
A PROBLEM ON TOURNAMENTS
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(received November 14, 1963)

By a tournament we mean the outcome of a round-robin
tournament in which there are no draws . Such a tournament
may be represented by a graph in which the n players are
represented by vertices labelled 1, 2, . . . , n, and the outcomes
of the games are represented by directed edges so that every
pair of vertices is joined by one directed edge . We call such
a graph a complete directed graph . One can also represent
such a tournament by an nXn matrix T = (t .,) in which t
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ij
is 1 if i beats j, and 0 otherwise, so that T is a (0, 1)
matrix with t .. + t„ = 1 for i / j and (by definition) t . . = 0 .
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In the summer of 1962 K. Schűtte asked P . Erdös
the following question : Does there exist for every k, a
complete directed graph such that for every k vertices
x1 , x2 , . . . , xk there is one vertex y such that the edges

(xiy), i = 1, 2, . . . , k, are all directed away from y ? Erdös [1]

proved that, provided n > (log 2 + s ) k2 2 k (E a positive
constant which can be taken arbitrarily close to 0 if k is
large enough), there do exist complete directed graphs with
this property . He also proved that such graphs do not exist

with n < 2 k+1 - 1 . It is not obvious, and as far as we know
it has never been proved, that if such graphs exist for a given
n then they must also exist for every m > n .

At the seminar of the Canadian Mathematical Congress
in Saskatoon in August, 1963, H. Ryser asked the following :
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Is it true that in every tournament matrix, there is a set of 4
or fewer columns, such that every row has at least one 1 in
at least one of these columns . L. Moser showed that the
answer is no and in fact showed that for every large n, there
are tournament matrices in which for every set of
[log2n - 2log 2 log 2n] columns there is some row which has no

1 in any of these columns . He also showed that there does
exist, in every nXn tournament matrix, [log 2 (n+1)] columns

such that every row has a 1 in at least one of these columns .
He further observed that for n > n (k, I ) there are n Xn

0
tournament matrices in which for every k columns there are
i rows such that the kX1 submatrix determined by these
columns and rows consists entirely of zeros . It is easy to see
that our results, which were obtained independently, are closely
related . By our methods we can obtain, almost without any
essentially new ideas, somewhat stronger results .

Consider a tournament on n players 1, 2, . . . , n .

	

Pick
k of them, say x1 , x2 , . . . , xk . Clearly one of the other

kplayers, y, can obtain 2 different sets of results with the
players x 1 , x2 , . . . , xk . Now we prove

THEOREM 1 . Let n > (log 2 + e ) k2 2k . Then there
exists a positive a = a(E ) so that for each f < k and every

choice of I players x1 , x2 , . . . , xQ , each of the 2 k classes

in which the remaining n-Q players are divided (two players
are in the same class if they perform in an identical way against

the players x , x
21

, . . . , x
A

) contains more than an/22 players,
()/2for all but o(2 n n

	

) of the tournaments .

By a slightly more complicated calculation we can prove

THEOREM 2 . For every i > 0 there is a c 1 = c 1 (i1)

such that for n > c 1k
2 2 k and any Q < k players x 1 , x2

	

xI ,

each of the 2 1 classes contains (1 + 5)n/2

	

players, where

b I < q, for all but o(2n(n- 1) / 2 ) tournaments .
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Theorem 2 can also be stated as follows . For every
'1 > 0 there is a c 2 = c 2 (-q) such that in almost all tournaments

on n players, for every set of A players x 1 , x2 , . . . , xf ,

each of the 2~ classes will contain (1+b)n/2 1 players,
b I < q, provided Q < log 2n - 2log2 (log 2 n) - c 2 .

Proof of theorem 1 . The total number of tournaments
n(n-1)/2of n players is 2

	

Thus it will suffice to show that
the number of tournaments which do not satisfy the conditions

of theorem 1 is o(2 n(n- 1) / 2 ) . Further, a simple argument
shows that it will suffice to prove the theorem for Q = k .

