REMARKS ON A PROBLEM OF OBREANU

P. Erdos and A. Rény i

(received December 15, 1962)

Let $a_{1}<a_{2}<\ldots$ be any sequence of integers. Assume that the infinite sequence of numbers u_{n} satisfies the following condition: To every $\varepsilon>0$ there is an $n_{0}=n_{0}(\varepsilon)$ such that for all $n>n_{0}$ and all k

$$
\begin{equation*}
\left|u_{n+a_{k}}-u_{n}\right|<\varepsilon . \tag{1}
\end{equation*}
$$

Obreanu asked (Problem P. 35 Can. Math. Bull.) under what conditions on the sequence $a_{1}<a_{2}<\ldots$ does (1) imply that the sequence u_{n} is convergent. N. G. de Bruijn and P. Erdos proved that a necessary and sufficient condition for (1) to imply the convergence of u_{n} is that the sequence $\left\{a_{n}\right\}$ be infinite and that the greatest common divisor of the a_{n} should be 1 .

The condition (1) is very strong and is "nearly equivalent" to Cauchy's criterion for convergence. We discuss various conditions which are weaker than (1).

$$
\text { Assume first that the sequence } u_{n} \text { satisfies }
$$

(2) $\quad \lim _{n \rightarrow \infty} \overline{\lim }_{r}\left|u_{n+a_{r}}-u_{n}\right|=0$.

Condition (2) means that to every $\varepsilon>0$ there exists $n_{o}=n_{o}(\varepsilon)$ such that for $n>n_{0}$ we have $\left|u_{n+a_{r}}-u_{n}\right|<\varepsilon$ except for

Canad. Math. Bull. vol. 6, no. 2, May 1963.
finitely many r (the number of exceptional r may of course depend on n). Denoting the sequence $a_{1}<a_{2}<\ldots$ by A we shall prove

THEOREM 1 (2) implies the convergence of $\left\{u_{n}\right\}$ if

 and only if A satisfies the following two conditions:(I) to every integer $\mathrm{d}>1$ there are infinitely many k with $a_{k} \neq 0(\bmod d)$,
(II) $a_{k+1}-a_{k}$ does not tend to infinity as $k \rightarrow \infty$.

First we prove that (I) and (II) are necessary. This is clear for (I) since if (I) is not satisfied for a certain $d>1$ then the sequence u_{n} with

$$
u_{n}=0 \text { if } n \equiv 0(\bmod d) \text { and } u_{n}=1 \text { otherwise, }
$$

clearly satisfies (2) and does not converge.
Next we show that (II) is necessary. Suppose A does not satisfy (II), i.e. $a_{k+1}-a_{k} \rightarrow \infty$ as $k \rightarrow \infty$. Put

$$
n=a_{i_{1}}+a_{i_{2}}+\cdots+a_{i_{r}}+\ell
$$

where $a_{i_{1}}$ is the greatest a not exceeding $n, a_{i_{2}}$ the greatest a not exceeding $n-a_{i_{1}}$, or $a_{i_{r}}$ is the greatest a not exceeding $n-\left(a_{i_{1}}+\ldots+a_{i_{r-1}}\right)$, and $0 \leq \ell<a_{1}$ (thus if $a_{1}=1, \ell$ is always 0$)$. Put
(3) $u_{n}=0$ if $i_{r}=1$ and $u_{n}=1$ if $i_{r} \neq 1$,
e.g. if ($i>i_{0}$) $n=a_{i}+a_{1}$ then $u_{n}=0$, while if $n=a_{i}+a_{2}$ then $u_{n}=1$. Thus u_{n} is infinitely often 0 and infinitely
often 1 and hence does not converge. On the other hand it is easy to see that the sequence (3) satisfies (2) since from $a_{k+1}-a_{k} \rightarrow \infty$ we obtain that $a_{k+1}-a_{k}>n$ for $k>k_{0}(n)$ and hence for these k we have from (3) $u_{n+a_{k}}-u_{n}=0$, so that (2) is satisfied. This shows that our conditions are necessary.

Next we show that our conditions are sufficient, in other words we shall show that if A satisfies (I) and (II) and the infinite sequence $\left\{u_{n}\right\}$ satisfies (2), then $\left\{u_{n}\right\}$ converges.

