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Let a 1 < a 2 < . . . be any sequence of integers . Assume

that the infinite sequence of

condition : To every E >

for all n > n and all ko

(1)

	

~un+

	

- un I < Ea k

Obreanu asked (Problem P . 35 Can . Math. Bull . ) under what
conditions on the sequence a < a 2 < . . . does (1) imply that1

is convergent . N . G . de Bruijn and P . Erdősthe sequence u n
proved that a necessary and sufficient
the convergence of u is that the sequencen
and that the greatest common divisor of the

condition for (1) to

(2)

	

lim

	

lim I un+a - un I=
0

n - 00 r

	

r

numbers u satisfies the following
n

0 there is an n = n ( ) such that
0

	

0

267

{ a } be infiniten
a should be 1In

imply

The condition (1) is very strong and is "nearly equivalent"
to Cauchy' s criterion for convergence . We discuss various
conditions which are weaker than (1) .

Assume first that the sequence u satisfiesn

Condition (2) means that to every E > 0 there exists n 0 = n 0 (E )

such that for n > no we have I un+a - un I < E except for
r
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finitely many r (the number of exceptional r may of course
depend on n) . Denoting the sequence a 1 < a 2 < . . . by A

we shall prove

THEOREM 1 (2) implies the convergence of { u } ifn
and only if A satisfies the following two conditions :

(i) to every integer d > 1 there are infinitely many k with
ak j 0 (mod d),

(II)

	

ak+1 - a k does not tend to infinity as k - oo .

First we prove that (I) and (II) are necessary . This is
clear for (I) since if (I) is not satisfied for a certain d > 1
then the sequence u withn

u = 0 if n = 0 (mod d) and u = 1 otherwise,•

	

n

clearly satisfies (2) and does not converge .

Next we show that (II) is necessary . Suppose A does not
satisfy (II), i . e . ak+1 - a k -> oo as k -• oo

	

Put

n = a . +a

	

+ . . . +a. +Q
1

	

i

	

11

	

2

	

r

where a

	

is the greatest a not exceeding n ,i 1
greatest a not exceeding n - a . , or

1 1
not exceeding n - (a . + . . . + a

	

}
1 1

if a 1 = 1

	

Q is always 0 ) .

(3)

	

u

	

= 0 if i

	

= 1 and u = 1 if i + 1 ,•

	

r n r

e . g . if ( >

	

n = a + ao

	

i

	

1
then u = 1

	

Thus u is•

	

n

1r-1

	

-

	

1

Put

2 6 8

a

	

thei2

a,

	

is the greatest a
1r

and 0 < Q < a (thus

then u = 0 , while if n = a + an

	

i

	

2
infinitely often 0 and infinitely



often 1 and hence does not converge . On the other hand it is
easy to see that the sequence (3) satisfies (2) since from

a k+ 1 - a k - oc we obtain that a k+ 1 - a k > n for k > k o (n) and

hence for these k we have from (3) u

	

- u = 0 , so thatn+a k

	

n

(2) is satisfied . This shows that our conditions are necessary .

Next we show that our conditions are sufficient, in other
words we shall show that if A satisfies (I) and (II) and the
infinite sequence { u } satisfies (2), then { u } converges .n

	

n

Since (II) is satisfied, there is a T for which

(4)

	

ak+1 - a k = T

has infinitely many solutions . First we show that for every

(5)

	

lim

	

(ui+(Q

	

u,

	

) = 0 .
+(Q +1 )T

	

i+Q T

Let E > 0 be given ; to prove (5) we shall show that for
all Q >Q (E )

0

(6)

	

lui+(Q +1)T - ui+Q T I < E .

From (2) it follows that for sufficiently large fixed Q (I =Q (E

and every r > r (E , Q )
0

(7)

	

Iui+Q,

	

T+a - u
i+Q T I < E/2 and

r

1ui+(Q +1)T+a - u i+(Q +1)T I <
E/2

r

Since (4) has infinitely many solutions there is a k (in fact
infinitely many such k) for which a k+1 -ak = T, k > r 0

(E , Q ) .

Thus from (7)
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(8)

	

i ui+Q T+a k+ 1
-

11 i+£
T l < E/2 and

lui+(Q +1)T+ak - ui+(2 +1)T 1 <E/2
.

and

(6) follows from (8) by subtraction (since i+(j +1)T+a k =

i+Q T+ak+1) .

