
SOME EXTREMALPROBLEMS ON INJ?INITE GRAPHS 

J. CZIPSZER, P. ERD&3 and A. HAJNAL 

1. A well known theorem of TURBN ([l]) states that every graph GJ$:,,,,, 
of n vertices and f(k, n) + 1 edges where 

f(k, n) = 

contains a complete k-gon and that this theorem is best possible since there 
are graphs G$& not containing complete k-gons, and in fact the structure 
of t,hese graphs is uniquely determined. 

Some problems in measure and set theory led us to consider the follow- 
ing problems. Let the vertices of the infinit)e graph Gc-1 be the integers 
1,2, . . . , n, . . . . (In what follows G(-) will always denote such a graph.) Denote 
by G@J the subgraph of Q(-) spanned by the vertices 1, 2, . . . , n and by 
g(n) the number of edges of G(Q. At first thought it seemed possible 
that if g(n) is “large” for all n > n, then this will imply that G(-) 
contains a complete k-gon even though g(n) does not have to be as large as 
f(k, n). But it is easy to see that no such theorem can hold. To see this let the 
edges of G(-) be (i, j): i odd, .j even. Clearly g(n) = f(3, n) for every n and 
nevertheless Gc-1 does not contain a triangle. Nevertheless it will be possible 
to obtain using our function g(n) some results which do not seem uninteresting 
to us. First some definitions: By an Ik-path (increasing path of length k) of 
Gc-) (or of a finite graph with vertices 1, 2, . . b, n) we shall mean a path . . 
21 22 . . . i&k+l (il < i, < . 1 s < ik < ik+J. A path of length k will denote an 
ordinary path of k edges. Clearly if G(-) contains a complete graph of k + 1 
vertices it also contains an Ik-path, but the converse is not true. 

By an I--path of Gc-) we shall mean an infinite path i, i, . . . i, . . . 
where i, < i, < . . . < i, < . . . . 

ERD& and GULA.I [l] found nearly best possible estimates for the smallest 
integer h,(n) for which every Gf&j+l ~111 contain a path of length k, but these 
results will not concern us here> It is easy to see that there is a graph with 
vertices 1, 2, . . . , n and withf(k + 1, n) edges which does not contain an Ik- 
path. To see this it suffices to consider TURNS well known graph G$++, 
and enumerate its vertices in a,n obvious way. Nevertheless the situation chan- 
ges completely if we assume a suitable lower bound for g(n) which holds for 
all sufficiently large n. In fact we shall prove 
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Theorem I. Let G(m) be ct graph and assume that for all n > n, and an 
E>O 

(1.1) 

where k = 2 or k = 3. 
Then G(-j contains infinitely many I,-paths. 

The theorem holds perhaps for k > 3 also, but at present we can not 
decide this question. 

for n-too our 

theorem implies that if k = 2 or 3, g(n) > f(k + 1, tin) for all x < n, 

then G(-) must already contain infinitely many Ik-paths. 
It is easy to see that our theorem is best possible. 
To see this define GC-) as follows: Let nz, and mL (ml < m,) be two vertices 

of Gc-). ml and m2 are connected if and only if 1 5 i, < i, 5 k where m, = ir 
(mod k) and m2 = i, (mod k). It is easy to see that for our G(*) 

g(TA) = -a [ 1 - +) 122 + O(n) 

and it clearly does not contain an I,,-path. In fact we shall prove the following 
sharper 

Theorem II. Let Gc-1 be a graph for which 

g(n) > G + & + e _ 
i I 

n2 if n>n 
log* n 

0’ 

