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ON THE INTEGERS RELATIVELY PRIME TO n AND
ON A NUMBER-THEORETIC FUNCTION

CONSIDERED BY JACOBSTHAL

where on the left hand side the maximum is taken over all the integers
n with v(n) =r, v(n) denoting the number of distinct prime factors of n .
The growth of the function g(n) is very irregular and even the growth
of C(r) is very difficult to study. We have (throughout this paper
CV C2 , . . . , denote positive absolute constants)

(2)

	

cl r(log r) 2 log loglog r
< C(r) < C2 r '3

(loglog r) 2

The left hand side of (2) is a result of Rankin [8] and the right hand
side follows easily from Brun's method .

Jacobsthal asked (in a letter) if

(3)

	

C(r) < c 47.2

is true. The exponent c3 can be reduced by Selberg's improvement of
Brun's method, but it seems hopeless at present to decide about (3) .
Jacobsthal also informed me that for r <_ 10 the value of C(r) is deter-
mined by n,.= 2, 3 . . . . p,., the p's being the consecutive primes, and that
this perhaps holds for all values of r . Possibly the value of g(n,.') for
n,'=n =1p,á+1 is already considerably smaller than C(r) . In a previous
paper [4] I estimated g(n) for integers n of a certain special form, e .g .
if n is the product of the first r consecutive primes - 3 (mod 4) .

It is easy to see that for almost all integers satisfying v(n)=r we have
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Let n be any integer. Jacobsthal [6] defines g(n) to be the least integer
so that amongst any g(n) consecutive integers a, a. + l, . . . , a + g(n) - 1
there is at least one which is relatively prime to n . He further defines

maxg(n) = C(r)+1 ,
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g(n) = r + 1 . To see this observe that the number of integers n <_ x with
v(n)=r is by a well known theorem of Landau (cf . [7, vol. 1, p . 211]) .

(4)

	

(1 +0(1))
x(loglogx)r-i
(r- 1)! log x

Further Jacobsthal [6] observed that if v(n)=r and all prime factors
of n are greater than r, then g(n)=r+1. Now from (4) we obtain by a
simple computation that the number of integers n<x with v(n)=r,
whose smallest prime factor is not greater than r, is less than (c 5 depends
on r)
(5)

THEOREM I . For all n

c5x(loglogx)r-21logx = 0(x(loglogx)r -lflogx) .

(4) and (5) complete the proof of our assertion .

In the present note we shall prove that for almost all integers n

(6)

	

g(n) _ (1+o(1))nloglogn/T(n),

where T(n) denotes Euler's T-function . In other words, for every s the
density of integers for which

(1 -e)n loglogn./T(n) < g(n) < (1 +s)n loglognfc,(n) ,

is not satisfied, is 0 . In fact we shall prove somewhat stronger theorems .
Denote by 1=a 1 < . . . < a p(n) =n-1 the q)(n) integers relatively prime

to n:. Some time ago I conjectured [3] that
¢(n)-1

( 7 )

	

1 (ak+i - ak) 2 < rsn2ÍP(n)
k=1

I have been unable to prove or disprove (7) . In the present note I shall
outline a proof (Theorem III) that to every s >0 and q >0 there exists
an Ao(s, n) so that for every A >A,(a, ri) the number of integers x, 1 5 x :5 n,
for which

(1--)A < Tn(x,x+Anfq?(n)) < (1 +e)A ,

is not satisfied, is less than nn. (T,,(x, x + B) denotes the number of
integers x <m <= x + B with (m, n) =1) . This result seems to indicate
that (7) is true, but (7) is deeper and I have not yet been able to prove it .

The following theorem easily implies formula (2) in [3] .

n	c7loglogv(n)
9(n) >

99(n)
v(r6)

C1

	

logv(n)
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First we need a lemma which is substantially due to Chang [1] .

LEMMA 1 . Let A be any integer and q1, q2, . . . qk be any primes . Then
there exists an integer x k = xk(uk), uk = jjk=1q2 , so that

k

99uk(xk,Xk+A) < A

	

(1- qi-1 ) ,
i=1

g9uk(xk,xk +A) denoting the number of integers xk <m<xk+A for which
(m, Uk) =1.

We use induction with respect to L Lemma 1 clearly holds if k = 1 .
Suppose that it holds for k - 1 . Then there exists an integer xk-1 =
xk-1(uk-1) , uk-1=r1k=1gi, so that

k-1

Tuk-1(xk-l,xk-1+A) < A 11 (1-qi-1 )
i=1

Denote by xk-1 + jl , 1 < l < r, r < A jj'j'=1(1- q i-1 ) the integers in
(xk-i, xk-I + A) which are relatively prime to uk-1 . At least one residue
class (modgk ) contains at least rfgk of these numbers, let this residue
class be x k . Let now

xk = xk-1 (modu k-1 ),

	

xk = - IXk+xk-1 (modgk )
In (xk , xk + A) there clearly are at least rfq k integers which are relatively
prime to u k - 1 and are multiples of q k . Thus

k

Tuk(xk,xk+A) < A 11 (1- qi-1 ) ,
i=1

which proves Lemma 1 .