	

(6) implies that for every s and i

(9)

	

lim

	

(ui+(Q +s)T

	

u
i+Q T)

	

0

From (9) we shall now deduce that for every fixed i

(10) lim

	

u
i+Q T

exists . If (10) did not exist there would exist an infinite sequence
of integers

	

k . satisfying
J

	

J

(11)

	

j = k

	

mod T) , ~1 < ~2 < . . . , ~ < A,
J

	

J

(12)

	

lu

	

- u, l > c
~J

	

J

for a certain positive absolute constant c . From (2) we obtain
that for sufficiently large j and r

( 13)

	

l u

	

u l< c/4 and lu

	

u

	

l< c/4 .
~J
+a r

	

~J

	

~J
+a r

	

~J

From the first part of (11) we have

(9) we have for sufficiently large r

2 7 0

(14)

	

lu
+a

	

uX +a l < c/4 ( j + a r =i+ . T of (9)) ;
J

	

r

	

J

	

r

= sT , and so from

(13) and (14) imply lu - u

	

l < 3c/4 which contradicts (12),
J

	

J



and hence (10) is proved .

If the limit in (10) does not depend on i then { u }n
converges and our theorem is proved . Assume thus that for
two values iI + i 2 (mod T)

(15) lim

	

ui1

	

= a

	

lim

	

u,

	

= a , a < a
~ y~

	

+Q T

	

1

	

Q-00 12+~
T

	

2

	

1

	

2

Choose s < (cr2-a1)l2T 2 and let Q be so large that for all

n > Q T and all r except possibly for finitely many- exceptions

(16}

	

~u

	

- u I < s
n+ a

	

nr

and choose .2 0 so large that for every Q > 2 , Q i > fo

	

o

(17)

	

lui1+Q T - ui2 +Q 1 T I > (a2 - a1 )/2 .

Denote by j 1

	

,

the congruence a =j (mod T) has infinitely many solutions .n

	

s
By (I), (31,72,

	

jr' T) = 1 and therefore the congruence

r
(18)

	

X js ss=1

Put

r

- i 1 (mod T), 0 < X s < T

is solvable (in fact every residue class (mod T) can be
represented in the form (18) . We can find arbitrarily large
a' s satisfying (a n =j ' (mod T) has infinitely many- solutions)

am = j s (mod T) 1< s< r
s

those residue classes (mod T) for w-hick

r

	

y

	

r

	

2
(19) v = i+1 T + E X s a m = i+1 T + Z bb

	

y = Z' X s < T (by (18))
s=1

	

s

	

j=1

	

s=1
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where X of the b' s are equal to a

	

From (19) and (18)s
s

w-e have

(20) v = i 2 +2 1 T , 2 1 >2 .

We evidently have by (19), (as in the proof of Problem 35)

(21)

	

I u` - ui1+2 T I < 1 ui1+2 T+b1 - ui1 + 2 T

+ Í u i,-i- T+k~ 1 +b2 - ui 1 +2 T+b1 1
+ , . .

r

	

r-1+ ui +2 T+ 4 bb

	

ui +2 T+ E b .1

	

j=1 J

	

1

	

j=1 J

Now since each h is an a , we have from (16) and (17) that for
sufficiently large Q and sufficiently large b' s each summand
at the right side of (21) is less than E .

	

Thus from (20), (21)
and the definition of s we obtain by the last inequality of (19)

(22)

	

jui2 +21 T - ui1+iTI <ye

We proved

THEOREM 2 (23) implies the convergence of { u } ifn
and only if for every- infinite sequence of integers b 1 <b2 < . . -

there is a t such that the sequence

r
2Y- X<eT<.

	

(a2
jz 1

a 1 )I2 .

(22) contradicts (17) and this contradiction proves the convergence
of { u ) and hence the proof of our theorem is complete .n

We also considered the following modification of (2) :

(23) lim lim i un+a - un I=O .
n

	

r

	

r
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(24) {a +b i} 1<r<-0, 1 < i < tr

	

-

	

- -

contains all but a finite number of the integers 1, 2	

We suppress the proof of Theorem 2 . It is easy to see
that (24) is equivalent to the following condition which is perhaps
more manageable : Let b1 < b 2 < . . . be any infinite sequence of

integers ; then all but a finite number of the natural numbers
are of the form (a,+b,) where . and j are natural numbers .

Assume that we modify (2) as follows : To every E > 0
there exists an n such that for n > n we have ; u

	

- u

	

< E
0

	

0

	

n-a k

except for at most t values of k where t

	

depends only on
E

	

E

E and not on n . We do not know what is the necessary and
sufficient condition on the sequence { a k} that this should

imply that { un} converges .
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