ON THE NUMBER OF COMPLETE SUBGRAPHS CONTAINED IN CERTAIN GRAPHS

by
P. ERDÖS
$G^{(n)}$ will denote a graph of n vertices, G_{l} a graph of l edges and $G_{l}^{(n)}$ a graph of n vertices and l edges. Loops will not be permitted and two vertices can be connected by at most one edge. In the complete graph $G_{\binom{n}{2}}^{(n)}$ of n vertices, every two vertices are connected by an edge. A complete graph $G_{3}^{(3)}$ of three vertices is called a triangle. The complementary graph $\bar{G}_{l}^{(n)}$ of $G_{l}^{(n)}$ is defined as follows: The two graphs have the same vertices and two vertices are connected by an edge in $\bar{G}_{l}^{(n)}$ if and only if they are not connected by an edge in $G_{l}^{(n)}$. In other words a graph $G_{l}^{(n)}$ and its complementary $\bar{G}_{l}^{(n)}$ gives a splitting of the edges of the complete graph $G_{\binom{n}{2}}^{(n)}$ into two disjoint classes. $\bar{G}_{i}^{(n)}$ can be written as $G_{\binom{n}{2}-l}^{(n)}$, but of course this in general does not determine its structure uniquely since the number of vertices and edges does not determine the structure of the graph.

The vertices of G will be denoted by $x, x_{1}, \ldots, y_{1}, \ldots$. The graph $\left(G-x_{1}-\ldots-x_{r}\right)$ will denote the graph from which the vertices x_{1}, \ldots, x_{r} and all the edges incident to them have been omitted. $G\left(x_{1}, \ldots, x_{k}\right)$ will denote the subgraph of G spanned by the vertices x_{1}, \ldots, x_{k}. The valency $v(x)$ of x is the number of edges incident to it. $v(G)$ will denote the number of edges of G, and $\pi(G)$ the number of its vertices.
$C_{k}(G)$ will denote the number of complete subgraphs $G_{\binom{k}{2}}^{(k)}$ of G. Recently A. Goodman [1] proved that

$$
\min \left(C_{3}\left(G^{(n)}\right)+C_{3}\left(\bar{G}^{(n)}\right)\right)=\left\{\begin{array}{lll}
2\binom{u}{3} & \text { if } n=2 u \tag{1}\\
\frac{2}{3} u(u-1)(4 u+1) & \text { if } & n=4 u+1 \\
\frac{2}{3} u(u+1)(4 u-1) & \text { if } & n=4 u+3
\end{array}\right.
$$

where the minimum is to be taken over all graphs $G^{(n)}$ having n vertices.
A simpler proof of (1) was later given by A. Sauvé [2].
Goodman asked if the sign of equality in (1) can hold if $C_{3}\left(\bar{G}^{(n)}\right)=0$, i.e. if $\bar{G}^{(n)}$ contains no triangle. His answer was affirmative for even n. For odd n I showed [2] that the answer is negative for $n>7$ and it is easily seen to be affirmative for $n \leqq 7$.
G. Lorden [3] proved the following stronger result:

Assume that $C_{3}\left(\bar{G}^{(n)}\right)=0$. Then for all even n and odd $n>9$

$$
\min C_{3}\left(G^{(n)}\right)=\left(\left[\begin{array}{c}
\frac{n}{2} \tag{2}\\
3
\end{array}\right)+\left(\left[\begin{array}{c}
\frac{n+1}{2} \\
3
\end{array}\right]\right)\right.
$$

(i.e. $G^{(n)}$ runs through all graphs whose complement contains no triangle).

Lorden further determined all cases where there is equality in (2).
Goodman also raised the problem of determining

$$
\min \left(C_{k}\left(G^{(n)}\right)+C_{k}\left(\bar{G}_{-}^{(n)}\right)\right),
$$

but this seems difficult even for $k=4$.
I will prove by probabilistic arguments the following
Theorem 1. For every $k \geqq 3$ and every n

$$
\min \left(C_{k}\left(G^{(n)}\right)+C_{k}\left(\bar{G}^{(n)}\right)\right)<\frac{2\binom{n}{k}}{2^{\binom{k}{2}}}
$$

It is surprising that a crude probabilistic argument gives a result which for $k=3$ is so close the correct one. This phenomenon can often be observed in this subject [4]. Theorem 1 seems to show that Goodman's problem will be much more difficult for $k>3$ then for $k=3$, since it does not seem easy to find graphs which give values of $C_{4}\left(G^{(n)}\right)+C_{4}\left(\bar{G}^{(n)}\right)$ which are as small as $\binom{n}{4}\left(\right.$ 32. The construction analogous to the one of Goodman gives only $3\binom{\frac{n}{3}}{4}$ which is much bigger. It seems likely that

$$
\begin{equation*}
\lim _{n=\infty} \min \frac{C_{k}\left(G^{(n)}\right)+C_{k}\left(\bar{G}^{(n)}\right)}{\binom{n}{k}}=\frac{1}{2^{\binom{k}{2}-1}} \tag{3}
\end{equation*}
$$

