ON THE INTEGERS RELATIVELY PRIME TO n AND ON A NUMBER-THEORETIC FUNCTION CONSIDERED BY JACOBSTHAL

P. ERDÖS

Dedicated to E. Jacobsthal for his $80^{\text {th }}$ birthday
Let n be any integer. Jacobsthal [6] defines $g(n)$ to be the least integer so that amongst any $g(n)$ consecutive integers $a, a+1, \ldots, a+g(n)-1$ there is at least one which is relatively prime to n. He further defines

$$
\begin{equation*}
\max g(n)=C(r)+1 \tag{1}
\end{equation*}
$$

where on the left hand side the maximum is taken over all the integers n with $v(n)=r, v(n)$ denoting the number of distinct prime factors of n. The growth of the function $g(n)$ is very irregular and even the growth of $C(r)$ is very difficult to study. We have (throughout this paper c_{1}, c_{2}, \ldots, denote positive absolute constants)

$$
\begin{equation*}
\frac{c_{1} r(\log r)^{2} \log \log \log r}{(\log \log r)^{2}}<C(r)<c_{2} r^{c_{3}} . \tag{2}
\end{equation*}
$$

The left hand side of (2) is a result of Rankin [8] and the right hand side follows easily from Brun's method.
Jacobsthal asked (in a letter) if

$$
\begin{equation*}
C(r)<c_{4} r^{2} \tag{3}
\end{equation*}
$$

is true. The exponent c_{3} can be reduced by Selberg's improvement of Brun's method, but it seems hopeless at present to decide about (3). Jacobsthal also informed me that for $r \leqq 10$ the value of $C(r)$ is determined by $n_{r}=2,3, \ldots p_{r}$, the p 's being the consecutive primes, and that this perhaps holds for all values of r. Possibly the value of $g\left(n_{r}{ }^{\prime}\right)$ for $n_{r}^{\prime}=\prod_{i=1}^{r} p_{2 i+1}$ is already considerably smaller than $C(r)$. In a previous paper [4] I estimated $g(n)$ for integers n of a certain special form, e.g. if n is the product of the first r consecutive primes $\equiv 3(\bmod 4)$.

It is easy to see that for almost all integers satisfying $\nu(n)=r$ we have

[^0]$g(n)=r+1$. To see this observe that the number of integers $n \leqq x$ with $v(n)=r$ is by a well known theorem of Landau (cf. [7, vol. 1, p. 211]).
\[

$$
\begin{equation*}
(1+o(1)) \frac{x(\log \log x)^{r-1}}{(r-1)!\log x} \tag{4}
\end{equation*}
$$

\]

Further Jacobsthal [6] observed that if $v(n)=r$ and all prime factors of n are greater than r, then $g(n)=r+1$. Now from (4) we obtain by a simple computation that the number of integers $n \leqq x$ with $\nu(n)=r$, whose smallest prime factor is not greater than r, is less than (c_{5} depends on r)

$$
\begin{equation*}
c_{5} x(\log \log x)^{r-2} / \log x=o\left(x(\log \log x)^{r-1} / \log x\right) \tag{5}
\end{equation*}
$$

(4) and (5) complete the proof of our assertion.

In the present note we shall prove that for almost all integers n

$$
\begin{equation*}
g(n)=(1+o(1)) n \log \log n / \varphi(n), \tag{6}
\end{equation*}
$$

where $\varphi(n)$ denotes Euler's φ-function. In other words, for every ε the density of integers for which

$$
(1-\varepsilon) n \log \log n / \varphi(n)<g(n)<(1+\varepsilon) n \log \log n / \varphi(n),
$$

is not satisfied, is 0 . In fact we shall prove somewhat stronger theorems.
Denote by $1=a_{1}<\ldots<a_{\varphi(n)}=n-1$ the $\varphi(n)$ integers relatively prime to n. Some time ago I conjectured [3] that

$$
\begin{equation*}
\sum_{k=1}^{q(n)-1}\left(a_{k+1}-a_{k}\right)^{2}<c_{6} n^{2} / \varphi(n) . \tag{7}
\end{equation*}
$$

I have been unable to prove or disprove (7). In the present note I shall outline a proof (Theorem III) that to every $\varepsilon>0$ and $\eta>0$ there exists an $A_{0}(\varepsilon, \eta)$ so that for every $A>A_{0}(\varepsilon, \eta)$ the number of integers $x, 1 \leqq x \leqq n$, for which

$$
(1-\varepsilon) A<\varphi_{n}(x, x+A n / \varphi(n))<(1+\varepsilon) A,
$$

is not satisfied, is less than ηn. $\left(\varphi_{n}(x, x+B)\right.$ denotes the number of integers $x<m \leqq x+B$ with $(m, n)=1$). This result seems to indicate that (7) is true, but (7) is deeper and I have not yet been able to prove it.

