COLLOQUIUM MATHEMATICUM

AN INTERSECTION PROPERTY of sets WITH POSITIVE MEASURE

BY
P. ERDÖS, H. KESTELMAN, AND C. A. ROGERS (LONDON)

1. If A_{1}, A_{2}, \ldots are Lebesgue-measurable sets of real numbers in the interval $I=[0,1]$ with measures satisfying

$$
\mu\left(A_{r}\right)>\eta>0, \quad r=1,2, \ldots,
$$

the set

$$
\bigcap_{n \geqslant 1} \bigcup_{r \geqslant n} A_{r}
$$

is measurable with measure at least η. So it is certainly possible to choose a sequence $n_{1}<n_{2}<\ldots$ such that the intersection $\bigcap_{r=1}^{r=\infty} A_{n_{r}}$ is non-empty. But (see the example in $\S 2$) there may be no such sequence for which the intersection has positive measure. However, we show that the subsequence can be chosen to ensure that the intersection is uncountable. More precisely, we prove (see $\$ \S 3$ and 4)

Theorem 1. Suppose η is a positive number and A_{1}, A_{2}, \ldots are Lebesgue-measurable subsets of the interval $[0,1]$ with $\lim \sup \mu\left(A_{r}\right) \geqslant \eta$. Then there is a Borel set S with $\mu(S) \geqslant \eta$, and a sequence $q_{1}<q_{2}<\ldots$ such that every point of S is a point of condensation of the set

$$
\bigcup_{j \geqslant 1} \bigcap_{r \geqslant j} A_{q_{r}},
$$

so that every open set containing points of S also contains a perfect subset of $A_{q_{j}} \cap A_{q_{j+1}} \cap \ldots$ for some j.

We arrange our proof so that it can be trivially generalized (see §5).
It is natural to ask if, under the conditions of Theorem 1 , one can say anything about Hausdorff measures of the set

$$
\bigcap_{j \geqslant 1} A_{g_{j}}
$$

for suitably chosen sequences q_{1}, q_{2}, \ldots As far as we can see, it may be that, for every strictly increasing continuous function $\varphi(t)$ with $\varphi(0)=0$, there is a sequence of sets A_{1}, A_{2}, \ldots satisfying the conditions of Theorem 1 and such that, $\varphi-m$ denoting the Hausdorff measure generated by φ, we have

$$
\varphi-m\left(\bigcap_{j \geqslant 1} A_{q_{j}}\right)=0
$$

for every sequence q_{1}, q_{2}, \ldots But, on the other hand, it may be that, for every such φ (provided that $\varphi-m(I)=\infty$) and every sequence of sets satisfying the conditions of Theorem 1 , there will be a sequence q_{1}, q_{2}, \ldots such that

$$
\varphi-m\left(\bigcap_{j \geqslant 1} A_{q_{j}}\right)=\infty .
$$

Perhaps it is most likely that the truth lies between these two extremes and depends in some way on the value of the parameter η between 0 and 1 ($\mathbf{P} 442$) (${ }^{*}$).
2. Before proving the theorem, we discuss a special example. Let K_{q} denote the set of all numbers of the form

$$
a_{1} \cdot 2^{-1}+a_{2} \cdot 2^{-2}+\ldots+a_{n} \cdot 2^{-n}+\ldots
$$

with $a_{q}=0$ and $a_{n}=0$ or 1 for all other values of n. Clearly $\mu\left(K_{q}\right)=\frac{1}{2}$ and the intersection of any N sets K_{q} has measure 2^{-N}. Hence the intersection of any infinite subsequence of the sets has measure zero, and so has the set

$$
\bigcup_{j \geqslant 1} \bigcap_{r \geqslant j} K_{q_{r}} \quad \text { for any sequence } q_{1}<q_{2}<\ldots
$$

In this instance we may verify the theorem by taking $q_{r}=2 r$ and $S=[0,1]$, since an open subset of $[0,1]$ contains, for some suitable integers j and m, the perfect set of all numbers of the form

$$
m \cdot 2^{-(2 j-1)}+\sum_{r=j}^{\infty} b_{r} \cdot 2^{-(2 r+1)}
$$

where $b_{r}=0$ or 1 for $r \geqslant j$, and this perfect set is contained in $\bigcap_{r=j}^{r=\infty} K_{2 r}$.
The set

$$
\bigcup_{i \geqslant 1} \bigcap_{r \geqslant j} K_{2 r}
$$

is the set of numbers of the form $\sum_{r=1}^{\infty} a_{r} \cdot 2^{-r}$ with $a_{r}=0$ or 1 for all r, and $a_{2 r}=0$ for all sufficiently large r.