(3) follows from (1) for $k=3$. I can not prove it for $k>3$. I will only outline the proof of the crude estimate $\left(\binom{2 k-2}{k-1}=t\right)$

$$
\begin{equation*}
\lim _{n=\infty} \min \frac{C_{k}\left(G^{(n)}\right)+C_{k}\left(\bar{G}^{(n)}\right)}{\binom{n}{k}} \geqq \frac{k!}{t(t-1) \cdots(t-k+1)} \tag{4}
\end{equation*}
$$

The following further problems might be of interest. Determine

$$
\min C_{k}\left(G^{(n)}\right)=f(n, k, l)
$$

where $G^{(n)}$ runs through all graphs of n vertices for which $\bar{G}^{(n)}$ does not contain a complete graph of l vertices.

The result of Lorden gives that for all even n and for odd $n>9$

$$
f(n, 3,3)=\binom{\left[\frac{n}{2}\right.}{3}+\left(\left[\begin{array}{c}
\frac{n+1}{2} \\
3
\end{array}\right]\right)
$$

I can not at present determine $f(n, k, l)$ for any other values of k and l. Perhaps for $n>n_{0}(k, l)$

$$
f(n, k, l)=\sum_{i=0}^{l-2}\left(\left[\begin{array}{c}
\left.\frac{n+i}{l-1}\right] \tag{5}\\
k
\end{array}\right)\right.
$$

The simplest special case which I can not do is $f(3 n, 3,4)=3\binom{n}{3}$.
Hanani and I proved the following
Theorem 2. Let $l=\binom{t}{2}+r, 0<r \leqq t$. Then (the maximum is to be taken over all graphs having l edges)

$$
\begin{equation*}
\max C_{k}\left(G_{l}\right)=\binom{t}{k}+\binom{r}{k-1}=g(l) . \tag{6}
\end{equation*}
$$

Finally we prove
Theorem 3. Let $l>k$. We have

$$
\begin{equation*}
\max C_{k}\left(G^{(n)}\right)=\sum_{0 \leq i_{1}<\ldots<i_{k} \leq l-2} \prod_{r=1}^{k}\left[\frac{n+i_{r}}{l-1}\right]=h(n, l, k) \tag{7}
\end{equation*}
$$

where the maximum is taken over all graphs having n vertices which do not contain a complete l-gon (i.e. a $\left.G_{\left(\frac{1}{2}\right)}^{(l)}\right)$.

Theorem 3 is probably connected with the conjecture (5). (See [8].)
Proof of Theorem 1. The number of graphs $G^{(n)}$ having the labelled vertices x_{1}, \ldots, x_{n} clearly equals $2^{\binom{n}{2}}$. A simple argument shows that the number of graphs $G^{(n)}$ for which either $G^{(n)}$ or $\bar{G}^{(n)}$ contains the complete subgraph having the vertices $x_{i_{1}}, \ldots, x_{i_{k}}$ is $2 \cdot 2^{\binom{n}{2}-\binom{k}{2} \text {. Thus summing over }{ }^{2} \text {. }}$ all the $\binom{n}{k} k$-tuples

$$
\begin{equation*}
\Sigma\left(C_{k}\left(G^{(n)}\right)+C_{k}\left(\bar{G}^{(n)}\right)\right)=\binom{n}{k} 2^{\binom{n}{2}-\binom{k}{2}+1} \tag{8}
\end{equation*}
$$

where the summation is extended over all the $2^{\binom{n}{2}}$ graphs $G^{(n)}$. (8) immediately implies

$$
\begin{equation*}
\min \left(C_{k}\left(G^{(n)}\right)+C_{k}\left(\bar{G}^{(n)}\right)\right) \leqq \frac{2\binom{n}{k}}{2^{\binom{k}{2}}} \tag{9}
\end{equation*}
$$

The sign of inequality in (9) follows if we observe that if $G^{(n)}$ is the complete graph of n vertices, then

$$
C_{k}\left(G_{\binom{n}{2}}^{(n)}\right)=\binom{n}{k}>\frac{2\binom{n}{k}}{2^{\binom{k}{2}}}
$$

$\left(\bar{G}_{\binom{n}{2}}^{(n)}\right.$ is the graph without edges). Thus for at least one of the $2^{\binom{n}{2}}$ summands (8) we have the inequality sign in (9), which completes the proof of Theorem 1.

