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1 . Introduction. At successive stages in the development of the proof
of the prime number theorem several authors have investigated the rela-
tion

2

n=1

or the same relation with a stronger error term, and deduced from it,
under various supplementary conditions on f (x), that

(1)

	

f(x) = x+o(x) .

The problem is discussed explicitly by Landau ([7], pp . 597-604 ; [8]),
Ingham ([3]), Karamata ([5], [6]), Gordon ([1]), and is implicit in the
'Eratosthenian' summation method introduced by Wintner ([10], [11]) .

In this paper we consider the analogous problem in which the se-
quence {n} of all positive integers is replaced by a finite or infinite sequence
1, a,, a2, . . . of real numbers for which

1
1<a,<a2< . . . . A=~,-< 00.

an

Initially f (x) is supposed defined for all x > 1, but for formal convenience
we extend its definition by putting f (x) = 0 when x < 1 . We may then
write our basic hypothesis in the form

(2)

	

f(x) + ~ f (a) = (1+

	

an) x+o(x),n

or in the equivalent form

(2)0

	

.f0 (x) + V f. (a) = Ow,
n

X + bx+o (x) (x > oo),
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where
A(x) = f(x)-x (x > 1),

0

	

(x < 1) .

The summations in (2) and (2) o are over all an , but are equivalent for our
purpose to summations over the range a.,, z x, since any errors arising
from the change can be absorbed into o (x) . This follows from our assumption
A < oo, which implies, when {an} is infinite (the only non-trivial case),
that

an ->- oo as n -> oo,

	

I la,, -, 0 as x -* oo.
an>x

Our aim is to deduce (1) from (2) (or (2) a ) under appropriate supplemen-
tary conditions on {an} and f (x) .

The conditions on f (x) will be stated in terms of membership of
certain classes . We denote by ' the class of complex-valued functions
f (x) defined and bounded in every bounded interval and equal to 0 for
x < 1 ; by _4 the subclass of le for which f (x) is real ; by . the subclass
of GB for which f (x) > 0 ; and by 5 the subclass of 9 for which f (x) is non-
decreasing .

We shall use elementary methods where possible, but in order to re-
veal the `natural' condition on {a n} we shall ultimately resort to analy-
tical methods based on Wiener's general Tauberian theory .

2. An Abelian lemma. To avoid needless repetition we formulate
an Abelian, or `averaging', principle in a form suitable for a variety of
applications .

LEMMA. Suppose that g(x)EM, and let

9 * (x) _ ~ 9 x
an ,

g = lim (g(x)/x), G = lim(9(x)/x),

with similar meanings for g* and G* (where any of g, G, g*, G* may
be finite, + oo or - oo) . Then

Ag ~ g* < G* < AG.

Suppose the lim inequality false and take a number H so that
G* > AH > AG. Since G < H, we have

g(u) < Hu for

	

a > _ (H) (> 1),
and so, for x > ~,

9 ()
2:

Hx +
7,

Kx
u

an<xlg a'b

	

an>xls an
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where K = K (~) is the upper bound of g(u)/u for 1 < u < $ . Dividing

by x and taking lim (with H, $ fixed), we obtain G* < AH + 0, con-
trary to the choice of H. The lim inequality may be proved similarly, or

deduced by applying the lim result to - g (x) .
We shall apply the Lemma with obviously permissible modifications .

Clearly we may replace {a,,} by other sets with similar properties . Also
g* and G* may be taken to relate to a restricted passage of x to oo, pro-
vided that g and G still relate to the unrestricted passage .

3. Elementary methods . These seem to be effective in general only
when A < 1 .

THEOREM 1 . (i) If A < 1 and fEle, then (2) implies (1) .
(ii) If A = 1 and fE M, then (2) implies that

lim(f (X) /X) = 1 ±e (0 < c < oo) .

By taking real and imaginary parts we may suppose, in (i), that
fE? . Take g(x) = f, (x) and use the notation of the Lemma . The relation
(2) o is equivalent to

(3)

	

-g(x) = g* (x) + c(x)-

Dividing by x and taking lim and lim, we obtain

-g = G*, -G = g* .
Also, by the Lemma,

Ag < g* < G* < AG .

Combining these results, we deduce that

(4)

	

-g = G* < AG = -Ag* < -A 2g .