!Phen G(-j contains infinitely many 12-paths. The result is best possible since 
there exists a G(-) for which 

and which does not contain any 12-path. 
By the same method as used in the proof of Theorem II we can prove t’he 

following theorem: Assume t’hat for n > no 

g(n) > $ + 
( 1 
h+e -!f- 

log2 n 

Then G(-) contains infinitely many pairs of I,-pat’hs whose first’ and last 
endpoints coincide, i.e. it contains infinitely- many quadruplets i, < i, < i4, 
i, < i, < i, (i, # i3) and t’he edges fi,, Q, (sl, iJ, (i2, id), (i,, i,). We do not 
discuss the proof. By induction we can easily prove the following Turknan 

theorem {see [l]):IfGisagraphwithvertices 1,2, . . . , nand[;l+[TG]+l 

edges t’hen G contains two I,-pat’hs whose first and last endpoints coincide. 
The estimation for the number of edges is best possible. 
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Theorem III. Let Cc-) be such that 

Then CC-1 contains an infinite path. This result is best possible in the sense that 
C can not be repluced by A(n) where A(n) + *. 

It seemed to us likely that g(n) > $ + 
i I 

E n2 will also imply the exist- 

ence of an I--path. But this is not the case. In fact we have 

Theorem IV. There exists a G(-) with 

lim inf gO > 1 
n2 4 

which does not contain an I--path. But there exists a constant u > 0 such that 
every G(-) with 

lim inf s(n) > _I - iy. 
n2 2 

contains an I, -path. 
VERA T. MS asked the question: What condition on g(n) will imply that 

G(-1 should contain an infinite complete subgraph? We prove 

Theorem V. If g(n) > : - Cn for infinitely many n then G(-) contains 

an infinite complete subgraph. But if we only assume that 

(1.3) 

for all n where f(n) tends to infinity as slowly a.s we please then G(-) does not have 
to contain an infinite complete gruph. 

At present we can not answer t,he following question: Let G be any in- 
finite graph every vertex of which is incident only to a finite number of edges 
what has to be assumed about g(n) to make sure that G(-) should contain 
a subgraph isomorphic to G 1 In fact we get two problems here depending whe- 
ther we require the vertices of G to be ordered or not. Our example used in t,he 
proof of the negative part of Theorem V (cf. $5.) shows tShat we have to assume 
that every vertex of G has finite valency. 

Without proof we state a few results connected with Theorem V. Assume 

that g(n) > i 
I 1 

- (1 - a)n for every n > n, and some CI > 0, then G(-) 

contains an infinite complete graph whose vert.ices form a sequence of positive 

lower density. If we only assume g(n) > ‘i - n + o(n) it is easy to see that 
Ii ‘n 

this does not have t’o remain t,rue. If we only assume t,hat q(n) > 3 - Cn 
I I 

for infinitely many n and some C then G(-) contSains an infinite c:mplete 
graph whose vertices form a sequence of positive upper density. In fact the 
following stronger result holds: To every E > 0 there exists a k so tShat G(-) 
contains k complet’e graphs t,he union of the set’ of their vertices forms a sequ- 
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enee of upper density > 1 - E. Finally if we assume that g(n) > i - Cn 
0 

for every n and some C then to every E > 0 there exists a k so that Cc-) contains 
k complete graphs, the union of the set of their vertices forms a sequence of 
lower density > 1 - E. We leave the proof of these statements to the reader. 

2. Proof of Theorem I for k = 2. We shall show that if G(-) contains 
only finitely many &paths then 

(2.1) liminfS(n)gJ- 
n2 8 

which contradicts (1.1) for k = 2. Omitting a finite number of edges we can 
assume that G(-) does not contain any I,-pat’h. Then if a vertex u is the upper 
endpoint of an edge it can not be the lower endpoint of another edge. Denote 
by zcl < Us < . . . the vertices which are not lower endpoints of any edge. 
Clearly the u, sequence is infinite and two u, are never connected. Hence 

s(n) sukzn (Uk - ICI. 

Now we est.ablish a lemma which belongs to the theory of series and which 
clearly implies (2.1) . 