15 A Matematikai Kutato Intézet Kizleményei VII. A/3.

Now we prove (4). A well known theorem of Ramsey [5] asserts that for $t=\binom{2 k-2}{k-1}$

$$
\begin{equation*}
C_{k}\left(G^{(t)}\right)+C_{k}\left(\bar{G}^{(t)}\right) \geqq 1 \tag{10}
\end{equation*}
$$

(10) implies that if $x_{i 1}, \ldots, x_{i t}$ are any t vertices of $G^{(n)}$ then

$$
\begin{equation*}
C_{k}\left(G\left(x_{i_{1}}, \ldots, x_{i_{4}}\right)\right)+C_{k}\left(\bar{G}\left(x_{i_{1}}, \ldots, x_{i_{t}}\right)\right) \geqq 1 \tag{11}
\end{equation*}
$$

From (11) we have by a simple argument (every t-tuple gives at least one complete k-gon of $G^{(n)}$ or $\bar{G}^{(n)}$ and the same k-tuple occurs in exactly $\binom{n-k}{t-k} t$-tuples)

$$
C_{k}\left(G^{(n)}\right)+C_{k}\left(\bar{G}^{(n)}\right) \geqq \frac{\binom{n}{t}}{\binom{n-k}{t-k}}=\frac{n(n-1) \ldots(n-k+1)}{t(t-1) \ldots(t-k+1)}
$$

which easily implies (4).
It would not be difficult to show that

$$
\lim _{n=\infty} \min \frac{C_{k}\left(G^{(n)}\right)+C_{k}\left(\bar{G}^{(n)}\right)}{\binom{n}{k}}
$$

exists, but I can not determine it (its value was conjectured in (3)).
Now we outline the proof of Theorem 2. $\max C_{k}\left(G_{l}\right) \geqq g(l)$ is trivial. It suffices to consider the complete graph $G_{\binom{(}{2}}^{(t)}$ and an extra vertex connected with r vertices of $G_{\binom{t}{2}}^{(t)}$. The Theorem is trivial for $l \leqq\binom{ k}{2}$. For $l<\binom{k}{2}$ both sides of (6) are 0 , and for $l=\binom{k}{2}$ both sides are 1 . We shall now use induction and assume that Theorem 2 holds for all $l^{\prime}<l$ and then prove it for $l=\binom{t}{2}+r$, $0<r \leqq t, k \leqq t$. We clearly must have $\pi\left(G_{l}\right) \geqq t+\mathbf{1}\left(\right.$ since $\left.l>\binom{t}{2}\right)$. Assume first that G_{l} has a vertex x_{1} of valency $<t$. Clearly G_{l} contains at most $\binom{v\left(x_{1}\right)}{k-1}$ complete k-graphs one vertex of which is x_{1}. Thus clearly

$$
C_{k}\left(G_{l}\right) \leqq\binom{ v\left(x_{1}\right)}{k-1}+C_{k}\left(G_{l}-x_{1}\right) \text { and } v\left(G_{l}-x_{1}\right)=l-v\left(x_{1}\right)
$$

Hence by our induction hypothesis and a simple computation $\left(v\left(x_{1}\right)<t\right)$

$$
C_{k}\left(G_{l}\right) \leqq\binom{ v\left(x_{1}\right)}{k-1}+g\left(l-v\left(x_{1}\right)\right) \leqq g(l)
$$

If all vertices of G_{l} have valency $\geqq t$, then from $l \leqq\binom{ t+1}{2}, \pi\left(G_{l}\right) \geqq$ $\geqq t+1$ we easily obtain

$$
l=\binom{t+1}{2}, \quad \pi\left(G_{l}\right)=t+1
$$

But then $C_{k}\left(G_{l}\right)=\binom{t+1}{k}=g(l)$, which completes the proof of Theorem 2.
We prove Theorem 3 by induction with respect to n. (7) holds for all k if $n \leqq k$ (for $n<k$ both sides of (7) are 0 and for $n=k$ they are both 1). Assume that (7) holds for every $m<n$ and every k. Since $G^{(n)}$ does not contain a $G_{\binom{2}{(1)}}^{(l)}$ by a theorem of Zarankiewicz [6] it must contain a vertex x of valency not greater than

$$
n-\left[\frac{n+l-2}{l-1}\right]=N
$$

By our induction hypothesis

$$
\begin{equation*}
C_{k}\left(G^{(n)}-x\right) \leqq h(n-1, l, k) . \tag{12}
\end{equation*}
$$

