COLLOQUIUM MATHEMATICUM

on some properties of hamel bases

BY

P. ERDÖS (BUDAPEST)

I dedicate this little note to Professor Wacław Sierpiński since I use in it methods which he used very successfully on so many occasions.

Throughout this paper a, β, γ, \ldots will denote ordinal numbers, n_{i}, n_{a}, \ldots integers, r_{a}, \ldots rational numbers, r_{a}^{+}, \ldots non-negative rationals and a, a_{a}, b, \ldots real numbers. H will denote a Hamel basis of the real numbers, H^{*} the set of all numbers of the form $\sum_{a} n_{a} a_{a}\left(a_{a} \epsilon H\right)$ (the sum is finite) and H^{+}the set of all numbers of the form $\sum_{a}^{r} r_{a}^{+} a_{c}\left(a_{a} \in H\right)$. Measure will always be the Lebesgue measure, and (a, b) will denote the set of numbers $a<x<b$.

Sierpiński showed [1] that there are Hamel bases of measure 0 and also Hamel bases which are not measurable.

We are going to prove the following theorems:
Theorem 1. H^{*} is always non-measurable. In fact H^{*} has inner measure 0 and for every (a, b) the outer measure of $H^{*} \cap(a, b)$ is $b-a$.

Theorem 2. Assume $c=\mathbf{N}_{1}$. Then there is an H for which H^{+}has measure 0 .

Proof of Theorem 1. The sets $H^{*}+1 / n, 2 \leqslant n<\infty$, are pairwise disjoint. Thus a simple argument shows that H^{*} has inner measure 0 .

For every x there exists an n_{x} so that $n_{x} \cdot x$ is in H^{*}, or the sets $1 / n H^{*}$, $2 \leqslant n<\infty$, cover the whole interval ($-\infty,+\infty$). Hence H^{*} cannot have outer measure 0 , and thus by the Lebesgue density theorem it has a point, say x_{0}, of outer density 1 . But then (since H^{*} is an additive group) every point of $x_{0}+H^{*}$ is a point of outer density 1 of H^{*}. Finally, it is easy to see that H^{*} is everywhere dense (since, if a and b are rationally independent, the numbers $n_{1} a+n_{2} b$ are everywhere dense).

Now it is easy to deduce that the outer measure of $H^{*} \cap(a, b)$ is $b-a$. To see this observe that since H^{*} has outer density 1 at x_{0}, for every $\varepsilon>0$ there exist arbitrarily small values of η, such that the outer measure of $H^{*} \cap\left(x_{0}-\eta, x_{0}+\eta\right)$ is greater than $2(1-\varepsilon) \eta$; but consequently the same holds for $H^{*} \cap\left(x_{0}+t-\eta, x_{0}+t+\eta\right)$, where t is an arbitrary
element of H^{*}. Since H^{*} is everywhere dense, a simple argument shows that the outer measure of $H^{*} \cap(a, b)$ is greater than $(1-\varepsilon)(b-a)-3 \eta$. Since this holds for every ε and η, the outer measure is $b-a$, which completes the proof of Theorem 1.

Now we prove Theorem 2. In fact we shall prove a somewhat stronger theorem:

Theorem 2'. Assume $c=\mathbf{N}_{1}$. Then there is an H such that H^{+}is a Lusin set (see [2], p.36-37), i. e. it intersects every nowhere dense perfectset in a set of power $\leqslant \mathbf{N}_{0}$.

It is well known (and easy to see) that such a set has the property that if $\varepsilon_{k}, 1 \leqslant k<\infty$, is any sequence of numbers, it can be covered by intervals I_{k} of length $\varepsilon_{k}(1 \leqslant k<\infty)$ (see [3] and also [2], p. 37-39).

We shall construct our H by transfinite induction. Let $\left\{F_{a}\right\}, 1 \leqslant$ $\leqslant \alpha<\Omega_{1}$, be the set of all nowhere dense perfect sets (as is well known, there are $c=\mathbf{N}_{1}$ perfect sets) and let $x_{a}, 1 \leqslant \alpha<\Omega_{1}$, be a well-ordering of the set of all real numbers. Put

$$
F^{(\alpha)}=\bigcup_{1 \leqslant \gamma<\alpha} F_{\gamma} .
$$

$F^{(\alpha)}$ is a set of the first category and for $\alpha>\gamma$ we have $F^{(\alpha)} \supset F^{(\gamma)}$.
We shall denote by $\left\{a_{a}\right\}, 1 \leqslant \alpha<\Omega_{1}$, the elements of H. Assume that for $\alpha<\beta$ the a_{β} have already been constructed. We choose a_{β} and $a_{\beta+1}$ as follows: Let x_{δ} be the x_{a} of smallest index which is not of the form $\sum_{i} r_{\alpha_{i}} a_{a_{i}}, \alpha_{i}<\beta$. Put

$$
\begin{equation*}
x_{\delta}=u-v \tag{1}
\end{equation*}
$$

where u and v have the following properties:
I. $\left\{u, v, a_{a}\right\}, 1 \leqslant \alpha<\beta$, are rationally independent.
II. The numbers

$$
\begin{equation*}
r_{1} u+r_{2} v+\sum_{i} r_{\alpha_{i}} a_{\alpha_{i}}, \quad \alpha_{i}<\beta \tag{2}
\end{equation*}
$$

are never in $F^{(\beta)}$, unless $r_{1}=-r_{2} \neq 0$.
Then put $a_{\beta}=v$ and $a_{\beta+1}=u$. First we show that such values u and v exist.