Lemma. If ul, u2, . . . is a sequence with positive terms then 

(2.2) lim inf 

u1 + . . . + u, - $ 

2. 
u; -8 

Put lim sup t = C. If c = 0, (2.2) obviously holds. If 0 < c < 03 we 

choose a sequence u,, for which 

llm-UI1”=c, 
ns 

Then 

and 

(2.3) 

n, 

2 
d 

uk-2 
i 1 2 

u2 m 
r =$ + o(l) s $ + o(l) , 

which proves (2.2). 
Finally if c = ~0, we choose a sequence un, such that 

31% (l~k~nn,) and s-+=. 
k - 72, ns 

Putting ? = c (2.3) holds with cS instead of c and consequently (2.2) holds 
s 

also. 
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Remark. It is clear that in (2.2) there is strict inequality unless 

lim sup z = 2. This statement can be inverted in the following sense: 

If up u,, . . . is an increasing sequence of positive numbers and 

ul+ . . . 
n2 

-i-u,-- 

(2.4) lim inf 
2 

,U”, 

then s-+ 2. 
n 

In the proof of (2.4) we can suppose lim sup 2 = 2 so that 

u, 5 2 n + o(n). 

Put lim inf? = a and suppose a < 2. We choose two numbers /? and E such 

that 

a-e/3<2---E<2 and L< l.-..- P2 
2 i 1 2 

and two sequences of integers m,, mL, . . . and n,, n2, . . . such that 

n1 < n2 i . . . , m,-cn,, 
%I 
---“s;.P, 
% 

%I %l 
-<2-afor m,Snnnn, and -iz2-&. 

Hence for anynl 5 1 s m, we have 
% 

s z2 + o(Z2) + ( m, - I) rn.,B + (2 - E) n,2 i m,2 + o(&, - 

Putting I = we obtain from here 

which contradict’s (2.4). 

14 A ?&ateinatiksi Kutatd Inthet Kbzlndnyei VII. A/3. 



446 CZIPSZER-ERD&-EtAJNAL 

3. Proof of Theorem I for k = 3. We suppose that G(-) does not con- 
t’ain infinitely many I,-pat’hs. We shall then show that 

(3.1) lim inf J$$s i 

which contradict,s (1.1) for k = 3. Moreover we can suppose that Cc-) does 
not contain any I,-path since the omission of a finite number of edges of CC-) 
does not alter the vdidity of (3.1). We denote by N the set of natural numbers 
and by C the set of those numbers which are not lower endpoints of any edge. 
Analogously let B be the set of natural numbers which belong to N - C and 
which are not connected with any greater number in N - C. Putting A = 
= N - (B U C), it is clear that if two numbers m, n (nz < n) are connected 

then m E A, n E B U C or m E B, n f C. It is also clear that C is infinite since 
otherwise Gc-j would contain an J--path. 

Let ul, u2, . . . be an enumeration of the elements of B U C in increasing 
order. Let w,<v,< . . . <v,< . . . be those indices for which Use EC. Since 
C is infinite, the u and v series are also infinite. For every tik t,he number of 
elements of A less than uk is uk - k and for every U, the number of elements 
of B less than u,, is 2rI - Z, consequently 

where 
us S n c ussl, of i s < v,+, . 

For every natural number k we denote by wk the number of z+ less than k. 
By an element,ary computation we get 

VI + . . . + Vf = st - (to1 + * . . + WJ . 
Hence 

Since Uk 2 E > wk, we have uh - wk > 0. 
We can select a sequence si, s2, . . . (s, -+ -) so that 

SY 

c 
I 

(‘uk - wk) s ; (‘h, - ‘&v) + o(u:,,) . 

If lim sup US L ws = 00 then we choose t,he s,-s in such a way that’ v 5 

< usv - wsv 
zzz 

=?I 
should hold for 1 s k 5 s,, and for this sequence (3.3) is clearly 

us--s satisfied. If lim sup ~ = e < 00 (3.3) will hold for any sequence s, 
s 

for which Us, - wsv --f p . 
% 
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From (3.2) and (3.3) we have for s = s, and n = u, 

Considering that wS 2 i - 1 we deduce from here 

for s = 8,. This proves (3.1). 