[^0]3. It will be convenient to introduce the following conventions:
(a) \mathscr{N}, with or without a suffix, will denote an infinite set of positive integers;
(b) if E_{1}, E_{2}, \ldots are sets, then $\mathscr{N}\left\{E_{n}\right\}$ will denote $\bigcap_{n \in \mathscr{N}} E_{n}$;
(c) if A and B are subsets of I, we say that A avoids B if $\mu(A \cap B)=0$.

We prove
Lemma 1. Suppose that E_{1}, E_{2}, \ldots are measurable subsets of $I=$ $=[0,1]$ with $\lim \inf \mu\left(E_{r}\right)=\eta>0$. Then there is a Borel subset D of I with $\mu(D) \geqslant \eta$, and a set \mathscr{N}, such that every Borel subset of D which has positive measure avoids only a finite number of E_{n} with n in \mathscr{N}.

Proof. Suppose the lemma is false. This implies that
(1) if A is any Borel subset of I with $\mu(A) \geqslant \eta$, and \mathscr{N} is any infinite
set of positive integers, then A contains a Borel set with positive measure which avoids E_{n} for infinitely many n in \mathscr{N}.
Applying (1) with $A=I$, we see that I contains a Borel set T, with $\mu(T)>0$, which avoids E_{n} for infinitely many n. Take T_{1} to be such a set T, chosen from among the possible sets T so that all the other possible sets T have measure less than $2 \mu\left(T_{1}\right)$. Let \mathscr{N}_{1} be the set of n such that E_{n} avoids T_{1}. Suppose that, for some $k \geqslant 1$, disjoint Borel subsets $T_{1}, T_{2}, \ldots, T_{k}$ of I, and sets $\mathscr{N}_{1} \supset \mathscr{N}_{2} \supset \ldots \supset \mathscr{N}_{k}$, have been chosen so that $T_{1} \cup T_{2} \cup \ldots \cup T_{k}$ avoids E_{n} for all n in \mathscr{N}_{k}. Then $I-\left(T_{1} \cup \ldots \cup T_{k}\right)$ contains almost all points of some sets E_{n} with n arbitrarily large, and so its measure is at least η. We apply (1) with $A=I-\left(T_{1} \cup T_{2} \cup \ldots \cup T_{k}\right)$ and $\mathscr{N}=\mathscr{N}_{k}$, and choose a Borel set T_{k+1} contained in I and disjoint from $T_{1}, T_{2}, \ldots, T_{k}$, and a subset \mathscr{N}_{k+1} of \mathscr{N}_{k}, such that T_{k+1} avoids E_{n} for all n in \mathscr{N}_{k+1}, but all Borel sets T contained in I and disjoint from $T_{1}, T_{2}, \ldots, T_{k}$, which avoid E_{n} for infinitely many n in \mathscr{N}_{k}, have measure less than $2 \mu\left(T_{k+1}\right)$. Then $T_{1} \cup T_{2} \cup \ldots \cup T_{k} \cup T_{k+1}$ avoids E_{n} for all n in \mathscr{N}_{k+1}. Since the conditions are satisfied when $k=1$, we may suppose that T_{1}, T_{2}, \ldots and $\mathscr{N}_{1}, \mathscr{N}_{2}, \ldots$ have been chosen inductively in this way. Since

$$
\mu\left(I-\left(T_{1} \cup T_{2} \cup \ldots \cup T_{k}\right)\right) \geqslant \eta
$$

for all k, we have

$$
\mu\left(I-\left(T_{1} \cup T_{2} \cup \ldots\right)\right) \geqslant \eta
$$

So we may apply (1) with $A=I-\left(T_{1} \cup T_{2} \cup \ldots\right)$ and $\mathscr{N}=\mathscr{N}_{0}$, defined to be the set n_{1}, n_{2}, \ldots, where n_{1} is the least integer in \mathscr{N}_{1}, n_{2} is the least in \mathscr{N}_{2} which exceeds n_{1}, and so on. There will be a Borel set F contained in A, with $\mu(F)>0$, which avoids E_{n} for infinitely many n in \mathscr{N}_{0}. Now, if we choose any positive integer k, all but a finite number of integers in \mathscr{N}_{0} are in \mathscr{N}_{k}, and so F avoids E_{n} for infinitely many n
in \mathscr{N}_{k}, and at the same time $F \subset I-\left(T_{1} \cup T_{2} \cup \ldots \cup T_{k}\right)$. Hence $\mu(F)<$ $<2 \mu\left(T_{k+1}\right)$. Since T_{1}, T_{2}, \ldots are disjoint Borel subsets of I, and $\mu(I)=1$, it follows that $\mu\left(T_{k+1}\right) \rightarrow 0$ as $k \rightarrow \infty$, and this contradicts $\mu(F)>0$.
4. Proof of Theorem 1. Since $\lim \sup \mu\left(A_{r}\right) \geqslant \eta$, and we are concerned with the existence of a subsequence with a certain property, we may without loss of generality suppose that $\lim \inf \mu\left(A_{r}\right) \geqslant \eta$. For each r we may choose K_{r}, a closed subset of A_{r}, with

