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THE HAUSDORFF MEASURE OF THE INTERSECTION OF SETS
OF POSITIVE LEBESGUE MEASURE

P. ERDÖS mid S . J. TAYLOR

Erdős, Kestelman and Rogers [1] showed that, if A j , A,_ . is any
sequence of Lebesgue measurable subsets of the unit interval [0, l] each
of Lebesguo measure at least q > 0, then there is a subsequence fAj

(i= 1 . 2, . . .) such that the intersection n A, contains a perfect subset
i=1

(and is therefore of power 2No) . They asked for what Hausdorff measure
functions (k(i) is it possible to choose the subsequence to make the inter-
section set (1 A„,, of positive -measure . In the present note We show that
the strongest possible result in this direction is true . This is given by
the following; theorem .

THEOREM . Suppose c (t) is continuous, monotonic -increasing in t and
such that lira 0(t) = 0, lira t-1~(t) _ =oc) . Given any sequence A 1 , Az, . . .

t-*u+

	

t--~o -
of Lebesgue measurable subsets of [0, l] satisfying Jim sup A„ I > 0, there

n-9x
is a subsequence {A .,,j such that

i=1

It is easy to show that the conclusion of the theorem is valid for the
special sequence ft (l } of Rademacher sots, where h r is the set of real
numbers of the form

a 1 2-1 + a22-2+ . . .+a,,2-111 . . .

With a 1 = 0 and a.t = 0 or 1 for i q . The reason -why this particular
sequence of sots easily yields a subsequence with the required property is
that, in a certain obvious sense, the sequence {h « } is "asymptotically
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uniformly spread " in [0, l] . lire cannot assume this property of a general
sequence A,,j . but the first and vital step of the proof consists in showing
that there must be a subset Q-- [0, l] and a subsequence {A ny } which is
asymptotically spread with positive minimum density throughout Q .
This result is formalised in the following lemma, for which we need a
definition .

DEFINITION . If t, q core positive integers with q < 2 1 , the closed interval
[(q-l) 2-1 , q2 -1 ] is called a dyadic interval of order t . Any subset E_ [0, l]
which can be expressed as a finite union of dyadic intervals of order t is called
a subset of order t .

LEMMA . Given a sequence {A kj of i measurable subsets of Io = [0, 1 ]
such that I Ak > > 0 for all k, there exists a sequence I o h . . . In . . .
such that In is a dyadic subset of order n, and a subsequence {A k j such that
for all integers r > n,

(1 ) I A kr^ ( I O-I n)Í <-2 ?ÍI I0-Ini,

	

( l )

(ü) If J is a dyadic interval of order n contained in I n ,

I A krr, J j > 21711 J I ;

	

(2 )
(iii) I In^A kr > (2,1) 2 •

	

( 3)

Further, if Q = n i., then
n=0

I Q > 2-1 •

	

( 4 )

Proof. It is clear that I A k~ ^ Io ! > ri
I IoI

for all k, so that (2) and (3)
will be satisfied with n = 0 whatever subsequence we choose . Bisect I 0

into two dyadic intervals of order l . Then there are two possibilities :

(i) There may be an infinite sequence of integers such that

IAr^J >177IJI

	

(5)

for both the dyadic intervals J of order 1 . In this case we put 1, = 1 0 ,

and denote by A, the set of integers k satisfying (5) .

(ü) If such a sequence cannot be found, then for (at least) one of the
subintervals J l -lo , there must be an infinite set of integers for which

~Akr'Jll <211 J1I •

	

(6)
1n this case we put h = J, (the other dyadic interval of order l) and
denote by Al the set of integers k satisfying (6) . Since I A 4 ,1 > -q for all k,
we must have Ak^J2I > 2 7

1 J2I > >'1 IJ2I for kcAl .
Thus in either case we obtain a set h and a sequence Al such that

(5) is satisfied for all the dyadic intervals J-I1 of order l . We proceed
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by induction . Suppose we have already defiled a dyadic set In of order n
and a subsequence A.,, such that, for kcA,,,

I Akn(I0-In)I <2711(7)

and (5) is satisfied for all the dyadic intervals J - I,,, of order n . By
bisecting each of these intervals we can express I„ as a union of dyadic
intervals of order (n+l) . Then there may be a subsequence A,,-, <--A,,
such that (5) is satisfied for all dyadic intervals J-I„ of order (n-} l) .
In this case define 1,,, +i = 1,,, . If this is not true, then by repeating the
operation of taking a subsequence a finite number of times we can obtain
a subsequence ,,+I -An and a dyadic subset such that (5) is
satisfied for all the dyadic intervals, J - I,z+I of order (n+ l ), while the
other dyadic intervals J satisfy

A knJI<2~1JI

for all ke_ ,,+, . In either case we have obtained a dyadic subset In , In
and a subsequence A,,. 1 _ 1 cAn with the desired properties .