If (i) A < 1, then, assuming provisionally that g is finite, we con-
clude that (1-A')g > 0, g > 0, and thence that AG < 0, G < 0 . If
(ii) A = 1, the extreme members in (4) are equal, so therefore are all. Since
g < G, it follows that g = G = 0 in (i), and that -g = G = c > 0 in (ii) .

It remains to justify the provisional assumption, in (i), that g is
finite. Let y(x) be the upper bound of Ig(u)I /u for 1 < u < x . By the
definition of 9 this is finite for each x (1 < x < oo) ; and, by using,
first the definition of g* (u), and then the relation (3) (with u in place of x),
we obtain, for 1 < i < x,

Ig*(u)I/u < Ay (x),

	

Ig(u)I /u < AY(x)+K,
where K is a (finite) constant . Taking the upper bound for 1 < et < x
in the last relation, we deduce that

Y(x) < AY(x)+K,
	 fig( )I c ,(x)

< 1 hA'
for .x > 1 ; whence g and G are finite .
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To make further progress when A = 1 we impose heavier restrictions
on f (x) .

THEOREM 2. Suppose that A = 1, that fEJ, and that (2) holds. Then
(1) holds unless a,, = am (n = 1, 2, . . .) for some fixed a > 1 and odd in-
tegers r,,, . In this case (1) need not hold .

Since f E9, we have the conclusion of Theorem 1 (ii) with 0 < e < 1 .
We assume that e > 0, and try to obtain a contradiction .

Let x -->- oo through a set X of values for which

(5)

	

f(x) _ ( 1+c)x+o(x) .
Then, for every fixed i,

( 6 )

	

f (x) _ (1-c)
x +o(x) .

a2

	

a,

For under this limit process we have, by the Lemma (with the modi-
fications indicated at the end of § 2),

fo(x) + 2:fo(a) >
ex
+ (1-a2) (-cx)+f0(a) -+- o(x),

and so, by (2)0f

ff (x) < - e x + o (x) ;a

	

ai

and since the opposite inequality obviously holds we have the equiva-
lent of (6) .

A similar result holds with e changed to - c in (5) and (6) . Applying
these results alternately, replacing x successively by x/a etc., we con-
clude that, if q is any fixed product of r (equal or distinct) a's, then

(7)

	

f( q) _ (1+(-1)re)4 +o(x)

when x -- oo through a set X for which (5) holds .
Suppose first that there are two a's say ai, and a;, for which logai

and log a; are linearly independent (over the rationals), i .e . such that
au 7A a; for any integers u, v > 0 . Then for every e > 0 there are posi-
tive integers k and l such that

(8)

	

a 1 + 1 < a ;k < ( 1+e)aLi+' .

For this is equivalent to

and

k- 1a- 1 6 < la < k- la2

	

2
(a

logai

	

log(1+e) )

loga;'
6

	

logs;

	

'

since a is irrational it follows from Kronecker's theorem that the
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numbers la (1 = 1, 2, . . .) are everywhere dense (mod 1), so that there
will be one in the above interval for a suitable integer k (>a> 0) .
Taking q = ati l+ 1 and q = a k in (7) and combining with (8), we conclude
that

ax 1 > a2k' f` ax1) <f(ak)'
z

	

,

	

i

if s > 0 is taken so small that (1 + s) (1- c) < (1 + c) and x is taken
sufficiently large in X . But this contradicts the hypothesis that f EJ.

Next suppose that no two loga,, are linearly independent . Then
a;n = aZn (n = 1, 2, . . .), where un and vn are positive integers with
(un , vn ) = 1 . Moreover, it, and vn are both odd. For, if not, they are of
opposite parity (since they cannot both be even), and by taking q
= a~n = av in (7) we obtain the obvious contradiction that f (x/q)
< f(x/q) for sufficiently large x in X .

If the odd integers vn, are bounded (in particular if the number of
a's is finite), let M be their least common multiple, and let a = a'/M > 1.
Then an = arn, where rn is the odd integer un (M/vn) ; and we are in the
special case described in the enunciation .

If the vn are unbounded, it is enough to show that, for every s > 0,
we have a relation (8) with i = 1 and suitable positive integers j, k, 1 ;
for this will lead to a contradiction as before . To obtain such a relation
(8), take a fixed n, say n = j, and choose positive integers k, 1 (= k;, l;)
so that

2ku;-21v, = v;+1 ;

this is possible since (u;, v;) = 1 and v;+1 is even. Then

a,2k/a2l}1 = a 1/vi
1

	

1

	

'

and this can be made to lie between 1 and 1 + s by choice of j since the
vn are unbounded .