The following theorem easily implies formula (2) in [3].
Theorem I. For all n

$$
g(n)>\frac{n}{\varphi(n)} v(n)\left(1-\frac{c_{7} \log \log v(n)}{\log v(n)}\right)
$$

First we need a lemma which is substantially due to Chang [1].
Lemma 1. Let A be any integer and $q_{1}, q_{2}, \ldots q_{k}$ be any primes. Then there exists an integer $x_{k}=x_{k}\left(u_{k}\right), u_{k}=\prod_{i=1}^{k} q_{i}$, so that

$$
\varphi_{u_{k}}\left(x_{k}, x_{k}+A\right) \leqq A \prod_{i=1}^{k}\left(1-q_{i}^{-1}\right),
$$

$\varphi_{u_{k}}\left(x_{k}, x_{k}+A\right)$ denoting the number of integers $x_{k}<m \leqq x_{k}+A$ for which $\left(m, u_{k}\right)=1$.

We use induction with respect to k. Lemma 1 clearly holds if $k=1$. Suppose that it holds for $k-1$. Then there exists an integer $x_{k-1}=$ $x_{k-1}\left(u_{k-1}\right), u_{k-1}=\prod_{i=1}^{k-1} q_{i}$, so that

$$
\varphi_{u_{k-1}}\left(x_{k-1}, x_{k-1}+A\right) \leqq A \prod_{i=1}^{k-1}\left(1-q_{i}^{-1}\right)
$$

Denote by $x_{k-1}+j_{l}, \quad 1 \leqq l \leqq r, \quad r \leqq A \prod_{i=1}^{k-1}\left(1-q_{i}^{-1}\right)$ the integers in $\left(x_{k-1}, x_{k-1}+A\right)$ which are relatively prime to u_{k-1}. At least one residue class $\left(\bmod q_{k}\right)$ contains at least r / q_{k} of these numbers, let this residue class be α_{k}. Let now

$$
x_{k} \equiv x_{k-1} \quad\left(\bmod u_{k-1}\right), \quad x_{k} \equiv-\alpha_{k}+x_{k-1} \quad\left(\bmod q_{k}\right)
$$

In $\left(x_{k}, x_{k}+A\right)$ there clearly are at least r / q_{k} integers which are relatively prime to u_{k-1} and are multiples of q_{k}. Thus

$$
\varphi_{u_{k}}\left(x_{k}, x_{k}+A\right) \leqq A \prod_{i=1}^{k}\left(1-q_{i}^{-1}\right)
$$

which proves Lemma 1.
Proof of Theorem I. Let $p_{1}<\ldots<p_{v(n)}$ be the distinct prime factors of n and let p_{k} be the largest prime factor of n which is less than $\nu(n)$. From the prime number theorem (or from the more elementary results of Tschebycheff) we easily obtain by a simple computation that

$$
\begin{equation*}
\prod_{i=k+1}^{v(n)}\left(1-p_{i}^{-1}\right) \geqq \prod_{i=1}^{v(n)}\left(1-r_{i}^{-1}\right)>1-c_{8} \frac{\log \log v(n)}{\log v(n)} \tag{8}
\end{equation*}
$$

where $r_{1}<r_{2}<\ldots$, are the consecutive primes $\geqq v(n)$. Put

$$
A=\frac{n}{\varphi(n)} v(n)\left(1-\frac{c_{7} \log \log v(n)}{\log v(n)}\right)
$$