Denote by $y_{1}, \ldots, y_{t} ; t=v(x) \leqq N$ the vertices of $G^{(n)}$ connected to x by an edge. Clearly the graph $G\left(y_{1}, \ldots, y_{t}\right)$ contains no $G_{\left(\frac{l}{2}\right)}^{\left(\frac{1}{2}\right)}$, thus by our
 Hence the number of subgraphs $G_{\binom{(2)}{2}}^{(k)}$ of $G^{(n)}$ one vertex of which is x is at most

$$
\begin{equation*}
h(t, l-1, k-1) \leqq h(N, l-1, k-1) . \tag{13}
\end{equation*}
$$

From (12 and (13) we easily obtain by a simple argument

$$
\max C_{k}\left(G^{(n)}\right) \leqq h(n-1, l, k)+h(N, l-\mathbf{1}, k-1)=h(n, l, k) .
$$

To show that in (14) the sign of equality holds it suffices to consider the graph of Turán [7] where the vertices are split into $l-1$ classes, the i-th class has $\left[\frac{n+i-1}{l-1}\right]$ vertices and no two vertices of the same class are connected, but every two vertices of different class are connected by an edge. Thus the proof of (7) and Theorem 3 is completed.

Finally I would like to state the following conjecture which is a sharpening of (7): Put

$$
F(n, l)=\sum_{0 \leq i_{1}<i_{2} \leq l-2}\left[\frac{n+i_{1}}{l-1}\right]\left[\frac{n+i_{2}}{l-1}\right] .
$$

$F(n, l)$ is the number of edges of Turán's graph, by his theorem [7] for every $G_{F(n,)+1}^{(n)}$ contains a $G_{\left(\frac{2}{2}\right)}^{(l)}$. I believe that

$$
\begin{equation*}
\max C_{k}\left(G_{F(n, l)}\right)=h(n, l, k) \tag{15}
\end{equation*}
$$

where the maximum is taken over all $G_{F(n, l)}$ which do not contain a $G_{\left(\frac{l}{2}\right)}^{(l)}$. (15) would imply (7) since by the theorem of Turán just stated a graph $G^{(n)}$ which contains no $G_{\binom{(l)}{2}}^{(l)}$ has $\leqq F(n, l)$ edges.
(Received October 8, 1962)

REFERENCES

[1] Goodman A. W.: "On sets of acquaintances and strangers at any party." Amer. Math. Monthly 66 (1959) 778-783.
[2] Sauvé, L.: "On chromatic graphs." Amer. Math. Monthly 68 (1961) 107-111.
[3] Lorden, G.: "Blue-empty chromatic graphs." Amer. Math. Monthly 6 (1962) 114120.
[4] See Erdős, P.: "Some remarks on the theory of graphs." Bull. Amer. Math. Soc. 53 (1947) 292-294 and also "Graph theory and probability I and II." Canadian Journal of Math. 11 (1959) 34-38 and 13 (1961) 346-352.
[5] Erdős, P. and Szekeres, G.: "A combinatorial problem in geometry." Compositio Math. 2 (1935) 463-470.
[6] Zarankiewicz, K.: "Sur les relations symmétriques dans les ensembles fini." Coll. Math. 1 (1947) 10-14.
[7] Turân, P.: Matematikai és Fizikai Lapok 48 (1941) 436-452 (in Hungarian), see also "On the theory of graphs." Coll. Math. 3 (1954) 19-30.
[8] Moon, I. W. - Moser, L.: "On a problem of Turán." A Magyar Tudományos Akadémia Matematikai Kutató Intézetének Közleményei 7 (1962) A, 3II - 314.

О ЧИСЛЕ ПОЛНЫХ ГРАФОВ НАХОДЯЩИХСЯ В НЕКОТОРЫХ ГРАФАХ

P. ERDÖS

Резюме

Для графов, не содержащих рёбер-петель и многократных рёбер, имеют силу следующие теоремы:

Теорема 1. Для всякий n $u k \geqq 3$ существует такой граф G с n вериинами, что сумма чисел полных графов с k вериинами, находяцихся в G и в дополнительном графе от G меньие $2\binom{n}{k} / 2^{\binom{k}{2}}$.

Теорема 2. Пусть $l=\binom{t}{2}+r, \quad 0<r \leqq t$. Тогда граф, имеюшиі l рёбер может максимально содержатьь $\binom{t}{k}+\binom{r}{k-1}$ полньтх графов $с$ с вериинами.

Теорема 3. Пусть $k<l$. Тогда граф с n вериинами, не содержаиций полного графа с \quad єериинами, может содержать максимально

$$
\sum_{0 \leqq i_{1}<\ldots<i_{k} \leqq l-2} \prod_{r=1}^{k}\left|\frac{n+i_{r}}{l-1}\right|
$$

полных графов с k вериинами.

