ON WEYL'S CRITERION FOR UNIFORM DISTRIBUTION

H. Davenport, P. Erdös and W. J. LeVeque

1. In his famous memoir [1] of 1916, Weyl gave a necessary and sufficient condition for a sequence s_{1}, s_{2}, \cdots of real numbers to be uniformly distributed modulo 1 , namely that for each integer $\mathrm{m} \neq 0$,

$$
\mathrm{S}(\mathrm{~N})=\frac{1}{\mathrm{~N}} \sum_{\mathrm{n}=1}^{\mathrm{N}} \mathrm{e}\left(\mathrm{~ms}_{\mathrm{n}}\right) \rightarrow 0
$$

as $N \rightarrow \infty$. (Here $e(\alpha)=e^{2 \pi i \alpha}$.) This criterion has been fundamental for much subsequent work on Diophantine approximation.

Now suppose that the sequence s_{n} is replaced by a sequence $s_{n}(x)$ depending on a real parameter x , each $\mathrm{s}_{\mathrm{n}}(\mathrm{x})$ being bounded and integrable for $\mathrm{a} \leq \mathrm{x} \leq \mathrm{b}$. Let

$$
\mathrm{S}(\mathrm{~N}, \mathrm{x})=\frac{1}{\mathrm{~N}_{\mathrm{n}}} \sum_{\mathrm{N}}^{\mathrm{N}} \mathrm{e}\left(\mathrm{~ms}_{\mathrm{n}}(\mathrm{x})\right) .
$$

It is natural to ask: what condition on

$$
\mathrm{I}(\mathrm{~N})=\int_{\mathrm{a}}^{\mathrm{b}}|\mathrm{~S}(\mathrm{~N}, \mathrm{x})|^{2} \mathrm{dx}
$$

will ensure that the sequence $\mathrm{s}_{\mathrm{n}}(\mathrm{x})$ is uniformly distributed modulo 1 for almost all x , in the sense of Lebesgue measure? We answer this question in the following theorem.

THEOREM. If the series

$$
\sum \mathrm{N}^{-1} \mathrm{I}(\mathrm{~N})
$$

converges for each integer $\mathrm{m} \neq 0$, then the sequence $\mathrm{s}_{\mathrm{n}}(\mathrm{x})$ is uniformly distributed modulo 1 for almost all x in $\mathrm{a} \leq \mathrm{x} \leq \mathrm{b}$. On the other hand, given any increasing function $\Phi(\mathrm{M})$ which tends to infinity with M (however slowly), there exists a sequence $\mathrm{s}_{\mathrm{n}}(\mathrm{x})$ which is not uniformly distributed modulo 1 for any x , and which satisfies the inequality

$$
\sum_{\mathrm{N}=1}^{\mathrm{M}} \mathrm{~N}^{-1} \mathrm{I}(\mathrm{~N})<\Phi(\mathrm{M}) .
$$

2. The proof of the first half of the theorem is based on a principle of interpolation which was used in a particular case by Weyl himself [1; Section 7].

Since $\Sigma N^{-1} I(N)$ converges, there exists an increasing sequence $\lambda(N)$, with $\lambda(\mathrm{N}) \rightarrow \infty$, such that

[^0]$$
\sum \mathrm{N}^{-1} \mathrm{I}(\mathrm{~N}) \lambda(\mathrm{N})
$$
converges. (If $r(N)=\Sigma_{N_{1} \geq N_{1}} N_{1}^{-1} I\left(N_{1}\right)$, we can take
$$
\left.\lambda(\mathrm{n})=\left\{\mathrm{r}^{1 / 2}(\mathrm{~N})+\mathrm{r}^{1 / 2}(\mathrm{~N}+1)\right\}^{-1} .\right)
$$

Let $\mathrm{M}_{1}<\mathrm{M}_{2}<\cdots$ be positive integers such that

$$
\mathrm{M}_{r+1}=\left[\frac{\lambda\left(\mathrm{M}_{r}\right)}{\lambda\left(\mathrm{M}_{\mathrm{r}}\right)-1} \mathrm{M}_{\mathrm{r}}\right]+1
$$