From (8) and Lemma 1 it follows that there exists an integer (or rather a residue class $\bmod v_{k}, v_{k}=\prod_{i=1}^{k} p_{i}$) for which

$$
\begin{align*}
\varphi_{v_{k}}\left(x_{k}, x_{k}+A\right) & \leqq A \prod_{i=1}^{k}\left(1-p_{i}^{-1}\right) \\
& =A \frac{\varphi(n)}{n} \prod_{i=k+1}^{v(n)}\left(1-p_{i}{ }^{-1}\right)^{-1} \\
& <A \frac{\varphi(n)}{n}\left(1-c_{8} \frac{\log \log v(n)}{\log v(n)}\right)^{-1} \tag{9}\\
& <v(n)\left(1-\frac{2}{\log v(n)}\right)<v(n)-k
\end{align*}
$$

for sufficiently large c_{7}. The last inequality of (9) follows from the fact that

$$
k \leqq \pi(v(n))<\frac{2 v(n)}{\log v(n)} .
$$

Denote now by $x_{k}+j_{l}, 1 \leqq l \leqq T<v(n)-k$ the integers in $\left(x_{k}, x_{k}+A\right)$ with $\left(x_{k}+j_{l}, v_{k}\right)=1$. By $T<\nu(n)-k$ there clearly exists an integer x_{0} satisfying $\left(10 \quad x \equiv x_{k} \quad\left(\bmod v_{k}\right), \quad x+j_{l} \equiv 0 \quad\left(\bmod p_{k+l}\right), \quad 1 \leqq l \leqq T\right.$.

From $k+T<\nu(n)$ it follows that none of the integers in $(x, x+A)$ are relatively prime to n, and this completes the proof of Theorem I.

Next we show that Theorem I is best possible for every $\nu(n)$. Let $q_{1}<q_{2}<\ldots<q_{r}$ be the r consecutive primes greater than r. Put $n_{r}=\Pi_{i=1}^{r} q_{i}$. Clearly $g(n)=r+1$ and a simple computation (as in (8)) shows that

$$
\frac{n_{r}}{\varphi\left(n_{r}\right)}>1+\frac{c_{9} \log \log r}{\log r} .
$$

Thus

$$
g\left(n_{r}\right)=r+1<\frac{n_{r}}{\varphi\left(n_{r}\right)} r\left(1-\frac{c_{10} \log \log r}{\log r}\right)
$$

if c_{10} is sufficiently small, which shows that Theorem I is best possible.
It is much harder to get a good upper bound for $g(n)$. We prove
Theorem II. For almost all n

$$
g(n)=\frac{n}{\varphi(n)} \nu(n)+o(\log \log \log n)
$$

Since by a well known theorem of Hardy and Ramanujan (cf. [5, pp. 356-358]) $\nu(n)=(1+o(1)) \log \log n$ for almost all n, Theorem II implies (6).

To prove Theorem II we need some simple and well known lemmas.

Lemma 2. For almost all n

$$
v(n)=(1+o(1)) \log \log n
$$

This is the theorem of Hardy and Ramanujan mentioned above (cf. [5, pp. 356-358]).

Lemma 3. For almost all n

$$
\sum_{\substack{p \mid n \\ p<(\log \log n)^{4}}} 1=(1+o(1)) \log \log \log \log n
$$

Lemma 3 is known (cf. [2]) and can be deduced by the method of Turan [10] used in the proof of the Hardy-Ramanujan theorem.

Lemma 4. For almost all n

$$
n / \varphi(n)=o\left(\log _{4} n\right)
$$

where $\log _{4} n$ denotes $\log \log \log \log n$.
Lemma 4 is also known and follows immediately from

$$
\sum_{n=1}^{x} n / \varphi(n)<c_{11} x
$$

The function $\log _{4} n$ in Lemma 4 could of course be replaced by any function tending to infinity.

First we prove that for almost all n

$$
\begin{equation*}
g(n)<(n / \varphi(n)) v(n)+\varepsilon \log \log \log n=A(\varepsilon, n) \tag{11}
\end{equation*}
$$

for every $\varepsilon>0$. To prove (11) let

$$
p_{1}<p_{2}<\ldots<p_{k} \leqq(\log \log n)^{4}<p_{k+1}<\ldots<p_{\nu(n)}
$$

be the prime factors of n. From the sieve of Eratosthenes we evidently have ($v_{k}=\prod_{i=1}^{k} p_{i}$)

$$
\begin{align*}
\varphi_{v_{k}}(x, x+A(\varepsilon, n)) & >A(\varepsilon, n) \prod_{i=1}^{k}\left(1-p_{i}^{-1}\right)-2^{k} \tag{12}\\
& >A(\varepsilon, n)(\varphi(n) / n)-2^{k} \\
& =v(n)+\varepsilon(\log \log \log n)(\varphi(n) / n)-2^{k}>v(n)
\end{align*}
$$

