
SUMS OF DISTINCT UNIT FRACTIONS

PAUL ERDŐS AND SHERMAN STEIN

We shall consider the representation of numbers as the sum of dis-
tinct unit fractions ; in particular we will answer two questions recently
raised by Herbert S . Wilf .

A sequence of positive integers S= n 1 , n2 ,

	

} with ni < ,n 2<
is an R-basis if every positive integer is the sum of distinct reciprocals
of finitely many integers of S . In Research Problem 6 [1, p. 457],
Herbert S. Wilf raises several questions about R-bases, including :
Does an R-basis necessarily have a positive density? If S consists of
all positive integers and f (n) is the least number required to represent
n, what, in some average sense, is the growth of f(n)? These two
questions are answered by Theorems 1 and 5 below . Theorem 4 is a
"best-possible" strengthening of Theorem 1 .

THEOREM 1 . There exists a sequence S of density zero such that every
positive rational is the sum of a finite number of reciprocals of distinct
terms of S.

The proof depends on two lemmas .

LEMMA 1 . Let r be real, 0 < r < 1 and al, a2,

	

integers defined in-
ductively by

1
al = smallest integer n, r - - >= 0,

n

1

	

1
a2 = smallest integer n, r - - - - >_ 0,

a, n -

1

	

1

	

1

	

1
ak = smallest integer n, r	 > 0.

al

	

a2

	

ak-1

	

n

Then a;+1>a.(az-1) for each i . Also if r is rational the sequence termi-
nates at some k, that is r= Z%=1 1/ai.

Lemma 1 is due to Sylvester [2] . It provides a canonical represen-
tation for each positive real less than 1 which we will call the
Sylvester representation .
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LEMMA 2. If r is a positive rational and A a positive integer then there
exists a finite set of integers S(r, A) _ } ni, n2,

	

, nk } , n l < n2 <
<nk such that

k

	

1

n, >_ A,
n i+1 - n;> A

	

1 <iSk-1 .

PROOF. Since the harmonic series diverges, there is an integer m
such that

1

	

1

	

1

	

1

	

1
r- A + 2A + . . . 3A + . . . }

mA/ < (m+1)A

Now applying Lemma 1 to

r-
1

	

1

	

1

	

i-+

	

~2A+3_-f +
. . .+

MA~

(-1-

	

1

	

1\ `

A 2A

	

ntA
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we conclude that there are integers M l <m2< • • • < m, such that

By our choice of m we see that m l> (m + I)A . Moreover Lemma 1
assures us that mi+i-m,>A . Then

{ A, 2A	n.A, ml, m2, . . . , m,}

serves as S(r, A) .
Now the proof of Theorem 1 is immediate . Order the rationale

r l , r2, ra, • • • . Let S, be an S(rl, 1) . Let b l be the largest element of
S(rl, 1) . Let S2 be an S(r2, 2b l) . Having defined SI, S2, • • • , Sk de-
fines Sl,+, as follows. Let N be the largest element of S k . Let 5,.+ 1 be
an S(rk+l, 2bk) .

Then since Sk's are disjoint, there is a monotonically increasing bi-
jection S: (i, 2, 3, )->Ur 1 Sk which satisfies the demands of
Theorem 1 .

In fact S does more than Theorem 1 asserted . It is possible to repre-
sent all the positive rationale by sums of reciprocals of terms in the
S constructed so that each such reciprocal appears in the representa-
tion of precisely one rational . Similar reasoning proves

THEOREM 2 . The set of unit fractions ;, 2, J,

	

can be partitioned
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into disjoint finite subsets Si, S2,

	

such that each positive rational is
the sum of the elements of precisely one S ;.

Theorem 2 remains true if the phrase "each positive rational," is
replaced by "each positive integer ." It would be interesting to know
the necessary and sufficient condition that a sequence of rationale
rl, r 2 , r3, • • • corresponds to the sums of a partition of the set of
unit fractions into disjoint finite subsets .

THEOREM 3. If n,, n 2, n3 , • • • , is a sequence of positive integers with
(1) nk+1?nk(nk - 1)+1, for k=1, 2, 3, and (2) for an infinity of
k, nk+1 > nk (nk -1) + i then

	

, 1/nk is irrational .'

PROOF. Observe first that if a,, a2 , • • • is a sequence of positive
integers with ak+1=ak(ak - 1) - I-1 for k=1, 2, 3, , and a,> 1, then

Er , 1/ak= 1/(a l -1) . By assumption (2) there is h such that nh> 1 .
From the observation we see that for any integer i,

1

	

°'

	

1

	

i

	

1

	

1

n,+, <

	

n k - E <nk

	

n;+, - 1

Thus the Sylvester representation of Erh i/nk is 1/nh+l fnh+l
+1/nh+2 7 - • • • . Since the Sylvester representation of E,'= I 1/nk has
an infinite number of terms, we see by Theorem 1 that ~nh 1/n,

is irrational . Hence so is

	

1/nk irrational .
We will soon strengthen Theorem 1 by Theorem 4 for which we will

need

LEMMA 3 . The number of integers in (x, 2x) all of whose prime factors
are<_xlr 2 is greater than x/10 for x>xo .

PROOF . The number of these integers is at least x- E,, ; (x/pi),
where the summation extends over the primes x 112 <p; < 2x . From the
fact that ED<y 1/p=log log y-1-c+o(1) Lemma 3 easily follows .