PROOF of THEOREM L Let p, < . . . < p„ (n) be the distinct prime
factors of n and let pk be the largest prime factor of n which is less than
v (n) . From the prime number theorem (or from the more elementary
results of Tschebycheff) we easily obtain by a simple computation that

"(n)

	

v(n)

	

log log v (n)
( 8 )

	

IT (1 - pi-1 ) >_ rj (1 - r i- 1 ) > 1 - eg log
v n 'i=k+1

	

i=1

	

b ( )

where r, <r2 < . . . , are the consecutive primes >_ v(n) . Put

n

	

(e
7 loglogv(n)

A =	v(n) 1-9,(n)

	

log v(n)

From (8) and Lemma 1 it follows that there exists an integer (or rather
a residue class modvk, ok = jj -lpi) for which
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k

	

,
TIk ~xk, xk + A) <_ A II ( 1 - pi-1

}
= 1

9, (n)
V(n)

=AIT (1-pi-')-1
71 i=k+1

< A T(n)
1-c loglogv(n) 1

n

	

s log v(n)

< v(n) 1 - 2
log v(n)/l	 l < v(n) - k

for sufficiently large c 7 . The last inequality of (9) follows from the fact
that

k < z (v(n)) <
2v(n)

loo,

Denote now by xk + ill 1 <_ l <_ T < v(n) - k the integers in (xk ,xk + A) with
(xk +j llVk)= 1 . By T <v(n)-k there clearly exists an integer x o satisfying

(IO

	

X

	

Xk (modvk),

	

x+j l = 0 (modpk+i ),

	

151ST .

From k+T<v(n) it follows that none of the integers in (x,x+A) are
relatively prime to n, and this completes the proof of Theorem I .

Next we show that Theorem I is best possible for every v(n) . Let
q 1 <q 2 < . . . <q .r be the r consecutive primes greater than r . Put
n.r=rl'_1gi . Clearly g(n)=r+1 and a simple computation (as in (8))
shows that

nr

	

+ c, loglog r
>1

	

- •
T(n r )

	

logy

nr )

	

clo	loglogrlg(n .r ) = r+ 1 <	r
1-(?Zr log rr

if c10 is sufficiently small, which shows that Theorem I is best possible .
It is much harder to get a good upper bound for g(n) . We prove

THEOREM II . For almost all n

g(n) _
~(n) v(n)+o(logloglogn) .

Since by a well known theorem of Hardy and Ramanujan (cf . [5,
pp. 356-358]) v(n)=(1+0(1)) loglogn for almost all n, Theorem II
implies (6) .

To prove Theorem 11 we need some simple and well known lemmas .
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LEMMA 2. For almost all n

v(n) _ (1 +0(1)) loglogn .

This is the theorem of Hardy and Ramanujan mentioned above (cf .
[5, pp . 356-358]) .

LEMMA 3. For almost all n

(11) g(n)

1 - (1 +o(1)) loglogloglogn, .
pln

p<(log log n)4

Lemma 3 is known (of . [2]) and can be deduced by the method of
Turan [10] used in the proof of the Hardy-Ramanujan theorem .

LEMMA 4 . For almost all n

n/T(n) = o(log4n) .

where 10g4n denotes loglogloglogn .

LEMMA 4 is also known and follows immediately from
x
of,~(n) < c llx .

n=1

The function loo, in Lemma 4 could of course be replaced
function tending to infinity .

First we prove that for almost all n

< (n/T(n))v(n)+E log log loge = A(E,n) ,

by any

for every E > 0 . To prove (11) let

P1 < p2 < . . . < A < (loglogn)¢ < pk+i < . . . < AW

be the prime factors of n . From the sieve of Eratosthenes we evidently
have (zkM.1A)

k
(12)

	

'Tvk(x,x+A(E,n)) > A(8,n)

	

(1-p2-1)-2k
i=1

> A(e,n)(T(n)/n) - 2k

= v(n) +E(logloglogn)((p(n)/n)-2k > v(n) .

The last inequality of (12) follows from lemmas 3 and 4 .
The interval (x, x + A (E, n)) can clearly contain at most one integer

which is a multiple of Pk+%, since

pk+i. > ( loglogn)¢ > A(e,n) .
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Thus from (12)
cp,,(x,x+A(E,n)) > v(n)-(v(n)-k) = k > 0,

which proves (11) .