The last inequality of (12) follows from lemmas 3 and 4.
The interval $(x, x+A(\varepsilon, n))$ can clearly contain at most one integer which is a multiple of p_{k+i}, since

$$
p_{k+i}>(\log \log n)^{4}>A(\varepsilon, n)
$$

Thus from (12)

$$
\varphi_{n}(x, x+A(\varepsilon, n))>\nu(n)-(\nu(n)-k)=k>0,
$$

which proves (11).
Proof of Theorem II. To complete the proof of Theorem II we would have to prove that for almost all n

$$
g(n)>\frac{n}{\varphi(n)} \nu(n)-\varepsilon \log \log \log n .
$$

In fact we shall prove very much more. We shall show that for almost all n

$$
\begin{equation*}
g(n)>(n / \varphi(n))\left(v(n)-(1+\varepsilon) \log _{4} n\right)=B(\varepsilon, n) . \tag{13}
\end{equation*}
$$

We will only outline the proof of (13) since it is very similar to that of Theorem I. From lemmas 3 and 4 we can show by a simple computation that there exists an integer x_{k} (determined $\bmod v_{k}$) so that

$$
\begin{aligned}
\varphi_{v k}(x, x+B(\varepsilon, n)) & \leqq B(\varepsilon, n) \prod_{i=1}^{k}\left(1-p_{i}{ }^{-1}\right) \\
& =B(\varepsilon, n) \varphi(n) / n+o(1) \\
& <v(n)-\left(1+\frac{1}{2} \varepsilon\right) \log _{4} n<v(n)-k .
\end{aligned}
$$

Thus as in the proof of Theorem I we can find an x with $\varphi_{n}(x, x+B(\varepsilon, n))=0$, which proves (13) and completes the proof of Theorem II.

Very likely for almost all n

$$
g(n)>(n / \varphi(n)) v(n),
$$

but I have not been able to prove this.
The upper bound in Theorem II can also be considerably improved by using Brun's method, but I was unable to calculate the distribution function of $g(n)-(n / \varphi(n)) v(n)$, or even to prove its existence. In fact I can not guess the scale in which to measure the growth of this function, On the other hand from (6) and the well known existence (cf. [9]) of the distribution function of $n / \varphi(n)$ it immediately follows that $g(n) / \log \log n$ has a distribution function (which in fact is the same as the distribution function of $n / \varphi(n)$).

Theorem III. To every $\varepsilon>0$ and $\eta>0$ there exists an $A_{0}=A_{0}(\varepsilon, \eta)$, so that for every $A>A_{0}(\varepsilon, \eta)$

$$
\begin{equation*}
(1-\varepsilon) A<\varphi_{n}(x, x+A n / \varphi(n))<(1+\varepsilon) A \tag{14}
\end{equation*}
$$

for all $n, 1 \leqq x \leqq n$, except possibly for ηn integers x.

We use the method of Turan [10], but we will suppress some of the details of the proof. Theorem III will clearly follow immediately from $\left(A>A_{0}(\varepsilon, n)\right)$

$$
\begin{equation*}
I(n, A)=\sum_{x=1}^{n}\left(\varphi_{n}(x, x+A n / \varphi(n)-A)^{2}<\eta \varepsilon^{2} A^{2} n\right. \tag{15}
\end{equation*}
$$

since (15) clearly implies that the number of integers $x, 1 \leqq x \leqq n$, for which (14) does not hold is less than ηn. Thus we only have to prove (15). We evidently have

$$
\begin{align*}
I(n, A) & =\sum_{x=1}^{n} \varphi_{n}(x, x+A n / \varphi(n))^{2}-2 A \sum_{n=1}^{x} \varphi_{n}(x, x+A n / \varphi(n))+n A^{2} \\
& =\sum_{x=1}^{n} \varphi_{n}(x, x+A n / \varphi(n))^{2}-n A^{2}+\alpha_{n} n A, \tag{16}
\end{align*}
$$

where $\left|\alpha_{n}\right|<2$, since by interchanging the order of summation we have

$$
\begin{aligned}
\sum_{x=1}^{n} \varphi_{n}(x, x+A n / \varphi(n)) & =[A n / \varphi(n)] \varphi(n) \\
& =A n-\theta_{n} \varphi(n), \quad 0 \leqq \theta_{n}<1 .
\end{aligned}
$$