To complete the proof of Theorem 2 we now construct a counter-
example for the special case, though the motive behind the construction
will not emerge until § 5. Take a fixed t > 0 so that t log a is an odd
multiple of 7r, then a fixed b > 0 so that b'(1 + t2 ) < 1 . Let

x+bxcos(tlogx)

	

(x > 1),
f(x) - 0

	

(x < 1) .

Then f E -O", as may be verified by differentiation. Also

x

	

x

	

x
f

	

- - b-cos(t log x) (an < x),
an

	

an

	

an
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since t log an = On log a is an odd multiple of it . Hence

f(x)+

	

n)
= ( 1+A)x+b(1-A)xcos(tlogx)+o(x) = 2x+o(x),

since A = 1. Thus (2) holds. But (1) does not, since

lim f(x) =1+b .- x

COROLLARY . If the a.n are distinct integers with A < 1, and if f E 5,
then (2) implies (1) .

If A < 1, this follows from Theorem 1 (i) . If A = 1, we have to show
that the exceptional case of Theorem 2 cannot occur. Suppose it does
occur. Then an = arn, where a > 1 and the odd integers rn may be assu-
med to have no common factor greater than 1 . Writing do = (r 1 , . . ., rn),
we have d,,+, I do (n = 1, 2, . . .), so that do must ultimately reach a con-
stant value d, say for n > h ; and d must be 1 since it divides every rn .
Since d1,, = 1, we have, with suitable integers en ,

1 = r l e l + . . .+rh eh ,

	

a = ail . . .aeh .

Hence a is rational, and therefore integral since a" is the integer a, . Thus
a > 2 . Also rn > 2n -1, since the an are distinct. Hence

(9)

A<
1

	

a

	

2
a21 < a2-1 < 3'

contrary to the hypothesis that A = 1 .

4. Special cases with A > t. When special relations exist among the
an it may be possible to use elementary methods even if A > 1 . By way
of illustration we consider a particular class of cases (which could easily
be extended), but we do not attempt to formulate a general rule .

THEOREM 3. Suppose that, for a fixed 2 > 1 and some subset S of
{an}, the numbers A and ).an (an ES) together form a subset T of {an} ; and sup-
pose that

1 + 1

	

1 <1,
vT, an

	

A s, a n

where the summations are over the sets T', S' complementary to T, S in {an} .
Then (2) implies (1) for functions f belonging to ' .

Suppose that fEco and that (2) holds. Subtracting from (2)o the same
relation with x changed to x/A, and cancelling common terms, we obtain

fo( )+

	

0 (x)

	

,f(x ) = 0(x) ;an

	

o Aan



whence

Ifo(x)I

Applying the Lemma to the right hand side, and writing

c = limIfo(x)I

	

(0 < e Goo),x
we deduce that

C _ ac,

where a is the expression on the left of (9) . Since a < 1, it follows that
c = 0 ; for the alternative c = oo may be excluded by the argument
used at the end of the proof of Theorem 1 (since a,, > 1, Aa n > 1, and
a<1) .

EXAMPLE. {an} = {2, 3, 41 . All conditions are satisfied with A = 2,
S = {2}, T = {2, 4}, the condition (9) being

3+3(3+4) < 1 .

But A = 12 > 1, so that Theorems 1 and 2 are not applicable .

5. Analytical methods . We now introduce the complex variable
s = a+ti . We write ao = 1, and to avoid confusion we use I' (instead
of 1) to indicate summation with lower limit 0 (instead of 1) . With {a,, }
we associate the 'zeta-function'

(10)

	

Z(s) = 1+ \ s = Z s (a > 1) .
L~ an

	

an

Since A < oo, the series are absolutely-uniformly convergent for a > 1,
so that Z(s) is regular for a > 1 and continuous for a > 1 . We write

A' = 1+A = Z(1) .

For any h(x) defined for all real x and equal to 0 for x < 1 we write

H(x) =
L.'

h( at ) =
f

h ( a,t ),
a,,, _<x

with a similar notation in other letters . Thus the expressions on the
left of (2) and (2) o will be denoted by F(x) and F0 (x), respectively .

