mathrm{n}+\mathrm{h}}-\alpha\right|<\delta$, and where $\mathrm{C}(\hat{\delta})$ is some constant depending on δ only. Then $\mathrm{SC}\left\{\mathrm{c}_{\mathrm{j}}\right\}$ is the whole plane.

We shall refrain from giving a full proof of this theorem and shall confine ourselves to giving an outline of the proof. Notice that from the conditions of the theorem it follows that the series $\Sigma \mathrm{c}_{\mathrm{j}}$ has at least two directions of divergence (for the definition, see [4]), the angle between them being not less than δ. Consequently the methods of Section 4.1 of [4] may be used.

The general idea of the proof of Theorem 5 is the same as that of Theorem 2, with the difference that instead of keeping $\mathrm{s}_{\mathrm{n}}(\varepsilon)$ in a given half-line as in Theorem 2, we must now keep the $s_{n}(\varepsilon)$ in a given quadrant of the plane. This is done by means of the terms of Σc_{j} which are near to two chosen directions of divergence by the methods of [4], the sum of all other terms being kept small by the result of [3].

The condition that there should be at least two directions of divergence is essential. We shall show that without this condition, even under otherwise much stronger restrictions than those of Theorem 5 , the set $\operatorname{SC}\left\{\mathrm{c}_{\mathrm{j}}\right\}$ may be empty. We shall give an example for the following.

Remark 4. Let $\Sigma \mathbf{c}_{\mathrm{j}}$ be a series of complex terms. Even if for every $\eta>0$

$$
\lim _{n \rightarrow \infty} \sum_{h=1}^{\left[\eta_{n} /\left|c_{n}\right|\right]}\left|c_{n+h}^{\prime}\right| /\left|c_{n}\right|=\infty,
$$

where c_{n+h}^{\prime} is the projection of c_{n+h} on any fixed direction, the set $\operatorname{SC}\left\{c_{j}\right\}$ may be empty.

Our example will be given under the additional restriction that $1 \leq\left|c_{j}\right|<2$ $(\mathrm{j}=1,2, \cdots)$. Put $\mathrm{c}_{2^{k}}=\mathrm{i}(\mathrm{k}=1,2, \cdots)$, and for $2^{\mathrm{k}}<\mathrm{m}<2^{\mathrm{k}+1}$, put $\mathrm{c}_{\mathrm{m}}=1$ and $c_{m}=1+i 2^{-3 \mathrm{k} / 4}$ in alternate intervals of length $\left[2^{3 \mathrm{k} / 4}\right.$] each. A simple argument shows that the conditions of our remark are satisfied and that $\operatorname{SC}\left\{\mathrm{c}_{\mathrm{j}}\right\}$ is empty.

We shall now give several examples showing the possible interrelation between $\mathrm{S}\left\{\mathrm{c}_{\mathrm{j}}\right\}$ and $\operatorname{SC}\left\{\mathrm{c}_{\mathrm{j}}\right\}$, for series $\Sigma_{\mathrm{c}}^{\mathrm{j}}$ of complex terms with

$$
\begin{equation*}
\sum\left|c_{j}\right|=\infty \quad \text { and } \quad c_{j} \rightarrow 0 . \tag{41}
\end{equation*}
$$

If $S\left\{\mathrm{c}_{\mathrm{j}}\right\}$ is the whole plane, then evidently $\mathrm{SC}\left\{\mathrm{c}_{\mathrm{j}}\right\}=\mathrm{S}\left\{\mathrm{c}_{\mathrm{j}}\right\}$. It can easily be seen, however, that (41) does not imply that $S\left\{c_{j}\right\}$ is the whole plane, or even that $\mathrm{S}\left\{\mathrm{c}_{\mathrm{j}}\right\}$ contains a continuum (compare [4]).