Let now $(u, n)=(v, n)=1,0<v-u \leqq A n / \varphi(n)$. Then the pair (u, v) occurs in $[A n / \varphi(n)]-v+u$ intervals $(x, x+A n / \varphi(n))$. Denote by $h_{i}(n)$ the number of solutions of

$$
1 \leqq u \leqq n, \quad(u, n)=(v, n)=1, \quad v-u=i
$$

Then by interchanging the order of summation we have

$$
\begin{align*}
\sum_{x=1}^{n} \varphi_{n}(x, x & +A n / \varphi(n))^{2} \tag{17}\\
& =2 \sum_{i=1}^{[A n / \varphi(n)]}([A n / \varphi(n)]-i) h_{i}(n)+[A n / \varphi(n)] \varphi(n) .
\end{align*}
$$

Clearly by the sieve of Erastothenes

$$
\begin{equation*}
h_{i}(n)=n \prod_{\substack{p \mid n \\ p \nmid i}}\left(1-2 p^{-1}\right) \prod_{p \mid(i, n)}\left(1-p^{-1}\right) . \tag{18}
\end{equation*}
$$

Thus from (17) and (18)

$$
\begin{gather*}
\sum_{x=1}^{n} \varphi_{n}(x, x+A n / \varphi(n))^{2} \tag{19}\\
=2 n \sum_{i=1}^{[A n / \varphi(n)]}([A n / \varphi(n)]-i) \prod_{\substack{p \mid n \\
p \nmid i}}\left(1-2 p^{-1}\right) \prod_{p \mid(i, n)}\left(1-p^{-1}\right)+[A n / \varphi(n)] \varphi(n) .
\end{gather*}
$$

Math. Scand. $10-12$

Now it can be shown that for every $\delta>0$ if $D>D_{0}(\delta)$ we have for a certain $\left|\beta_{n}\right|<\delta$

$$
\begin{equation*}
\sum_{i=1}^{D}(D-i) \prod_{\substack{p \mid n \\ p \nmid i}}\left(1-2 p^{-1}\right) \prod_{p \mid(i, n)}\left(1-p^{-1}\right)=\left(\frac{1}{2}+\beta_{n}\right) D^{2} \varphi(n)^{2} / n^{2} \tag{20}
\end{equation*}
$$

I suppress the proof of (20) since my proof is fairly indirect, inelegant and complicated and I feel that a much simpler proof can be found. From (19) and (20) we evidently have by a simple calculation by putting $[A n / \varphi(n)]=D$ for $A>A(\varepsilon, \eta)$ (if δ is sufficiently small)

$$
\begin{equation*}
\sum_{x=1}^{n} \varphi_{n}(x, x+A n / \varphi(n))^{2}=A^{2} n+\theta_{n} \eta \varepsilon^{2} A^{2} n \tag{21}
\end{equation*}
$$

where $\left|\theta_{n}\right|<\frac{1}{2}$. From (21) and (16) we finally obtain

$$
|I(n, A)| \leqq\left|\theta_{n} \eta \varepsilon^{2} A^{2} n\right|+\left|\alpha_{n} A n\right|<\eta \varepsilon^{2} A^{2} n
$$

for $A>A(\varepsilon, \eta)$. This proves (15) and hence the proof of Theorem III is complete.

REFERENCES

1. Teh-Hsien Chang, Über aufeinanderfolgende Zahlen, von denen jede mindestens einer von n linearen Kongruenzen genügt, deren Moduln die ersten n Primzahlen siad, Schr. Math. Sem. Inst. Angew. Math. Univ. Berlin 4 (1938), 35-5̃.
2. P. Erdös, Note on sequences of integers no one of which is divisible by another, J. London Math. Soc. 10 (1935), 126-128.
3. P. Erdös, The difference of consecutive primes, Duke Math. J. 6 (1940), 438-441.
4. P. Erdös, Some problems and results in number theory, Publ. Math. Debrecen 2 (1951-52), 103-109.
5. G. H. Hardy and E. M. Wright, Theory of numbers (3rd edition), Oxford, 1954.
6. E. Jacobsthal, Uber Sequenzen ganzer Zahlen won denen keine zu n teilerfremd ist, I-III, Norske Vidensk. Selsk. Forh. Trondheim 33 (1960), 117-139.
7. E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen I-II, Leipzig, 1909.
8. R. A. Rankin, The difference between consecutive prime numbers, J. London Math. Soc. 13 (1938), 242-244.
9. I. Schoenberg, Uber die asymptotische Verteilung reeller Zahlen mod I, Math. Z. 28 (1928), 171-199.
10. P. Turán, On a theorem of Hardy and Ramanujan, J. London Math. Soc. 9 (1934), 274-276.

[^0]: Received May 26, 1961.