4. Proof of Theorem II. First we show that there exists a Gr-) with 

which does not contain any I,-path. To see this put 

ul= 1, u,=2, 
k 

?&=2Ic+ - [ 1 log k 
(k = 3,4, . .) 

and consider the graph G(-) in which m and n (m < n) are connected if and only 
if n is an uk and m is not an uk. Clearly G(-) has no I,-path. A simple comput- 
ation shows that if u, S n < u”+~ then 

U2 1 U2 =2-J-Y 
8 32 log2uv 

which proves (4.1). 
Theorem II is clearly implied by the following lemma which is essentially 

a refinement of the Lemma in $ 2 and which may deserve interest for its own. 

Lemma. 1j 24,. Udq . . . 
E > 0 the inequality 

is Q sequence with terms > 1 for n > n, then for any 

2 ‘1 
2$ + th2 + . . . + 21, - $ 5 : + - + & ___ 

I I 

2 
%I 

3” log” u, 

holds for infinitely many n. 

14* 
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To prove this we shall distinguish several cases. 
Case A. For infinitely many n u, > 2%. 

Case A., 1. lim sup - ‘OF (,2Ln - 2 n) = 0. 

Put 
‘n 

zbn= 2n + A,--- 
log2 n 

then 
A, 5 o(log n) . 

If lim sup A, = m for infinitely many n the relation 

A, 2 A, (m= 1,2, *. .,n) 
holds and for these n 

;4-+- B,zri2’i 0 
d 

If lim sup A, = c < 03 then for a suitSable subsequence of the u,, we have 

and for these u, 

U*=2n+(c+o(l))~ 
log? TL 

+ O(nj = 

Case A. 2. 0 < lim sup T (21, - 2 n) = c < Do . 

Put 

u,,=2n+B, 
,n. 

log ,n log log ?z 
(” > eP) . 

We can choose a subsequence BnY so that’ B, 2 B,, if m g n,, a,ud 

Bn, 
log log n u 

- c + o(1). 

We have by a simple computat,ion for n = n, 

n n 

2 .x 
k 

+ O(n) = 
1 27 log k log log k 

+B, n2 
2 log n log log n 

-k Bn 
4 log” n 
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and 

+ 3 n2 
8 log2 njlog log n)2 

+ ($+ 4a]&+o(&). 

We have to show that 

i.e. 

B, 12,2 n-2 

4 log2 12 log log a ’ 8 log2 n(log log n)2 

Bn < &i 
4 log log V, = S(log logn)2 

+ _f_ + o(l) 
8 

for sufficient,ly large n = n, but this amounts to 

C&+l. 
4 8 8 

which is true. 

Case A. 3, 
log n 

lim sup T (Un - 2 n) = 03 

Put 

21,=22n+C$-. 
log n 

For a suitable subsequence C,, we have C,sC,, if mln, and C,, -+ 00 
Hence 

n n 

2 2 
-!- + O(n) = 

1 2 log& 

=;+ C,L+C,~+C,o & 
2log7z 4 log’ n I 1 I-- !3 

2 
if n = n, and v is sufficiently large. 

Case B. u, s 2n for n 1 n,. If lim sup 2 = 0 then the st’atement of the 

lemma is evidently Drue. If 0 s lim sup 2 < 2 the lemma directly follows 

from (2.3). So we can suppose lim sup? = 2. Putting 2.4, = 2n - D,n 

we have lim inf D, = 0 and for a suitable n2 and infinitely many n D, 5 D,,, 
if n2 s m 5 n. For these n 

n 

2 
1 

uk-~~~(l-DD,)+O(n)~$+o 

This concludes the proof of the lemma. 
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5. Proof of Theorem V. First we prove the second statement of the 
theorem. Let h(n) tend to infinity sufficiently fast and connect n with all the 
m for which either n < m 5 h(n) or m < n $ h(n). Clearly our Cc-) does 
not contain an infinite complete subgraph smce in fact every vertex has 
finite valency and if h(n) tends to infinity sufficiently fast (1.3) is clearly 
satisfied. 