THEOREM 4 . In order that (2) should imply (1) for functions f belong-
ing to 5, it is (S) sufficient, (N) necessary, that Z(s) should not vanish on
the line a = 1 .

Arithmetical Tauberian theorems 347
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Sufficiency. If h E ' and is (bounded and) integrable in every boun-
ded interval, we have, for x > 1,

f H(u) du=

	

du

	

x h (u)du

	

' x h (x)dy
u

	

u =f f an u y y
an

where each E' may be taken over the finite range an < x . Inter-
changing summation and integration again, we obtain

(11)

	

f
Huu)

du = f a(y)h(y)
	 dy

	

(x > 1 ),

where

a(y) = f 1 .
an -<v

We make two choices of h .

(i)

where a > 1 . Then

as u --> oo
x --> oo, we obtain

00

(12)

	

Zss)

	

f
y(y)

dy

	

(a' > 1)
I

	

8+1

The argument proves convergence of the integral ; and, since this holds
for s = 1 and since a (y) > 0, the integral must in fact be absolutely-
uniformly convergent for a > 1 . The representation (12) may, of course,
be derived directly from (10) by the familiar process of replacing a sum
by an integral, since (as a consequence of the condition A < oo)
a(x) = o(x) as x -- oo .

(ii) h = f, where it is assumed that f Ef (and is therefore bounded
and integrable in every bounded interval) and that (2) holds . By (2),

F(u) = A'u+o(u) as u --* oo .

Substituting into (11) (with f, F for h, H), we deduce that

x

(13)

	

1 f a(y) f x dy -- A' = Z(1) as x --> oo .
X 1

	

(y y

h(u) _

H(u) =

	

= UsZ(s)+o(u°)

(s fixed) . Substituting into (11), dividing by x8 , and making

u s

0

(u > 1),

(u < 1),



On the right of (12) and (13) we may extend the ranges of integration
to (0, oo) since a(y) = 0 for y < 1 and f(x/y) = 0 for y > x . Putting
x = es, y = e°, writing

k(n) = e`a(6"),

	

9, (~) = e f(e'),
and taking a = 1 in (12), we deduce that

(12')

	

Z(1+ti)
= f k(j)e - °t2 drt

	

(t real),
1+ti - 00

(13')

	

f k(,7)9'($-,l)drl _, f k(ri)dn

	

as

	

$ -> co .

Now k e L (- co, oo), by what was said about the integral in (12) .
Also, from (2) and the hypothesis f c 5 we deduce, first that 0 < f (x) < Kx
(x > 0) where K is a constant, and then that 9 (~) is bounded and that,
if a>0,

99 ($+ S)- 9'() > (e 8 -1)q~( )

	

0

	

when

	

( , 6) - ( oo, 0) .

Suppose now that Z(1+ti) :A 0 for real t. Then, by (12'), the Fourier
transform k(t) of k(j) does not vanish for real t, and it follows from Wie-
ner's Tauberian theory, in Pitt's form (see, e .g., [2], Theorem 221), that
99(x) --->1 as $ -± 00, i .e. that (1) holds .

Necessity. We consider this in a more general form than is re-
quired for our immediate purpose . Suppose that Z (e) = 0 for some e
= ,3 + yi with # > 1. Since Z (f + yi) are conjugates and Z (9) > 0, we may
suppose that y > 0 . Take a fixed b > 0, and let f (x) = 92 h (x), where

x+bxe (x > 1),
h(x)

	

0

	

(x < 1) .
Then

e

H(x) =

	

(
x +b

x = Z(1)x + bZ(Q)xe +o(x),e
an~x an

	

an

since
x

	

xe

-+be
an>x an

	

an
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00

<

	

( x +bx) = o(x) .
an

	

ana >x

Since Z(1) = 1+A and z(Q) = 0, it follows that (2) holds . But (1) does
not hold, since

limf(x)

	

I1+b (fl =1),
x

	

+oo 0
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If /9 = 1 we can also satisfy the condition f cf ; for, if 0 < b < 1

we have f(x) > 0 for x > 1, and f(1+) = f(1) > 0 .