Since (II) is satisfied, there is a T for which
(4) $\quad a_{k+1}-a_{k}=T$
has infinitely many solutions. First we show that for every i
(5) $\quad \lim _{\ell \rightarrow \infty}\left(u_{i+(\ell+1)} T^{-} u_{i+\ell T}\right)=0$.

Let $\varepsilon>0$ be given; to prove (5) we shall show that for all $\ell>\ell{ }_{0}(\varepsilon)$
(6) $\left|u_{i+(\ell+1) T}-u_{i+\ell T}\right|<\varepsilon$.

From (2) it follows that for sufficiently large fixed $\ell(\ell=\ell(\varepsilon))$ and every $r>r_{o}(\varepsilon, \ell)$
(7) $\left|u_{i+\ell T+a_{r}}-u_{i+\ell T}\right|<\varepsilon / 2$ and

$$
\left|u_{i+(\ell+1) T+a_{r}}-u_{i+(\ell+1) T}\right|<\varepsilon / 2 .
$$

Since (4) has infinitely many solutions there is a k (in fact infinitely many such k) for which $a_{k+1}-a_{k}=T, k>r_{o}(\varepsilon, \ell)$.
Thus from (7)
(8)

$$
\begin{aligned}
& \left|u_{i+\ell T+a_{k+1}}-u_{i+\ell T}\right|<\varepsilon / 2 \text { and } \\
& \left|u_{i+(\ell+1) T+a_{k}}-u_{i+(\ell+1) T}\right|<\varepsilon / 2 .
\end{aligned}
$$

(6) follows from (8) by subtraction (since $i+(\ell+1) T+a_{k}=$ $i+\ell T+a_{k+1}$). (6) implies that for every s and i
(9) $\quad \lim _{\ell \rightarrow \infty}\left(u_{i+(\ell+s)} T^{-u}{ }_{i+\ell T}\right)=0$.

From (9) we shall now deduce that for every fixed i
(10) $\lim _{\ell \rightarrow \infty} u_{i+\ell T}$
exists. If (10) did not exist there would exist an infinite sequence of integers ξ_{j}, λ_{j} satisfying
(11) $\quad \xi_{j} \equiv \lambda_{j} \equiv i(\bmod T), \quad \xi_{1}<\xi_{2}<\ldots, \xi_{j}<\lambda_{j}$
and
(12)

$$
\left|u_{\xi_{j}}-u_{\lambda}\right|>c
$$

for a certain positive absolute constant c. From (2) we obtain that for sufficiently large j and r
(13) $\left|u_{\xi_{j}}+a_{r}-u_{\xi_{j}}\right|<c / 4$ and $\left|u_{\lambda_{j}}+a_{r}-u_{\lambda_{j}}\right|<c / 4$.

From the first part of (11) we have $\xi_{j}-\lambda_{j}=s T$, and so from
(9) we have for sufficiently large r
(14) $\left|u_{\xi_{j}}+a_{r}-u_{\lambda_{j}}+a_{r}\right|<c / 4\left(\xi_{j}+a_{r}=i+\ell T\right.$ of (9));
(13) and (14) imply $\left|u_{\xi_{j}}-u_{\lambda_{j}}\right|<3 c / 4$ which contradicts (12),
and hence (10) is proved.
If the limit in (10) does not depend on i then $\left\{u_{n}\right\}$ converges and our theorem is proved. Assume thus that for two values $i_{1} \neq i_{2}(\bmod T)$
(15) $\lim _{\ell \rightarrow \infty} u_{i_{1}+\ell T}=\alpha_{1}, \lim _{\ell \rightarrow \infty} u_{i_{2}+\ell T}=\alpha_{2}, \alpha_{1}<\alpha_{2}$.