Now we prove the positive part of Theorem V. 
If G(-) does not contain an infinite complete graph we can construct 

by induction a sequence 1 = i, < i, < $ < . . . so that if ik s y then y is 
not connected with at least one vertex lymg in [ik+ iK). Now if k is fixed and 
n 2 ik then for every ik s y 5 n there are at least k vertices to t,he left of y 

which are not connected with y. Hence g(n) < l - (n - ik) k S i - i n 
ii I I 

if n 2 2ik. If k > 2C, this is a contradiction which proves the theorem. 

6. Proof of Theorem III. We can assume that CC-) does not contain any 
infinite complete subgraph. The proof will be based on the following lemma. 

Lemma, Let us say that an infinite graph G whose vertices are natural 
numbers, has property Qs if 

a) G has no infinite complete subgraph, 
b) Denoting by v(n) the number of vertices 5 n and by g(n) the number 

of edges connecting vertices 5 n the inequality 

(6-l) g(n) 2 + v2(n) - Ct.(n) 
4 

holds for some C and for every n. If G has property 9 G has an infinite component 
who has also property 9. 

First we deduce the theorem from the lemma. Applying the lemma to 
Cc-) we get an infinite component Gi of G(-1, with property 55. Omitting 
an arbitrary vertex i1 of G, we get a graph G1 which clearly also verifies 9. 
Hence G, has also an infinite component GJ with property 9s and because 
of the connectedness of G;, Gi contains a vertex i, which is connected with i,. 
Putting GQ = Gi - (i2) G, has also property 9. Repeating this construction 
ad infinit’um we get a sequence i,, i,, . , . of distinct vertices which form an 
infinite path. 

In the proof of the Lemma we can assume that G is a G(-)-graph that 
is v(n) = n and g(n) has the usualmeaning. Let us denote by G,, G,, , . . the 
components of G. vk(n) and gk(n) denote the number of vertices 5 n of Gk 
respectively the number of edges of Gk which connect vertices 5 n. 

First we prove that 
(6.2) There exists a subscript k, such that the function vkO(n) majorizes 

the functions vk(n) for every n > n, and for every k. 
The negation of (6.2) would clearly imply the existence of an infinite 

sequence n, < n, i . . . satisfying the following condition. 
For every v there exist numbers k;, k,” for which lcb < k; and for every 

k v&J I vk;(n,) = v&J. 
Putting 

(6.3) % = vkd%) = ~kd%) 
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it follows 

(6.4 

and 

s G&v) + f (% - Yv) YY.l 

Combining this with (6.1) we obtain 

Considering that gk;(n,) s $ $, we have 

y” h 2 - 2 c. 

From (6.5), (6.4) and (6.6) it follows 

(6.7) ~*~(“.)~~y.z-2c~~-44~. 

Considering (6.3) it follows from (6.6) that 

(63) 2)k(n,) 5 4G if k;#k#k;. 

Let Y* be an integer for which 

nv, > 12c. 
In view of (6.6)) 

Thus for Y > Y, 
Wk;&,) > 4 c and I,& > 4 G 

and so in view of (6.8) we have 

k;=k;,, k:= kFo. 

Hence (6.7) means that G kh satisfies the hypothesis of Theorem V and 
so it must contain an infinite complete subgraph which contradicts our 
assumption on G. Thus (6.2) is proved. 

We can suppose k, = 1 i.e. 

wk(n) S wl(n) for n > 7t0. 

1 Deducing the second inequality we used the fact that if Eli = a, xi s b then 
ZXi I ab, all numbers occuring being supposed nonnegative. 
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We have then 

(cf.p. 447, footnotel). In view of (6.1) we get from here 

(6.9) g,(n) 2 +- n2 - +- (n - vi(n)) q(n) - Cn. = 

(6.10) gl(n) 2 + z+(n) - Cv,(n) - C”. 

It is evident from (6.9) that Gl is infinite; this together with (6.10) 
means that G, has property 95 and the lemma is proved with G’ = G1. 