6. Comparison of methods and results . The condition Z(1±ti) 0 0
in Theorem 4 elucidates the exceptional case in Theorem 2 . If {an} is such
that (2) does not imply (1) for functions f belonging to ./, we must have
Z(1+yi) = 0 for some y > 0 . If also A = 1, then

But these together imply that a',,' = -1 (n = 1, 2, . . .), i .e. that
an = a?n with a = e'1'' (> 1) and odd integers rn . Conversely, if these
relations hold with some a > 1 and if y (> 0) is defined by a = CIF ,
then Z (1 + ti) = 1-A when t is an odd multiple of y . Thus Theorem 2 is
included in Theorem 4 ; and the construction near the end of § 3 is a spe-
cial case of that at the end of § 5 .

If A < 1, the condition Z (1 + ti) :A 0 is obviously satisfied, but The-
orem 4 does not include Theorem 1(i) owing to the restriction on f.
Theorem 1(i) can, however, be recovered by a simpler (formal) use of
Z(s) leading to an analogue of the Möbius inversion formula .

To explain this we revert to the general case A < oo . Taking oao
so large that

(s) - 1+7

	

&,?,

(a)

	

H(x) =

Z(a)-1 = , 1 < 1an
we obtain, by manipulation of absolutely convergent series,

where 1 = b o < b, < b 2 < . . ., b,n --~- oo, and the a n , are integers. Also,
if the corresponding expansion with -1 changed to +1 yields coeffi-
cients u*, then I,a,n l < ,a*,t and so

14V Iaml

	

1

	

1
( )

	

y but

	

1--(Z(a)-1)

	

2-Z(v) (6 > ao)

Equating coefficients in Z(s)(Z(s))-' = 1 (= 1 -5 ), we obtain
1

	

(n = 1),
llm

anbm=U

	

0

	

(u : 1),
from which we conclude, as in the classical Möbius inversion, that, for
functions defined for all real x and equal to 0 for x < 1, the identities

1
.

	

a,,.

	

1 i

f

	

l 'a l

1
ann

(a > o ),

1 2

	

' j rn
3

	

+

	

g

	

(or > ao),an

	

a bm

(b)

	

h(x)

	

am.H(x),b„t
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(for all real x), are equivalent to one another. We may call (a) the direct,
and (b) the inverse, Möbius formula . To avoid ambiguity in the defini-
tions we take {b,n } to consist of all distinct numbers expressible as finite
products of an's with n > 1 (including b 0 = 1 as the `empty' product) ;
each ,a,n is then a uniquely determined integer (positive, negative, or
zero) .

Assuming now the conditions of Theorem 1 (i), we may take a0 = 1
(since A < 1) ; and, if we assume (2) and take h(x) = f0 (x), we obtain,
by (2)0,

R(x) = o(x),
and so, by (b),

~h(x)~

	

f17nH( b
x
,~) = o(x)

by (14) with a = 1, and the Lemma (treating j,u,nH(x/b.)j as a sum of
yn,j terms IH(x/b„~)I), since the condition hE' implies, by (a), that
!H1 c R .

We note also that Theorem 3 may be proved similarly . For, assuming
the conditions of that theorem and denoting the left hand side of (9)
by a, we have, for a > 1,

say ; and so
1

	

1-A

	

1 , ;u n I

	

1+,I- 1

Z(s)

	

1+m(s)' LJ b,n \ 1-a `
od

by an obvious majorization argument . We observe, further, that (since
I c le) the conclusion Z(1+ti) 0 0 of Theorem 4 (N) must hold under
the conditions of Theorem 3 . The above formulae provide a direct proof
of this, in the stronger form that Z(s) = 0 (a > 1) .

' . On the conditions of Theorems 1-4. In general we have adopted
conditions that fit the methods of proof ; but it is natural to ask whether
our hypotheses can be widened . We are not able to give full answers to
all the questions that arise, but we offer some miscellaneous observa-
tions .