$$
\mu\left(K_{r}\right) \geqslant \mu\left(A_{r}\right)-(1 / r) .
$$

Then $\lim \inf \mu\left(K_{r}\right) \geqslant \eta$. So, by the lemma, there is a Borel set D with $\mu(D) \geqslant \eta$ and a set \mathscr{N} such that every Borel subset of D with positive measure avoids K_{n} for only a finite number of n in \mathscr{N}. Let I_{1}, I_{2}, \ldots be a countable base for the open subsets of I; for example, take I_{1}, I_{2}, \ldots to be an enumeration of the open subintervals of I with rational end--points. Take

$$
S=D-U^{\prime} I_{r},
$$

the union being taken over all r for $\mu\left(D \cap I_{r}\right)=0$. Then S is a Borel set with

$$
\mu(S) \geqslant \mu(D)-\sum_{\mu\left(D \sim I_{r}\right)=0} \mu\left(D \cap I_{r}\right)=\mu(D) \geqslant \eta,
$$

and every open set which meets S does so in a set of positive measure.
Now let G be an open set with $G \cap S \neq \varnothing$. Then $\mu(G \cap S)>0$, and $G \cap S$ avoids K_{n} for at most a finite number of n in \mathscr{N}. Also, as $\mu(G \cap S)>0$, we can choose two disjoint closed subsets H_{0} and H_{1} of G, each intersecting S in a set of positive measure (see $\S 5$). Then $H_{\alpha} \cap S$ avoids K_{n} for at most a finite number of n in \mathscr{N}, for $\alpha=0$ or 1 . Thus we can choose v^{1} in \mathscr{N} so that both

$$
\mu\left(H_{0} \cap S \frown K_{v_{1}}\right)>0 \quad \text { and } \quad \mu\left(H_{1} \cap S \cap K_{v_{1}}\right)>0 .
$$

By repeating this argument, we see that there exist four disjoint closed sets, H_{00} and H_{01} in H_{0}, and H_{10} and H_{11} in H_{1}, and an integer v^{2}, larger than v_{1}, in \mathscr{N} sueh that

$$
\mu\left(S \frown H_{a \beta} \frown K_{v_{1}} \cap K_{v_{2}}\right)>0
$$

for all four closed sets $H_{a \beta}, \alpha, \beta=0$ or 1 . It follows, by induction, that for each integer $k \geqslant 2$ we can choose a system of 2^{k} disjoint closed sets

$$
\begin{equation*}
H_{a_{1} a_{2} \ldots a_{k}}, \quad \alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}=0 \text { or } 1 \tag{1}
\end{equation*}
$$

and an integer v_{k} in \mathscr{N}, so that $v_{k}>v_{k-1}$,

$$
H_{a_{1} a_{2} \ldots a_{k}} \subset H_{a_{1} a_{2} \ldots a_{k-1}}, \quad \alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}=0 \text { or } 1
$$

and

$$
\mu\left(S \cap H_{\alpha_{1} \alpha_{2} \ldots \alpha_{k}} \cap K_{v_{1}} \cap K_{v_{2}} \cap \ldots \frown K_{v_{k}}\right)>0
$$

for $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}=0$ or 1. For each infinite sequence $\alpha_{1}, \alpha_{2}, \ldots$ of 0 's and 1 's, write

$$
X_{k}=H_{a_{1} a_{2} \ldots a_{k}} \cap K_{v_{1}} \cap K_{v_{2}} \cap \ldots \frown K_{v_{k}}
$$

for $k=1,2, \ldots$ Then the sets X_{1}, X_{2}, \ldots are closed and non-empty and they decrease. So their intersection contains at least one point. As the sets (1) are disjoint, for each fixed k, it follows that disjoint sets $\cap X_{k}$ correspond to distinct sequences $\alpha_{1}, \alpha_{2}, \ldots$ If \mathscr{N}^{\prime} is the set of the integers v_{1}, v_{2}, \ldots, the closed intersection

$$
\mathscr{N}^{\prime}\left\{K_{n}\right\}=K_{v_{1}} \cap K_{v_{2}} \cap \ldots
$$

contains this uncountable system of disjoint non-empty subsets of G, and therefore contains a perfect subset of G.