By induction we may suppose that In, A.,,, have been obtained for all
positive integers n . Now let A = {kn } be defined by taking, for Icl , the
first integer in A,, and for k;,,+i, the first integer in A,,+, which is greater than
IC n ()& = l , 2 . . . . ) . It is clear that this sequence A satisfies conditions
(l) and (2) .

It follows from (7) that, for kEA,,,

ln l % Iv.nAk >ai-zri IO-InÍ = 2~9+2711 In .
Hence

In > 12 I	> 2YJ, n = l, 2, . . .,

	

( 8 )
2 _q

and this immediately= implies (4) .

	

'e can obtain (3) by applying (2)
to (8), since k r cA,, for all r >, n . This completes the proof of the lemma .

We are now in a position to tackle the measure properties of the inter-
section sets. We will obtain a subsequence A' -A such that if E = fl A k ,

k - A'

then the set En Q has infinite 0-measure . The essential idea of the proof
is to define a set function F which is determined for all Borel subsets of
[0, l] and which is concentrated on EnQ, that is

F(B)=F(BnEnQ) for all Borel B-_[0, l] ;

F(I,) = F(EnQ) > 0 ;

but such that max {2'' .F(J)} over all dyadic intervals of order n grows
slowly as n increases . We are here really- using the concept of local
0-density of F at points of I o , studied extensively in [3], but it turns out
to be easier to formulate our proof independently of [3] . The set function
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F will be obtained as a limit of a sequence of set functions defined
inductively .

Proof of in main theorem. There is no loss in generality in assuming that
A l . > 0 . for all integers k , and that the sets A L. are all closed . We
first apply the lemma to obtain a sequence {I„ } of dyadic sets and a sub-
sequence A = {k;,,} satisfying all the conditions (l), (2), (3) . Since pro
can define a continuous Vi (t) such that lim 0 (t) = 0, lim 0(t)IO (t) = 0,

coo+

	

r- >- o
lim t-i0(t)=+oo and t-i0 (t) is monotonic for small t (an equivalenttwo-
result was proved in [2]), there is also no loss in generality in assuming
that t-1~(t) is monotonic for small positive t . Under these conditions it
follokws from the method of Bosicovitch [4] that it is sufficient to show that
the dyadic restricted 0-measure of the intersection set is infinite . Thus it
will be enough to show that if

U i, i ::) E= n A4,
i=1

	

kEA'

whore each Jr, i is a dyadic interval of order at least r, then

Y ( Jr, i) iAr, k --~'C'O as r-->. cc .

	

( 9)
i=1

Our aim is to choose A' so that (J) is established .
Suppose 0 < E < 1I0 . Since {Ij is monotonic we can choose a sequence

{t,.} of integers such that

1I,- Q i <
E

)r
{ a,,}r+1

d, (x, Ei) _ 1 J,(x)nE, i . 21

for all t > tr . Because t-i 0 (t) -> +oo as t 0+, we may assume that
{tr} also increases fast enough to ensure

(2-1 ) > r2-z{3,qÍ-''_i

	

(11)
for all t > t r .

Now put ri = t i and n, = krl so that n j eA j, ; and let

El = A,, ~ n Ill

By (3) we know that I Ei

	

Define a set function Fi which is
concentrated on E l by

FI(B)=F,(BnEl)= I ÍnEj!