To show that our theorem is best possible we have only to choose a 
sequence n, < n2 < . . . of positive integers and consider the graph Gcrn) in 
which two vertices are connectid if and only if they belong to the same interval 
[nk, nk+J. Clearly Cc-) does not contain any infinit’e path and if A(n) -+ 00 
is given and the sequence is chosen to increase sufficiently fast t,hen we clearly 

have g(n) 2 : - A(a) n. 

7. Proof of the first part of Theorem IV. We choose a sequence I,, J1, &, ‘ . . 
of integers such that 

10 = 0, 51, < 21,+,, +o. 
v-!-i 

We put 
0 if l~;n~21,, 

v&) = 
1 if 2 1, < n 2 3 1,) 

0 if 31v<n(51,, 

1 if 5l,<n, 

and consider the graph Cc-) in which two edges n, and n2 (n, < nJ are connected 
if and only if y(nJ 2 v(nJ. 

Since v(n) > P if n > 51, we have lim v(n) = 00. Consequently G(-) 
can not contain an I--path. We shall show that on Dhe other hand 

liminfd!!J >l+-L 
n2 - 4 36. 

We e&mate g(n) from below if SZ, < n 5 21,+,. First we have g(n) 2 
2 g,(n) where g,(n) is the number of the edges of G(-) whose endpoints belong 

to the interval (51,,,, SZ,,,]. Now in this interval all functions rpp(n) except 
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for p = v are constant (namely vD,(n) = 1 if p < P and q,(n) = 0 if Y <r-l) 
so that for 54, < n, < n, r 21,, n, and niLz are connected if and only if 
v,,(nJ 2 p,(nJ. Using th$ remark we easily obt,ain 

2 z: + $ (n - 2 ZJ” + o(n”) (2 1, < ?a I 3 2,) , 

(7.1) g,(n) = ‘ ; I; + $ (n - 3 Z,)2 + 3 l,(n - 31,) + o(n’) (3 1, < n s 5 I,) , 

T Z$ + + (72 - 5 1,) + l,(n - 5 I,) + o(n2) (5 Z, < n 5 2 Z,+J . 

In these relations v should be considered as function of n defined by the 
inequalities 21, < n r 2&,. 
tation that 

We obtain by a simple and elementary compu- 

S(lt):, ~ > min g,(m) 
n2 n2 

= 
21y<m$21,, 

- = ; + o(1) 
m2 

which completes our proof. 
y(l(n) is an integer valued function which assumes each value on a finite 

number of places. We shaI1 somewhat modify y(n) by introducing a function 
y’(n) in the following way: If k is any value of v(n) assumed for n,, n2, . . . , n, 
(n,<n,< . . . < n,) then we put 

$7’(n,) = k + 1 (v = 1,2, . . . , @) . 
Y 

It is clear that y’ is schlicht and for any two positive integers n’ and n” 
v(n’) 2 pl(n”) is equivalent to I’ > ~‘(a”). The range of p’ is an infinite 
set of positive numbers without a limit point, hence it can be mapped by a 
strictly increasing function M onto the set of natural numbers. Thus 1c = yov’ 
is a$ permutation of the set of natural numbers for which n’ and n” are connec- 
ted in G(-j if and only if (n’ - n”) (x(~L’) - x(n”)) < 0. So we can state 
the somewhat paradoxical fact that the positive integers can be rearranged 
in a series kl, &., . . . in such a drastic way that the number of inversions 
devided by the number of all unordered pairs formed by k,, Ic,, . . . , k, is more 
than a half plus a fix positive number for all sufficient,ly large n. 

8. Proof of the second part of Theorem IV. We suppose that G(-) does 
not contain any I--path and we prove that then 

(8.1) liminf8(12)~1-1. 
n2-2 16 

This means that the second part of Theorem IV is valid wit,h o. = & (although 

we do not know the greatest possible value of a). 
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Omitting from G(-) all edges (n, m) with n2 < m we get a subgraph 
I!%-) every vertex of which has finite valency2 and for which g(n) 2 g(n) 2 
2 g(n) - C%, consequently - 

lim inf $@.3 = lim inf ‘fi. 
n2 n2 

This means that we can suppose without loss of generality that every 
vertex of G(-C-, has finite valency. 