Let I_{1}, I_{2}, \ldots be a countable base for the open sets of I, and let G_{1}, G_{2}, \ldots be an enumeration of those sets of the base that meet S. By the last paragraph, \mathscr{N} contains a subset \mathscr{N}_{1} such that $\mathscr{N}_{1}\left\{K_{n}\right\} \cap G_{1}$ contains a perfect set. Similarly \mathscr{N}_{1} contains \mathscr{N}_{2} such that $\mathscr{N}_{2}\left\{K_{n}\right\} \cap G_{2}$ contains a perfect set. Continuing in this way, we obtain a decreasing sequence $\mathscr{N}_{1} \supset \mathscr{N}_{2} \supset \ldots$ such that $\mathscr{N}_{r}\left\{K_{n}\right\} \frown G_{r}$ contains a perfect subset for $r=1,2, \ldots$ Take \mathscr{N} to be the set q_{1}, q_{2}, \ldots, where q_{1} is the least in \mathscr{N}_{1}, and q_{r+1} is the least in \mathscr{N}_{r+1} which exceeds q_{r}, for $r=1,2, \ldots$ Now the sequence q_{1}, q_{2}, \ldots and the set S satisfy the conditions of the theorem. For, if G is any open set which meets S at a point, x say, there is a set I_{r} of the base with $x \in I_{r}$ and $I_{r} \subset G$. So for some j we have $I_{r}=G_{j}$. Hence

$$
G \frown\left\{A_{q_{j}} \frown A_{q_{j+1}} \cap \ldots\right\} \supset G_{j} \frown \mathscr{N}_{j}\left\{K_{n}\right\}
$$

and so contains a perfect set.
5. Theorem 2. Let X be a compact set. Suppose the topology in X has a countable base. Let μ be a Carathéodory outer measure on X with the properties
(a) $\mu(X)=1$,
(b) $\mu((x))=0$ for each x in X,
(c) Borel sets in X are μ-measurable,
(d) if E is μ-measurable and $\varepsilon>0$, then there is an open set G with $E \subset G$ and $\mu(G)<\mu(E)+\varepsilon$.
Suppose η is a positive number and A_{1}, A_{2}, \ldots are μ-measurable subsets of X with $\lim \sup \mu\left(A_{r}\right) \geqslant \eta$. Then there is a Borel set S in X with $\mu(S) \geqslant \eta$, and a sequence $q_{1}<q_{2}<\ldots$, such that every point of S is a point
of condensation of the set

$$
\bigcup_{j \geqslant 1} \bigcap_{r \geqslant j} A_{q_{r}},
$$

and every open set containing a point of S also contains a perfect subset of $A_{q_{j}} \cap A_{q_{j+1}} \cap \ldots$ for some j.

Proof. It is clear how nearly all the steps in the proof of Theorem 1 have to be modified to provide a proof of Theorem 2; the only difficulty is in the choice of the disjoint closed subsets H_{0} and H_{1} and the subsequent choice of the subsets (1) for $k=2,3, \ldots$ These choices are justified by the following lemma, which we prove by using one of the ideas we have already used:

Lemma. Under the conditions of Theorem 2, if A is a μ-measurable set with $\mu(A)>0$, we can choose two disjoint closed subsets H_{0} and H_{1} of A with $\mu\left(H_{0}\right)>0, \mu\left(H_{1}\right)>0$.

Proof. As A is μ-measurable and $\mu(A)>0$, we can choose a closed set B contained in A with $\mu(B)>0$. Let X_{1}, X_{2}, \ldots be a countable base for the open sets of X. Take

$$
C=B-\cup^{\prime} X_{r},
$$

the union being taken over all the integers r for which $\mu\left(B \cap X_{r}\right)=0$. Then C is closed and

$$
\mu(C)=\mu(B)-\sum_{\mu\left(B \cap X_{r}\right)=0} \mu\left(B \cap X_{r}\right)=\mu(B)>0
$$

Hence C contains at least one point, c say. As $\mu((c))=0$, we can choose an open set G with $c \epsilon G$ and $\mu(G)<\mu(C)$. Choose r so that $c \in X^{r}$ and $X_{r} \subset G$. Then, as $c \in X_{r}$, we have $\mu\left(B \cap X_{r}\right)>0$, so that

$$
\mu(C \cap G) \geqslant \mu\left(B \cap X_{r}\right)>0
$$

Finally, take H_{0} to be a closed subset of $C \cap G$ with $\mu\left(H_{0}\right)>0$, and take $H_{1}=C \cap(X-G)$. It is easy to verify that these sets satisfy our requirements.

UNIVERSITY COLLEGE, LONDON

[^0]: (*) Added in proof. The second extreme turned out to hold true; see P. Erdös and S. J. Taylor, The Hausdorff measure of the intersection of sets of positive Lebesचue measure, Mathematika 10 (1963), p. 1-9.