The k players x 1 , x2 , . . . , xk can be chosen in (k) ways

and, as already stated, there are 2 k classes into which the
remaining n-k players are decomposed . Let us fix our
attention on a particular set of k players x 1 , x2 , . . . , xk

and a particular class (i . e . , y is a member of the class if
he wins against a fixed subset of the x' s and loses against
the complementary subset) . Let us determine an upper bound
for the number R(t) of tournaments in which our class contains
exactly t players .

First of all, only the games between x 1 , x2, . . . , xk

and the remaining n-k players are restricted by our conditions

so we have (n)-k(n-k) unrestricted games and these yield for
2 2I-k(n-k)R(t) a factor 2

	

. Next, the t players may be chosen

from the n-k players in' nt k ) ways, and for the games

between the t players and x 1 , x2 , . . . , x
k the outcomes are

determined . Finally, the games between x1 , x2 , . . . , xk

and any one of the remaining n-k-t players can go in 2 k _ 1
ways, since the only excluded case is if such a player is in the
given class with respect to x1 , x2 , . . . , xk .

	

Hence

1 ~)-k(n-k) n-kI k

	

n-k-t(1)

	

R(t) < 2

	

( t 1 (2 - 1)
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Since we are assuming t < [an/2 k] = L , and since the k players

can be chosen in (
kI

ways and there are 2 k classes, the total

number of tournaments S which do not satisfy the conditions of
theorem 1 fulfills the inequality

L
(2)

	

S < ( k ) 2 k

	

E R(t)
t=0

To obtain an upper bound for S we note first that for k large,

(k) 2k < nk and that in the range 0 < t < L, R(t) is increasing

with t . Hence using (1) and (2) we obtain

n n- L
(3)

	

S < nk (L+1) 2 2 (LI(1

	

1k I

	

2-kL
,

2

and n

(4)

	

S< nk+1 2( 2 [n j

	

2-kL(LI

Our theorem will be established if we can show that
S = o(2n(n-1) /2) or

(5)

n- L

k+1
(
n 2-kL -~2 k•

	

LI e =o(1)

Now, note that (LI2 -kL < (ne/L2k) L < (e/a) L so we must still

prove only

(6)

From

n- L

k+1 e L

	

2k 1
•

	

(aI e =o(1)

•

	

> (log 2 + s )k2 2 k
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we find

and

(7)

where c 1 and E 2 are positive numbers depending on E .

Taking logarithm of the left hand side of (6) and using (7) it is
seen that it only remains to prove that

(8)

	

ZkL
- L(1 - log a) - (1 - E 2 ) 2k

Since L =na/2k and a(l - log a) - 0 as a -- 0 the required
result follows .

We suppress the proof of theorem 2 since it is similar
to that of theorem 1 .

By the method used in the proof of theorem 1 we can also
prove

THEOREM 3. Let c <-,, n > no(E , k) . Consider all
2-Eincomplete tournaments on n players who play [n ] games .

The number of tournaments is n(n- 1) / 22-E
I

	

Almost all of
{n

these tournaments contain, for each k players, at least one

player in each of the 2 k classes .

Theorem 3 is not very far from being best possible since

if the number of games is cn 2-1/k then we can show that for
almost all tournaments there are k players for which there is
no player who plays with all of them .

We conclude with two problems :

n 	> (1+E )k2klog n

	

1

(k + 1) log n < nk (1 -. E 2 ) ,
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Problem 1 . What is the minimum number of edges in a
graph of n vertices so that it can be directed in such a way
that to any k vertices x 1 , x2 , . . . . xk there is a vertex y

such that all edges (x ., y), i = 1, 2, . . . , k are directed from
1

xi to y ? Of course we must assume here that n is large

enough that some complete directed graph has the required
property.

Problem 2 . Let n > k . What is the smallest number
E(n ;k) for which there is an ordinary graph of n vertices and
E edges in which for every set of k vertices, there is some
vertex, joined to each of these k .

We have solved this problem and hope to return to it .
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