Choose $\varepsilon<\left(\alpha_{2}-\alpha_{1}\right) / 2 \mathrm{~T}^{2}$ and let ℓ be so large that for all $\mathrm{n}>\ell \mathrm{T}$ and all r except possibly for finitely many exceptions
(16) $\left|u_{n+a_{r}}-u_{n}\right|<\varepsilon$,
and choose ℓ_{0} so large that for every $\ell>\ell_{0}, \ell_{1}>\ell_{0}$

$$
\begin{equation*}
\left|u_{i_{1}+l} T-u_{i_{2}+l} T\right|>\left(\alpha_{2}-\alpha_{1}\right) / 2 . \tag{17}
\end{equation*}
$$

Denote by j_{1}, \ldots, j_{r} those residue classes $(\bmod T)$ for which the congruence $a_{n} \equiv j_{s}(\bmod T)$ has infinitely many solutions. By (I), $\left(j_{1}, j_{2}, \ldots, j_{r}, T\right)=1$ and therefore the congruence

$$
\sum_{s=1}^{r} X_{s} j_{s} \equiv i_{2}-i_{1}(\bmod T), \quad 0 \leq X_{s}<T
$$

is solvable (in fact every residue class (mod T) can be represented in the form (18). We can find arbitrarily large $a^{1} s$ satisfying $\left(a_{n} \equiv j_{s}(\bmod T)\right.$ has infinitely many solutions)

$$
a_{m} \equiv j_{s}(\bmod T) \quad 1 \leq s \leq r .
$$

Put
(19) $v=i+\ell T+\sum_{s=1}^{r} X_{s} a_{m}=i+\ell T+\sum_{j=1}^{y} b_{j}, y=\sum_{s=1}^{r} X_{s}<T^{2}$ (by
where X_{s} of the b^{\prime} s are equal to $a_{m_{s}} . \quad$ From (19) and (18) we have
(20) $\quad v=i_{2}+\ell_{1} T, \quad \ell_{1} \geq \ell$.

We evidently have by (19), (as in the proof of Problem 35)
(21) $\left|u_{v}-u_{i_{1}+\ell T}\right| \leq\left|u_{i_{1}+\ell T+b_{1}}-u_{i_{1}}+\ell T\right|$

$$
\begin{aligned}
& +\left|u_{i_{1}+l} T+b_{1}+b_{2}-u_{i_{1}+l} T+b_{1}\right|+\cdots \\
& +\left|u_{i_{1}}+l T+\sum_{j=1}^{r} b_{j}-u_{i_{1}}+l T+\sum_{j=1}^{r-1} b_{j}\right|
\end{aligned}
$$

Now since each b is an a, we have from (16) and (17) that for sufficiently large ℓ and sufficiently large b^{\prime} s each summand at the right side of (21) is less than ε. Thus from (20), (21) and the definition of ε we obtain by the last inequality of (19)
(22) $\left|u_{i_{2}+\ell}{ }_{1} T^{-u_{i_{1}}+\ell T}\right|<y \varepsilon=\varepsilon \sum_{j=1}^{r} X_{j}<\varepsilon T^{2}<\left(\alpha_{2}-\alpha_{1}\right) / 2$.
(22) contradicts (17) and this contradiction proves the convergence of $\left\{u_{n}\right\}$ and hence the proof of our theorem is complete.

We also considered the following modification of (2):
(23) $\quad \frac{\lim }{n} \varlimsup_{r}\left|u_{n+a_{r}}-u_{n}\right|=0$.

We proved
THEOREM 2 (23) implies the convergence of $\left\{u_{n}\right\}$ if and only if for every infinite sequence of integers $b_{1}<b_{2}<\ldots$ there is a t such that the sequence $\left\{a_{r}+b_{i}\right\} \quad 1 \leq r<\infty, \quad 1 \leq i \leq t$
contains all but a finite number of the integers $1,2, \ldots$.

We suppress the proof of Theorem 2. It is easy to see that (24) is equivalent to the following condition which is perhaps more manageable: Let $b_{1}<b_{2}<\ldots$ be any infinite sequence of integers; then all but a finite number of the natural numbers are of the form $\left(a_{i}+b_{j}\right)$ where i and j are natural numbers.

Assume that we modify (2) as follows: To every $\varepsilon>0$ there exists an n_{0} such that for $n>n_{o}$ we have $\left|u_{n+a_{k}}-u_{n}\right|<\varepsilon$ except for at most t_{ε} values of k where t_{ε} depends only on ε and not on n. We do not know what is the necessary and sufficient condition on the sequence $\left\{a_{k}\right\}$ that this should imply that $\left\{u_{n}\right\}$ converges.

University College London
England