(i) We consider first the condition, B say, in the definitions of
', GP, 9, -0, that f (x) is bounded in every bounded interval . This may
certainly be omitted in some cases . Thus, if a,,= an (n = 1, 2 , . . . )
where a > 1 and {an} is infinite, then

F(x) =f(x)+ H' (a),

(1- A8 ) Z(S) = 1+

	

a-AS

	

a = 1 ~ m(s)s
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and (2) implies (1) without any further condition. This holds, more gene-
rally, whenever the inverse Möbius formula contains only a finite num-
ber of non-zero coefficients u,,, . A less obvious remark is that this is also
a necessary condition on {a„} for the possibility of omitting B from the
hypotheses of Theorems 1 (i) and 3 . For suppose that {a„} does not satisfy
the condition, define F(x) by the formulae

0

	

(x < 1),
1

F(x) - x-1 (1 < x < a,),

A'x

	

(x % a,)

and then define f (x) by the inverse Möbius formula. Obviously (2) holds .
But

k

f(x) =

	

(b,, < x < bk+J,
m=o

so that I f (x) I -- oo when x -± b k +, for each k for which ,ak 0 0 ; and, since
by hypothesis this occurs for arbitrarily large b k , the conclusion (1) can-
not hold. To take a simple example, suppose that {a,} consists of a single
number a > 1 . Then bm = a '̀, ,am = (-1)', and Theorem 1 (i) would
break down if we omitted the hypothesis B ; and Theorem 3 would break
down similarly in (e.g .) the special case of the example at the end of § 4 .
In theorems involving the hypothesis fE J' the question of omitting B
does not arise, since a monotonic function f(x) defined for all real x auto-
matically satisfies B .

(ii) It may seem paradoxical that the conclusion of Theorem 4 (S)
should be invalidated by the vanishing of Z(s) at a point on a = 1,
while a zero in a > 1 is harmless . The explanation is to be found in the
hypothesis fe .f . If Z(s) has a zero fl +yi with j9 > 1, the construction
at the end of § 5 provides a counter-example to the proposition `(2)
implies (1)' if we are working within the class (f (or aP) ; but we cannot
satisfy the condition fEJ (or even fe9) by any choice of b . The point
may be further illustrated by direct discussion of a simple case . Let {a,,,}
_ {a, a} where a > 1 ; and let

c = limIfo(x)I

	

(0 < C < oo) .
X

By (2 )0,

fo(x) _ -2f0(a) +o(x), a	x
	 fo(x)I = 2 ifo(x/a)I +0(1) ;a

	

x/a



whence
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ac = 2c .

If a > 2, we can also prove that c < oo by the method used at the end of
the proof of Theorem 1 (i) (of which our problem is now a particular
case) and deduce that c = 0 (assuming only that fe ') . If a < 2 (in which
case Z(s) has zeros in a > 1 but none on a = 1), this method of proving
that c < oo breaks down . But if fE9 (in particular if f e f) we deduce
from (2) that e < oo, and again we conclude that c = 0 . If a = 2, we
reach no conclusion about c (even if f e J ) .

This raises the question whether, in Theorem 4 (S), we can relax
the condition on f(x) if we strengthen that on Z(s) . If JZ(s)I > 6 > 0
(a > 1), we may replace the hypothesis f E f by f ele ; for it is known in
this case (see, e .g., [4]) that I'l,amI/bm < oo, so that the Möbius inverse
argument is applicable. If, however, we assume only that Z(s) zA 0 (a>1),
we cannot replace the hypothesis fof in Theorem 4 (S) by fe , or even
by fc9. Since our method of constructing a counter-example, which
involves specialization of both {a„} and f (x), has other applications, we
shall develop it in greater generality than the present context requires .

Suppose that A > 1, and that the numbers log a,, (n = 1, 2, . . . )
(of which there are at least two since A > 1) are linearly independent .
Then (as we prove later) we can find w,,, (?a = 1, 2, . . .) such that

Let Q be the (enumerable) set of numbers q expressible as products
q = Hari with exponents r,, = 0, y1, +2, . . . of which at most a finite
number are different from 0 in any one product . Since the log a,, are line-
arly independent, the representation of each q is unique and we can define
a function (o (x) for all real x by the rule :

r"

	

(x = q > 1 ),
w (x)

	

!0!O

	

(otherwise) .

Then w(x/a„) = w(x)w,, (x > a,, ; n = 0, 1, . . .) if we write w o = 1 .
Now let

h (x) = xw (x),

	

.f (x) = x+`N {rh ( :r)}

with r = 1 or i (to be fixed later) . Then

1' w„
H (:r) =

	

= h (X)

	

- = O (X)
a,,

a,, x

	

an r
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by (15) . But h(x)/x does not tend to any limit, since lh(x)l/x takes each
of the values 1 and 0 for arbitrarily large values of x . Thus for at least
one choice of i (= 1 or i) we have (2) but not (1) ; and obviously fc.9 .