The series $\Sigma\left(n^{-1}+i 2-n\right)$ (for which (41) is satisfied) shows that the relation $\operatorname{SC}\left\{\mathrm{c}_{\mathrm{j}}\right\}=\mathrm{S}\left\{\mathrm{c}_{\mathrm{j}}\right\}$ is also possible in the case where $\mathrm{S}\left\{\mathrm{c}_{\mathrm{j}}\right\}$ contains more than one point but is not the whole plane.

A simple example of a series for which $\mathrm{S}\left(\mathrm{c}_{\mathrm{j}}\right)$ constitutes a proper subset of $\mathrm{SC}\left(\mathrm{c}_{\mathrm{j}}\right)$ is $\Sigma\left(\mathrm{n}^{-1 / 2}+\mathrm{i} 2-\mathrm{n}\right)$. Here the imaginary part of $\sigma(\varepsilon)$ (if $\sigma(\varepsilon)$ exists) lies in $(-1,1)$ and determines uniquely the sequence ε, hence the real part of $\sigma(\varepsilon)$. If $\varepsilon_{n}=(-1)[\sqrt{n}]$, then $\sigma(\varepsilon)$ exists, but $s(\varepsilon)$ does not exist; this proves our assertion concerning the relation between the sets $S\left(c_{j}\right)$ and $S C\left(c_{j}\right)$. We note incidentally that the set $S\left(c_{j}\right)$ is dense in the strip between the lines $y= \pm 1$. For if $z=x+i y$ is any point in this strip and η is any positive number, we can choose a finite number of the ε_{j} in such a way that, regardless of how the remaining elements are chosen, the imaginary part of $s_{\mathrm{n}}(\varepsilon)$ converges to a value which differs from y by less than η; and we can then choose the remaining ε_{j} in such a way that the real part of $\mathrm{s}_{\mathrm{n}}(\varepsilon)$ converges to \mathbf{x}.

Finally we give two examples of series Σc_{j} for which $S\left\{c_{j}\right\}$ is dense in the whole plane and $\operatorname{SC}\left\{\mathrm{c}_{\mathrm{j}}\right\}$ contains $\mathrm{S}\left\{\mathrm{c}_{\mathrm{j}}\right\}$ properly. In one of them,

$$
c_{j}=\frac{1}{n}+\frac{i}{n!} \quad \text { for } \sum_{k=1}^{n-1} k!\leq j<\sum_{k=1}^{n} k!\quad(n=2,3, \cdots)
$$

and $\operatorname{SC}\left\{\mathrm{c}_{\mathrm{j}}\right\}$ is the whole plane; in the other,

$$
c_{j}=\frac{1}{n}+\frac{i}{10^{n^{2}}} \text { for } \sum_{k=1}^{n-1} 10^{k^{2}} \leq j<\sum_{k=1}^{n} 10^{k^{2}} \quad(n=2,3, \cdots),
$$

and $\operatorname{SC}\left\{\mathrm{c}_{\mathrm{j}}\right\}$ is a proper subset of the plane.

REFERENCES

1. F. Bagemihl and P. Erdös, Rearrangements of C_{1}-summable series, Acta Math. 92 (1954), 35-53.
2. E. Calabi and A. Dvoretzky, Convergence- and sum-factors for series of complex numbers, Trans. Amer. Math. Soc. 70 (1951), 177-194.
3. A. Dvoretzky and H. Hanani, Sur les changements des signes des termes d'une série à termes complexes, C. R. Acad. Sci. Paris 225 (1947), 516-518.
4. H. Hanani, On sums of series of complex numbers, Pacific J. Math. 3 (1953), 695-709.
5. G. G. Lorentz and K. Zeller, Series rearrangements and analytic sets, Acta Math. 100 (1958), 149-169.
6. S. Mazur, Ueber bedingt summierbare Reihen, Arch. Tow. Nauk. Lwów, Wydz. III, Mat.-Przyr. 4 (1929), 411-424.
7. E. Steinitz, Bedingt konvergente Reihen und konvexe Systeme, J. Reine Angew. Math. 143 (1913), 128-175; 144 (1914), 1-40; 146 (1916), 1-52.

Technion, Israel Institute of Technology
Haifa, Israel