	

(12)

for all Borel sets B - [0, 1] .
For each integer 1, each point xE [0, l] define



where J, (x) is the dyadic interval of order l which contains x [ifx is a point
of the form 1 .2 -1 then take the dyadic interval which has x as its left-hand
end point for J,(x)] . By the Lebesgue density theorem it follows that,
for almost all x e EI ,

d, (x, E,) -->-I as I-* oo .
If we now apply Egoroff's theorem (a similar argument was used in [5])
to the sequence irlz (x, El )} of measurable functions we can obtain a set
Bl EI and a positive integer 11 such that

d,(x, El) >
l-

j-l
for x c BI and all l > , and in addition

El- Bl

	

2EZ3 yÍJ 2 E ll'

	

( 13 )

This implies that, if J is any dyadic interval of order at least I I which con-
tains a point of Bl , then

JnEll > (' --61-9)1 Jl •

	

(14)

Now choose "' 2 = max (t 2 , 11), n; = k,.,, and let Cl be the union of all
the dyadic intervals J of order r2 whose intersection With B l is not void .
Let

D I = C InA„ I n l,2
Since Ifl ---I,. -I, ,--Q and C I-BI , it follows from (10) and (13) that

so that, by (12),

F, (D,) > (l- E) F, (E,) = 1 E .

Notice further that for any dyadic interval J, (12) and (3) imply that
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1 E,-DI l E,-BI I+ I Ifl-Q I < E Ej !,

F,(J) = F,(JnE,) _< (1,»-2
We now proceed by induction . Suppose 'zI, 762, . . ., n•q have been

chosen with ni = kr{ , ri > ti, and dyadic sets Cl , C 2 , . . .,CI q , where Ci is
of order ,ri LI, have been obtained such that

q

	

q

	

4-l
(i) if E, = n .4,,,,, n i,,,, n Ci , then

i=l

	

i=l

	

i=l

J~

	

(,~)-21JI .

JnE,2 I > (1-jai)lJI

	

(15)

for every dyadic interval J of order r,+, in 0,1 ;

(ii) l E q-C,1 1 < 2q (37j)"+II Eql ;

	

(1F)

(iii) there is a set function Fq concentrated on Eq such that

F,1 (I,) - Fq(Eq) > l- 2E - E

	

E . . . -E2_q 2 > I ,

	

( 17 )
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and

Fq (Eg nJ) = F, (J) C (;r1)-q-li J

	

(13)

for every dyadic interval J ;

(iv) if J is any dyadic interval of order rq , then, inside J, Fq is distri-
buted according to the Lebesgue measure of the intersection with JnEq ,
i .e .

Fq(l'n
J) TnJnEq

JnEq

for any Borel set T .
Notice that w-e have already shown that the conditions (i)-(iv) are

satisfied for q = l .
Now put 7ó q ,_ 1 = k,., + , and define

q+1 = G qn I,Q+ ~ n~ 9zQ+ ~,~ Eq .

By (15) and (2) it follows that

JnEq+1 1 i 31~

F,(J),

	

(19)

J I

	

(20)

for each dyadic interval J of order rq+1 in Cq n I , ,+, •
We first define the set function Fq+, for the dyadic intervals of orders

rq+i by
F,,-,-, (J) = F q(JnC,1 n1,,_ 1 ) .

Inside each dyadic interval J of order rq-1 we redistribute the mass
Fq_ 1 (J) on the set Eq _,nJ according to the Lebesgue measure . This is
possible because, by (20) . Eq_ 1 n :J has positive Lebesgue measure I,.Q+ ,
for each J in C g nl, ,+ , . Thus, for any Borel set T, and any dyadic interval
J of order rq-l in C q n I,, _ i ,

TnJnE
Fq+1(TnJ) =	JnEq+1+ 1 F

q+1 (J) .

Since both sides of this equation are zero if J is not in C gnI,Q+ ,, we see
that (19) is satisfied With q replaced by (q=l) .

UsIng (18), (16) and (l0), and noting that Irq Ir +I Iry-Q, We
obtain

Fq 1 (Ia) = F,(Egn(--'gnI,,+,)

i F,(Eq)-Fq(Eq-C,)-Fq(I,,-Q)

Fq(Frq)-E2-4_1

so that (17) is also satisfied With q replaced by (q-}-l) .
Now if J' is a dyadic interval contained in a dyadic interval J of order

rg+i in C,,n I,, we have
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Fq+1(E,,+,nX)=Fq+,(J,)= J nEq"I Fq(JnC,]nI,' ,)J nEq+1
I J'

l	 	

(I

	

'V7 )-q-2
~ J nEq+1

1

on, applying (18) and (20) . On the other hand if J' is a dyadic interval
of order not more than r,. 1 we have

Fq+1(J') ~ F,(J') .