If A = 1, we may (and must) take On = -1 for each n (> 1) ;
and, taking a fixed d > 0, we have, for a > 1,

IZ(s)-1-dl = 2' an-ae-"log an - d

since, by the linear independence of the loga n , the products tlogan can-
not all be equal to odd multiples of n. Thus Z(s) does not vanish in a > 1,
though IZ(s)I takes arbitrarily small values on a = 1 since, by Kronecker's
theorem, we can make all of tlogan (if {an} is finite) or the first N of them
(if {an} is infinite) arbitrarily near to odd multiples of 7r . We can satisfy
all conditions on {an} in various ways ; thus we may take an = pn, where
the pn are distinct primes (at least two in number) and 2 > 0 is adjusted
to make A = 1 . The same example (with A = 1) shows that the hypo-
thesis fE J in Theorem 2 cannot be replaced by f eJ .

If A > 1, we can satisfy (15) in various ways . Thus, writing

U

< 1+d,

(so that U+V = A > 1), and noting that U-V increases with increas-
ing N from 2a l '-A < 1 to a value equal to or arbitrarily near to A > 1
by steps 2/aN < 2, we can choose N so that -1 < U-V < 1 . Taking
con = 0 (n < N), q) (n > N), we then have to satisfy

UO+Vm = -1, 101 = IT I = 1,

and we can find 0 and p by constructing in the complex plane a triangle
of sides U, V, 1 . In this case Z(s) has an enumerable infinity of zeros
in a > 1, as may be proved by methods laid down by H . Bohr (cf . e.g .,
[9], pp. 248-249) ; and by changing an to an+ a with a suitable b > 0 we
can ensure that Z(s) does not vanish on a = 1 . Taking the two cases
A = 1 and A > 1 together, we thus see that there exist sequences {an}
such that (2) implies (1) for functions f belonging to f but not for func-
tions belonging to Y, regardless of whether or not Z(s) has zeros in
a>1 .

(iii) The arithmetical interest of our theorems is somewhat enhanc-
ed if the an are (or can be) restricted to integer values. Thus, if the an
are distinct integers, Theorem 2 and its Corollary reduce to the simple
statement that (2) implies (1) if A = 1 and f E J . We may ask whether
the heavier restriction on {an} allows us to substitute for f E ./ the weaker



Rn =

we note that

a.n = A,,_,+l (n = 2, . . .,
and we find, successively,

1

A„

so A = 1 . Also the numbers log a,, (n = 1, . . ., 7) are linearly indepen-
dent. For, if not, there is a relation

7
,7a~ 1

with integers r,, not all 0 ; and, by considering the occurrence of the
primes 13, 139, 5, we find that

r,+r6+r, = 0
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hypothesis f E9. The following example shows that this is not so . Let
{a„} consist of the 7 integers

a,=2, a2 =3, a3 =7, a4 =43,

a5 = 2.3.7.43+1 = 1807 = 13.139,

a6 = 13(2.3.7.43.139+1) = 13.5.50207,

a7 = 2.3 .7 .43.13 .139 .5 .5020 7 .

Writing
v1

	

ro

2 rs +r, = 0, r6+r, = 0,

whence r5 = r 6 = r7 = 0, and therefore r, = . . . = r4 = 0 since
a,, . . . , a 4 are primes. Thus {a,,} satisfies the conditions of the case A = 1
of the example discussed at length in (ii) ; so (2) does not imply (1) for
functions f belonging to 9 .

The restriction to integral a,, may, however, introduce more serious
difficulties . Thus, it would be interesting to have an example in which
the a,, are distinct integers and Z (s) vanishes on the line a = 1 ; but we
have no such example at present . A simple case that escapes all our the-
orems is that in which {an} _ {2, 3, 5} . It seems extremely unlikely
that Z(s) has a zero precisely on a = 1, but we have no proof either
way. We are therefore in no position to say whether, in this case, (2)
implies (1) for functions f belonging to 5 ; though we can assert, by the
case A > 1 of the example in (ii), that (2) does not imply (1) for func-
tions belonging to .9 .

5), a6 = A 5 +13, 13a7 = A6 ;

13
R71 5), R6 = A 9 =0,

A6
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