THEOREM 4. Let 0 <al <a2 < • • • be a sequence A of integers with
En, 1/a„ _ - . Then there exists a sequence B : b, < b 2 < • • • of
integers satisfying a„ < b,,, 1 <=n < - , such that every positive rational is
the sum of the reciprocals of finitely many distinct b's .

PROOF . Set A (x)

	

1 . We omit from A all the a;, 2 1 <=a ;
<2k+ 1 for which

(1) A(2k+1) - A(2k) < 2k/k 2 .

Thus we obtain a subsequence A' of A, a, <as < • • • . Clearly
En'., 1/an' = oo, since, by (1), the reciprocals of the omitted a's con-

' Added in proof. A similar result is to be found in [2 ] .
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verges .
Set A(x) _ E ,<s 1 . Denote by ki <k2 < • • • the integers for

which

(2)

	

tk i = A'(2 k ' +1) - A'(2 k`) ? 2k`/k?.

By (2), if m k i then A 1(2m+i) =A'(2m)
By Lemma 3 there are at least (tk,)/10 integers in (2k ;+i' 2k :+ 2 ) all

of whose prime factors are less than 2 (ki+ 1%1 2 . Denote such a set of
integers by b(') <b(' )

2

	

91<

	

<0 where q; is, say, the first integer
larger thant;,;/10. Clearly

E 1/bt` ) > (1/40) E 1/¢j (2 k ' < aj < 2k ` -{- 1) .
r-1

Thus from E1/a; _ oo we have

(3)

	

1/bts ~ _ ~ .
:=1 r=1

Clearly 0) <0" ) ; thus all the b's can be written in an increasing
sequence D : d1 <d 2 <
Now let act/v1, u2/v2, be a well-ordering of the positive ra-

tionale . Suppose we have already constructed b i <b2< • • • <b,, so
that a. < b;, 1 Si <_ m„ and that acr/vr , 1 <_ r < n, are the sums of re-
ciprocals of distinct b's . Choose

(4)

	

2ki > max{ v,,, b,,,,,, a'm„ + 1 }

and let di;+, <di;+2 < • • • be the d's greater than 2ki+ 1 By (3) and
(4) there is an s ;>j i such that

(5)

By (5)

(6)

	

0 < u„/v„ - E 1/dr = Cn/D„ < 1/d,
is+1

Let x be the integer such that 21<d., :-52x+1 ; then x = k$+, for some
s >=i (by definition of the d's) . Since, by definition, all the prime fac-
tors of dr , ji <-r < qi are less than 2(x+')I2 we have

(7) D++

		

u„[dis+h dis+2,

	

, d]< v.(21+1) 2 (' + 1)12 <2x(2x+')2 (x+1)h<22x 13
-<

	

s,

for x>xo.

ai

		

1+si
1/dr <

r=i ,+1

	

r=i{+1
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Now

(8)

	

Cn = 1 + • • • +-,

	

f < C* log D„ < C22Z13
D,t

	

Y1

	

Yf

with, clearly, d, i < yl < . . . < yf (by [3 ]) .
Define

b,,,,, +t = d, i+t

	

for t = 1, . . . , si - j i,

bmr+siü+t , = Yt,

	

for 1 _< t1 S f.

By (8) the b's are distinct. Clearly b,,,,,+t>am„+t for t=1, • • • , si-ji
since b.,,+t=d;i+t, and the d's are greater than the corresponding
a"s, which in turn are greater than the a's . By (8) the y's do not
change the situation . Their number is at most C2 2 z1 3 . But by (2)
there are at least

2k'/k, > 2x-1/x 2 ,

	

x = k, + 1

a, 's in (2 kg, 2k ,+1 ) and by definition to more than half of them there
does not correspond any di ; thus to those a ; 's to which no d corre-
sponds we can make correspond the f <C2 2 i1 3 y's since clearly
C2 2x,13 <2 z-1/X 2 ' if X> X0 .

The proof is then completed as for Theorem 1 . Note that each bi is
used in the representation of only one rational number .

Theorem 4 is a best possible result since if Ei _' 1 1/ah < oo the con-
clusion could not possibly hold .

In the next theorem y is Euler's constant .

THEOREM 5 . lim„_ f(n)en = e y .

PROOF . Define g(n) by

1

	

1

	

1

	

1

	

1

	

1

	

1
+-+ . . .+

	

<n<-+--i- . . .+

	

+	 - .
1

	

2

	

g(n)

	

1

	

2

	

g(11)

	

g(n) + 1

Then n-

	

1/i is a rational number less than 1 which we de-
note a„ and which can be expressed in the form

a„ _
A

[1 , 2 , . . . , g(n)]

for some integer A .
Now, 0 <u/v < 1 can be represented as the sum of less than

c log v

log log v
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distinct unit fractions [3 ] .
Thus a„ is the sum of fewer than

c log [1, 2, • • • , g(n)]

log log [1, 2, • • • , g(n) ]

unit fractions (each less than 1/g(n)) . The expression
log [1, 2, • • • , g(n) ] is asymptotic to g(n) [4, p. 362] . Thus for
large n, a„ is the sum of fewer than

cg(n)

log g(n)

distinct unit fractions .
Hence

Thus

g(n) < f(n) < g(n) + Cg(n)
log g(n)

lim f(n)/g(n) = 1 .
n-

with lim n-. e n =0 and lim n ,, a„=0, it follows that g(n) is asymptotic
to enlr.

This proves Theorem 5 .
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From the equation

1 1 1
n = 1 + 2 +

. . . +
g(n)

+ an = log g(n) + en + an + ,y
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