Let N_{r} be an integer in the range $\mathrm{M}_{\mathrm{r}}<\mathrm{N} \leq \mathrm{M}_{\mathrm{r}+1}$ for which $\mathrm{I}(\mathrm{N})$ attains its least value. Then

$$
I\left(N_{r}\right) \leq \frac{1}{M_{r+1}-M_{r}} \sum_{N=M_{r}+1}^{M_{r+1}} I(N) \leq \frac{M_{r+1}}{M_{r+1}-M_{r}} \sum_{N=M_{r}+1}^{M_{r+1}} N^{-1} I(N) .
$$

Since

$$
\frac{\mathrm{M}_{\mathrm{r}+1}}{\mathrm{M}_{\mathrm{r}+1}-\mathrm{M}_{\mathrm{r}}}<\lambda\left(\mathrm{M}_{\mathrm{r}}\right),
$$

we see that

$$
\mathrm{I}\left(\mathrm{~N}_{\mathrm{r}}\right) \leq \sum_{\mathrm{N}=\mathrm{M}_{\mathrm{r}}^{+1}}^{\mathrm{M}_{\mathrm{r}+1}} \mathrm{~N}^{-1} \mathrm{I}(\mathrm{~N}) \lambda(\mathrm{N})
$$

It follows that

$$
\sum_{r} \mathrm{I}\left(\mathrm{~N}_{\mathrm{r}}\right)
$$

converges. Since $M_{r+1} / M_{r} \rightarrow 1$, it is also true that $N_{r+1} / N_{r} \rightarrow 1$.
By a well known principle (see, for example, [1; Section 7]), it follows that

$$
\sum_{r}\left|S\left(N_{r}, x\right)\right|^{2}
$$

converges for almost all x , and a fortiori that

$$
\mathrm{S}\left(\mathrm{~N}_{\mathrm{r}}, \mathrm{x}\right) \rightarrow 0
$$

as $\mathrm{r} \rightarrow \infty$, for almost all x . Now, if $\mathrm{N}_{\mathrm{r}}<\mathrm{N} \leq \mathrm{N}_{\mathrm{r}+1}$, then

$$
\left|\mathrm{NS}(\mathrm{~N}, \mathrm{x})-\mathrm{N}_{\mathrm{r}} \mathrm{~S}\left(\mathrm{~N}_{r}, \mathrm{x}\right)\right| \leq \sum_{\mathrm{N}=\mathrm{N}_{\mathrm{r}}+1}^{\mathrm{N}_{\mathrm{r}+1}} 1=\mathrm{N}_{\mathrm{r}+1}-\mathrm{N}_{\mathrm{r}},
$$

whence

$$
\mathrm{S}(\mathrm{~N}, \mathrm{x}) \rightarrow 0
$$

as $\mathrm{N} \rightarrow \infty$, for almost all x .
The above argument relates to a single value of m. But since the union of an enumerable infinity of sets of measure 0 is itself of measure 0 , it follows that the result holds for all $\mathrm{m} \neq 0$ except in a set of measure 0 . Hence, by Weyl's criterion, $\mathrm{s}_{\mathrm{n}}(\mathrm{x})$ is uniformly distributed modulo 1 for almost all x .
3. For the second half of the theorem, an example suffices. Let $F(x)$ be a rapidly increasing function, defined for $x>0$, and let G be the function inverse to F. Define a sequence $s_{n}(x)$ by

$$
s_{n}(x)= \begin{cases}0 & \text { if } F(k x)<n<2 F(k x) \text { for some } k \\ n x & \text { otherwise }\end{cases}
$$

Then the sequence $\mathrm{s}_{\mathrm{n}}(\mathrm{x})$ is not uniformly distributed modulo 1 for any x in $0<\mathrm{a}<\mathrm{x}<\mathrm{b}$ if $\mathrm{F}(\mathrm{x})$ grows at least exponentially; for if $\mathrm{N}=[2 \mathrm{~F}(\mathrm{kx})]$, then $\mathrm{s}_{\mathrm{n}}(\mathrm{x})=0$ for roughly half the values of $n \leq N$.