PROOF of THEOREM IL To complete the proof of Theorem II we
would have to prove that for almost all n

n
g(n) >	

(n)
v(n) -s log log logn .

~

In fact we shall prove very much more. We shall show that for almost
all n
( 1 3)

	

g(n) > (n/tp(n))(v(n) - (1 + e) log 4n) = B(e, n)

We will only outline the proof of (13) since it is very similar to that of
Theorem I. From lemmas 3 and 4 we can show by a simple computation
that there exists an integer x k (determined mod Vk) so that

k
Tvk(x,x+B(E,n)) <_ B(E,n)

	

( 1- pt-i )
i=1

= B(e,n)T(n)fn+o(1)

< v(n) -(1+ E) log 4n < v(n) -k .

Thus as in the proof of Theorem I we can find an x with (pn(x, x + B(e, n)) = 0,
which proves (13) and completes the proof of Theorem II .

Very likely for almost all n

g(n) > (n/T(n))v(n),

but I have not been able to prove this .
The upper bound in Theorem II can also be considerably improved

by using Brun's method, but I was unable to calculate the distribution
function of g(n) - (nfT(n))v(n), or even to prove its existence . In fact I
can not guess the scale in which to measure the growth of this function,
On the other hand from (6) and the well known existence (cf . [9])
of the distribution function of n/T(n) it immediately follows that
g(n)/loglogn has a distribution function (which in fact is the same as the
distribution function of n fT(n)) .

THEOREM III. To every E > 0 and ?l > 0 there exists an A a = Ao (E,
so that for every A >A,(E,n)

(14)

	

(1-e)A < T,,(x, x + Anlop(n)) < (1+E)A

for all n, 1 <_ x < n, except possibly for nn integers x .

s
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We use the method of Turan [10], but we will suppress some of the
details of the proof . Theorem III will clearly follow immediately from
(A >Ao(e,n))

n
(15)

	

1(n, A) _

	

(T,,(x, x + An/ip(n) - A)2 < Is2A2n ,
x=1

since (15) clearly implies that the number of integers x, 1 <_ x < n, for
which (14) does not hold is less than ?7n. Thus we only have to prove
(15) . We evidently have

n

	

x
I(n,A) _ T,,(x,x+Anjgp(n)) 2-2A cpn(x,x+An/(p(n))+nA 2

X-1

	

n=1
(16)

where kan ~ < 2, since by interchanging the order of summation we have
n
m;n(x, x + An f99(n)) = [4n fp(n)]T (n)

x=1

n

_ 99n(x,x+An/9?(n)) 2 -nA 2 +annA ,
X=1

= An - 0,,T(n),

	

0 < 0. < 1 .

Let now (u, n) _ (v, n) = 1, 0 <v - u < An/cp(n) . Then the pair (u, v) occurs
in [An fop(n)] - v + u intervals (x, x + An/T(n)) . Denote by hi(n) the num-
ber of solutions of

Then by interchanging the order of summation we have

Thus from (17) and (18)

(19)

Math. Scand . 10 - 12

1<u :5 n,

	

(u,n) _ (v, n) = 1,

	

v-u = i .

n
1 T,,(x,x+An/T(n))2
x=1

[An/¢(n)]
= 2 1 ([An/cp(n)] - i) h i(n) + [An/cp(n)]p(n)

i=1

Clearly by the sieve of Erastothenes

(18 )

	

hi(n) = n fT ( 1-2p-1 )

	

(1 - p- I )
pIn

	

pl(i,n)
pki

n
92 n(x, x + An/T(n)) 2

x=1
[Anl q(n)]

_ ?n

	

([A72Í~(n)]-i,) rj (1-2p-1) H ( 1- p-1) + [An/9p(n)]99(n) .
i=1

	

pln

	

pl(i,n)
pk2
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Now it can be shown that for every 6 >0 if D >4(6) we have for a
certain /fln j < b

D
(20)

	

(D-8)

	

( 1-2p-I )

	

( 1- p_I ) _ ( 2+Nn)D2 T(n) 2In 2 .
i=1

	

pjn

	

PI(i,n)
P-t i

I suppress the proof of (20) since my proof is fairly indirect, inelegant
and complicated and I feel that a much simpler proof can be found .
From (19) and (20) we evidently have by a simple calculation by putting
[AnJT(n)]=D for A >A(e,n) (if 6 is sufficiently small)

n

( 21 )

	

T,,(x, x + An/9-,(n» 2 = A 2n + Onn8 2A 2n ,
x=1

where 10,, 1 <2 . From (21) and (16) we finally obtain

1I(n,A) <_ 19nns 2A 2nj+IanAnj < na2A2n

for A >A(e,n) . This proves (15) and hence the proof of Theorem III is
complete .
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