We define by induction the sets A,, A,, A,, . . . requiring that A, = 0 
k-l 

and for k > 0 A k is the set of those n < N - IJ Ak which are not connected 
I=0 

k-l 
with any m if n < m and m {N - U A,. (N is the set of natura1 numbers.) 

I=0 
The sets Ak exhaust iV: 

To prove this suppose that for some n, *n, E N - v” Ak. It is clear from t&he 

definition of the sets Ak that for every k > 0 n, ii the starting point of an 
Ik-path. Since n, has finite valency an infinite number of these Ik-paths 
must have the same second vertex that is t,here is an edge (n,, n,) where 
n, > n, and n2 is the starting point of Ik-paths for arbitrarily large 7~‘s. The 
repetition of this argument clearly yields an I--path n,n,n, . . . against 
our assumption which proves (8.2). 

Put 

&= 6 A,, B,(n) = Bk n [Lnl I=0 
and denote by ,Bk the upper density of Bk t’hat is 

Pk = lim sup b,(n) 
n 

where b,(n) is the number of elements of B,(n). Suppose first that 

Denoting by k, the least of these k we have 

{since b,, = 0) and 

(8.4) 

Given a natural number n, and E > 0 we can choose an n > n, such that 

(8.5) b,&) > 
i 
+ - 8) n, 

I 
b,+# n) < n. 

-- 
aThe aakncy of a vertex is the number of edges ema’nating from this vertex. 
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In view of (8.4) we can not have for every integer v 2 0 

bko-p+’ n) - b*o-1(2%) 2 24 n ) 

since this would imply by addition 

b.+1(2’+‘%) - b,,-,(n) 2 2y - +- n r 1 (v = 0, 1,2, . . .) 

which would give ,Ll+r _2 --l2. Hence there is an integer vg 2 0 such that 

(8.6) z4&2Qf1 n ) - b/&2”07t) < 2vo-‘n 

and 

(8.7) b+,(2 “+I m) - bkoF1(2” n) 2 2+* 72 for 0 5 Y < Q. 

Putting 2Q% = m we get from (8.5), (8.6) and (8.7) 

(8.8) 

b,,(m) = h,(2'% = b,(n) + 2 (bk$'+' n) - &(2'n)) > 
S-0 

and 

(8.9) b/+,(2 m) - b,,,-,(m) < $ m . 

(If v0 = 0 then the sums figuring in (8.8) are void.) 
It is clear from the definition of the sets Ak that if u E Ak, 2) E A, and 

u < V, k 5 E then w and w are not connected in G(-). Consequently there is 
no edge connecting a member of B,,(m) with a member of (m, 2m] - B,-,. 
Now the first of these set’s has bk,(m) members and the second one m - 
- (be+&+ - b&m)) members hence using (8.8) and (8.9) 

- b,,(m) (m - tbk,-d2 m, - bko--l(M))) -= 

Lm2=4m?L4m2+Zm2, 
2 2 16 4 

Since 2m > m 2 n > n, and n, and e have been chosen arbitrary, (8.1) is 
proved under the assumption (8.3) 

Next we consider the case that 

(8.10) a<+ for k=O,l,2 ,.... 

Given n, > 0 we can choose k, so that Bk,(‘%,) = [I, no] (cf. (8.2)) i.e. 

(8.111 h&no) = no- 



456 CZIPSZER-ERD&3-HAJBAL 

Let us denote by v0 the least non negative integer for which 

bk0(2Y0 n,) s 2yo-1 120. 

v0 exists since otherwise we would have pkO 4 f which would contradict 

(&lo), (8.11) implies that v,> 0, hence 

bk (2’0-‘12,) > 2Q-2 no. 

Putting 2vnb-1 no = m, we have 

bk,(2 m) g m and b,,,(m) > $rn . 

The members of Bko(m) are not connected with those of (m, 2m] - 
- Bk,(m). Using (8.9) it follows 

g(2 m) s y - be,(m) (m - @k&2 m) - h&4)) s 
i 1 

Since m 2 n, (8.1) is proved under the assumption (8.10) also. 