It follOws that ('18) is satisfied with q replaced by (q+ 1) .
Since the set Eq+1 still has positive measure [one can actually prove

that I Eq ~ 1 1 > (3 )q12], we can again apply the Lebesgue density theorem,
and Egoroff's theorem to obtain a subset Bq+t E, ., and an integer lq ,_,
such that if J is any dyadic interval of order at least 1 q_, which contains
a point of Bq+„ then

and
JnEq+ 1 i ( l- i )1J

E

	

,

	

9
Eq-1 _ Bq-1 I

	

9q+1 (3 YÍ ) q Eq+1 1

Put rq* 2 =max (tq+,, l,'1)7 and lot Cq+, be the union of those dyadic
intervals of order r q 2 which have a non-void intersection with Bq+ , .

Thus we have succeeded in extending all our conditions from q to (q+,])
and, by induction, we obtain the sequence A' _ ,nj c A satisfying the
conditions (15)-(20) .

Now put E = n A,, . By our construction

R= n Eq-EnQ-E.
q=1

so that it is sufficient to show that ~-m(R) _ +oc . It can be shown
that F(B) =1im F,, (B) exists for each Borel set B(-- [0, l] and defines

a pleasure concentrated on R. Further, (17) will imply that F(JO ) > ,
and it can be shown that the upper ~-density of F is zero a t each point :
of I o . From this our conclusion would follow- by [3] . However, w-e do
not prove these statements as the details are somewhat complicated, and
it is possible to complete our proof using the set functions Fq .

Suppose then that (9) is false, and there is a constant Ií such that

for every integer s there is a covering U J, i R by dyadic intervals
-1

J 9 .á of orders zc.ti > r, such that

x
(->-2E,)

	

K.

	

(21)
=1
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Let {-z i be a sequence of positive integers with v i > r s such that

< 1 .

	

(22)

For each integer i,, let J,,, i . J ;' i by dyadic intervals of order v i contiguous
to J,, i ( one at each end) . If L,, i denotes the interior of J, , iv Js, iv Js'i
it is clear that the open intervals L, ' ., (i = l, 2, . . .) cover the compact
set R. Hence there is a finite set

	

of integers such that R U Ls, i .
SE .1

Let Hi , H 2 , . . . . Hz denote the dyadic intervals J,, i . Jr, i , Js' i for i E3.
For each i with 1 < i- < l choose qi so that the order w i of the dyadic
interval Hi satisfies

r, < w i < r,, a+i .

Then provided m = m, is sufficiently large

rs < rya < wi < r, ;+i --

	

1 < i < l .

	

(23)

Then by (21) and (22) we have
1

ú ~(2-w,) -,, K+2,

	

(74 )

and, by (11) since wi > rl . > t ., it follows that

Qy1) - "i-, 2-wt < 10(2 u
') < S 0(2 u`)

	

( 2 5)

Since R is contained in the open set U L s , i and R is the intersection
i=_j

of the decreasing sequence E l , E2 , . . . of compact sets, we have Em - U L s , i

for all sufficiently large m, . Ale now suppose that ?n is large enough to
satisfy this condition as well as (25) .

For any dyadic interval J of order u, F,s (J) is monotone decreasing
in q provided r, > u since FI+1 is obtained from Fq by first concentrating
it on a subset and then redistributing the result inside J . Hence for
any dyadic interval J of order a we have, by (18)

F.,, (J) < F,(J) <

	

I JI,
provided 2c < r, < r„ t . It follows now from (24) and (25) that

Frra(1o) _ F . .(E,,,) = F„. ~ U Hil <

	

F,n(Hi)
2=1

	

i=1

1

	

1

	

1

1< =lL~
{
1'J1-20

Zs-u
< (3~7)-14

	

~(2-w')

(3~t) (K 2) . s .

Since s is an arbitrary integer this contradicts F,n (1 0 ) > 2, when s is large
enough . This contradiction establishes our theorem .
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Remark . We have made no attempt to choose best possible constants
at any point of the proof. If one takes care with these and adapts the
ideas used in [1], the following apparently stronger version of our theorem
can be proved.

THEOREM . Suppose ~(t) satisfies the conditions of the previous theorem
and A 1, A 2 , . . . is a sequence of Lebesgue measurable subsets of [0, 1] with
lim sup IAr I >, 71 > 0 . Then there is a Borel set S with I S I > 71 and a
sequence q l < q 2 < . . . such that if

E = u n A9r
i--l r?i

and I is any interval for which I n S is not void, then the 0-measure of I n E
is non-Q finite .

We would like to express our thanks to a referee who suggested some
improvements in our original argument .
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