Now,

$$
\mathrm{S}(\mathrm{~N}, \mathrm{x})=\frac{1}{\mathrm{~N}} \sum_{\mathrm{n}=1}^{\mathrm{N}} \mathrm{e}(\mathrm{mnx})+\frac{1}{\mathrm{~N}} \sum_{\mathrm{n}=1}^{\mathrm{N}} \sum_{\mathrm{k}}^{\mathrm{F}(\mathrm{kx})<\mathrm{n}<2 \mathrm{~F}(\mathrm{kx})}{ }\{1-\mathrm{e}(\mathrm{mnx})\}
$$

The absolute value of the second sum is not greater than

$$
2 \sum_{k} F(k x) \ll F\left(k_{1} x\right),
$$

where $k_{1}=k_{1}(x, N)$ is defined by the condition

$$
\mathrm{F}\left(\mathrm{k}_{1} \mathrm{x}\right)<\mathrm{N} \leq \mathrm{F}\left(\left(\mathrm{k}_{1}+1\right) \mathrm{x}\right) .
$$

(The notation $\mathrm{A}(\mathrm{N}) \ll \mathrm{B}(\mathrm{N})$ means that there is a constant c , independent of N , such that $\mathrm{A}(\mathrm{N})<\mathrm{cB}(\mathrm{N})$ for all relevant N .) Hence, for $\mathrm{b}>\mathrm{a}>0$ and m a nonzero integer,

$$
I(N)=\int_{a}^{b}|S(N, x)|^{2} d x \ll N^{-1}+N^{-2} \int_{a}^{b}\left(F\left(k_{1} x\right)\right)^{2} d x
$$

All values of k_{1} that occur satisfy the inequalities

$$
k_{1} a<G(N), \quad\left(k_{1}+1\right) b \geq G(N)
$$

A particular value k of k_{1} in this range occurs if x has the property that

$$
\frac{\mathrm{G}(\mathrm{~N})}{\mathrm{k}+1} \leq \mathrm{x}<\frac{\mathrm{G}(\mathrm{~N})}{\mathrm{k}}
$$

Hence

$$
\begin{aligned}
\int_{a}^{b}\left(F\left(k_{1} x\right)\right)^{2} d x & =\sum_{\frac{G(N)}{b}-1 \leq k<\frac{G(N)}{a}} \int_{\frac{G(N)}{k+1}}^{\frac{G(N)}{k}}(F(k x))^{2} d x \\
& =\sum_{\frac{G(N)}{b}-1 \leq k<\frac{G(N)}{a}} \frac{1}{k} \int_{N_{1}}^{N} u^{2} G^{\prime}(u) d u
\end{aligned}
$$

on putting $\mathrm{kx}=\mathrm{G}(\mathrm{u})$. Here

$$
N_{1}=F\left(\frac{k}{k+1} G(N)\right)
$$

Thus

$$
\int_{a}^{b}\left(F\left(k_{1} x\right)\right)^{2} d x \ll \int_{0}^{N} u^{2} G^{\prime}(u) d u
$$

It follows that

$$
\begin{equation*}
\mathrm{I}(\mathrm{~N}) \ll \mathrm{N}^{-1}+\mathrm{N}^{-2} \int_{0}^{\mathrm{N}} \mathrm{u}^{2} \mathrm{G}^{\prime}(\mathrm{u}) \mathrm{du} \tag{1}
\end{equation*}
$$

We now conclude that

$$
\sum_{N=1}^{M} N^{-1} I(N) \ll 1+\int_{0}^{M} u^{2} G^{\prime}(u) \sum_{N \geq u} \frac{1}{N^{3}} d u \ll G(M)
$$

Thus, by suitable choice of the function G, we can ensure that $\Sigma N^{-1} I(N)$ diverges arbitrarily slowly.

It may be remarked that if we choose G to be a 'smooth' slowly increasing function, it will follow from (1) that $\mathrm{I}(\mathrm{N}) \rightarrow 0$ as $\mathrm{N} \rightarrow \infty$. For example, if $G(u)=\log \log \log u$, we find that

$$
I(N) \ll \frac{1}{(\log N)(\log \log N)}
$$

In particular, therefore, a condition of this type is compatible with $\mathrm{s}_{\mathrm{n}}(\mathrm{x})$ being not uniformly distributed for any x in (a, b).

REFERENCES

1. H. Weyl, Uber die Gleichverteilung von Zahlen mod. Eins, Math. Ann. 77 (1916), 313-352.

Trinity College, Cambridge
University College, London
The University of Michigan

[^0]: Received March 14, 1963.
 The third author was partially supported by the National Science Foundation, grant GP-88.