(Received October 12, 1962) 
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3NCTPEMAJIbHbIE IIPOBJIEMbI OTHOCWTEJlbHO BECKOHEqHbIX 
TPA<IPOB 

J. CZIPSZER, P. ERDtjS, A. HAJNAL 

Pe3mnre 

nyCTb @(w(m) eCTb I'pa@, BepIBMHbI KOTOpOrO CyTb HaTypajIbHbIe WCJIa 
1,2, . . . , n, . . . . Anrl Kamoro n 0603HawM qepea g(n) wmo Tex pe6ep rpaQa 
G(-), BepLLIMHbI KOTOPbIX HaXOAFlTCR Cpe;rII YklCeJI I,&...,%. hKaI.Uki~ B G(=J) 
nyTb n,n,... Qnkfl Ha3bIBaeTCFI MOHOTOHHbIM IIyTeM AnHHbI k MJlPf Ik-nyTeM, 
em4 n,<n,<. . . <n~<n~,.~emaU@iB G(-)GeCKOHer~Hbrii nyTbIz,n,...nk... 
Ha3bIBaeTCR 6eCKOHeqHbIht MOHOTOHHbIM flyTeN EiJU4 II,-llyTeM, eC;lH 
nl<n2< . . . <nk< . . . . Haxecneayroqtie TeOpeMbI IIOKa3bIBaIoT, KaKMOXHO 
C nO,nO~bfO yCJIOBbIti OTHOCUTenbHO nopfIxKa poCTa g(n) rapaHTHpOBaTb CyaeCT- 
BOBaHMe B G(m) 6eCKOHerlHOrO WCJIa I,-nyTe5, 6eCKOHeqHOTO WCJIa 13- 
IIyTeii, GecKOHesHOrO UyTki, II,-nyTkI PIJIH 6eCKOHeYHOrO nOjIHOr0 IIOfirpa@a. 
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Teopema 1. Ecnu k = 2 unu 3 u &ZJZ HeKomopozo E > 0 u docmamowfo 
6ofiblUUX n 

g(n) > + - -& + E n2, ( I 
mo Cc-) codepwum 6ecKoHeuHo ~4~020 Ik-nymeii. 3mo ymsep3acdeHue motiH0 
6 mOM CNblC/Ie, zlmo En2 He MoMem 6timb 3afieHeHo Ha O(n). 

noKa,He tl3BeCTH0, PiMeeT n&i MeCTO TeopeMa ki npa Ic> 3. 

Teopema 2. ECJZU dnz HeKomopozo E > 0 u docmamotlHo donbluux ?% 

g(n) > ; + $ + 8 -!cL 
I 1 log2 n 

mo Gf-1 COdepNUm 6ecKoHeuHo ~~020 I,-nymeu”. 3decb $ He Mo%cem 6btmb 

yMeHbUleH0. 

Teopema 3. ECJZU dnrr gcex n 

g(n)>++--Cn 

mo Gtrn) codep%cum 6eCKOHetlHbZti nymb. 3decb c He Mos#cem 6blmb 3aMeHeHo Ha 
A,, ecnu A,+ cg. 

Teopema 4. M3 mono, rlmo 

]imi*fS(n) > 1 
79 4’ 

eye He cnedyem, zlmo Gt-1 codep3lcum I,-nymb. Ho cyryecmsyem maKaR nocmo- 
1 

fiHHUR 0 < 0. < -, =ITO ecm 
4 

IiminfgO > .I-,, 
,?-lJ 2 

mo Cc-) codepxum I,-nymb. 

Teopema 5. Ec~zu d/m 6eCKOHeqHO MHOZUX n 

g(n) > ; - Cn ) 

mo Gem) COdepwUm 6ecKOHesHblL? MORH& nodzpa@ 3mo ym6epdeHUe mowoe 
8 MOM cMblcfle, smo wecmo C Hellb3IE nucamb A,, ec/ru A, -+ ~0. 