Put $u=v+x_{o}$. Then II is equivalent to the relation

$$
\left(\left(r_{1}+r_{2}\right) v+r_{1} x_{\delta}+\sum_{i} r_{a_{i}} a_{a_{i}}\right) \xi F^{(\beta)}
$$

for every choice of $r_{1}+r_{2} \neq 0$ and arbitrary $r_{a_{i}}, a_{a_{i}}, \alpha_{i}<\beta$. Thus v is in none of the sets

$$
\begin{equation*}
\left(F^{(\beta)}-\sum_{i} r_{a_{i}} a_{\alpha_{i}}-r_{1} x_{\delta}\right) /\left(r_{1}+r_{2}\right) \tag{3}
\end{equation*}
$$

Clearly all sets (3) are sets of the first category and there are only \mathbf{N}_{0} of them. Thus their union is also of the first category and hence there
exists a set of v 's of second category which is not contained in their union and which thus satisfies II. It is easy to see that there exists at most a countable number of choices of v and $u=v+x_{\delta}$ which do not satisfy I; hence there exist u and v satisfying both I and II.

This construction can clearly be carried out for all ordinal numbers $\beta<\Omega_{1}$, and, since $c=\mathbf{K}_{1}$, it gives a Hamel-base H. Clearly H^{+}is a Lusin-set. To see this it is sufficient to show that $H^{+} \cap F^{(a)}$ has for every $\alpha<\Omega_{1}$ a power not exceeding $\mathbf{\aleph}_{0}$. Let $\sum_{i=1}^{i} r_{\xi_{i}}^{+} a_{\xi_{i}}\left(\xi_{1}<\ldots<\xi_{t}\right)$ be an element of H^{+}. Since $c=\mathbf{N}_{1}$, there are only denumerably many elements of H^{+}with $\xi_{t} \leqslant \alpha$. If $\xi_{t}>\alpha$, then by our construction $\sum_{i=1}^{t} r_{\xi_{i}}^{+} a_{\xi i}$ is not in
 $=\xi_{t}$ and $r_{\xi_{t-1}}=-r_{s_{t}}$, but it is then not in H^{+}. This completes the proof of Theorem II.

We have really proved the following stronger statement:
There exists a Hamel-base H with a well-ordering $\left\{a_{a}\right\}$ such that the set of real numbers $\sum_{i=1}^{t} r_{a_{i}} a_{a_{i}}$ for which

$$
\alpha_{t-1} \neq \alpha_{t}-1 \quad \text { or } \quad r_{a_{t}}+r_{a_{t-1}}=r_{a_{t}}+r_{a_{t-1}} \neq 0
$$

is a Lusin set.
Kuczma asked in [4] the following question: Let $f(X+Y)=f(X)+$ $+f(Y)$ and assume that $f(Z)<c$ for every $Z \in P$, where P is such a set that every real number can be written in the form $Z_{1}-Z_{2}, Z_{1}, Z_{2} \in P$. Does it follow then that $f(X)=c X$? The answer is negative. To see this let $f\left(a_{a}\right) \leqslant 0$ for every $a_{a} \in H$, let $f\left(a_{a}\right)$ be non-linear and let us extend $f(X)$ for every real X by $f(u+v)=f(u)+f(v)$. Clearly $f(Z) \leqslant 0$ for every $Z \in H^{+}$, every real number is of the form $Z_{1}-Z_{2}, Z_{1}, Z_{2} \epsilon H^{+}$, and $f(X) \neq$ $\neq c X$.

REFERENCES

[1] W. Sierpiński, Sur les distances des points dans les ensembles de mesure positive, Fundamenta Mathematicae 1 (1920), p. 93-104.
[2] - Hypothèse du continu, Monografie Matematyezne 4, Warszawa-Lwów 1934.
[3] - Sur un ensemble non dénombrable, dont toute image continue est de mesure nulle, Fundamenta Mathematicae 11 (1928), p. 302-304.
[4] M. Kuczma, On the functional equation $f(x+y)=f(x)+f(y)$, ibidem 50 (1962), p. 387-391.

Resu par la Rédaction le 20.6.1962

