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Laconicity and redundancy of Toeplitz matrices*

P. ERDÖS and G . PIRANIAN

The convergence field of a Toeplitz matrix is a monotonic function of the
set of rows that compose the matrix, in the sense that the deletion of some
of the rows of the matrix (followed by appropriate renumbering of the rows
that remain) can never decrease the convergence field . In the case of certain
matrices, the deletion of infinitely many rows always increases the con-
vergence field; but there exist matrices that do not have this property . We
shall consider this dichotomy with special reference to the space of bounded
sequences and certain classical families of matrices .

1 . The concept of laconicity
By a Toeplitz matrix we understand any matrix A=(a,,,,,) (n, k =0, 1, . . .)

of complex numbers . For each matrix A, we define the norm of the row
with index n as the sum Z I a,,,, I, and the norm I A II of the matrix as the

k

supremum of the row-norms . A matrix is conservative (German : konveygenz-

treu) if convergence to a finite limit of a sequence s={s„} implies the existence
and convergence of the transform t .= A s defined formally by the relation

t„ = Y, a,,,, s k . A matrix is regular provided it is conservative and lim A s = lim s
k 0

whenever the second limit exists and is finite . Except in the present section,
we restrict our attention almost exclusively to conservative matrices .

Of two matrices A and B we shall say that B is a submatrix of A provided
each row of B is a row of A and infinitely many rows of A are not rows of B .
If B is a submatrix of A and s-- {s „} is a sequence whose transform As exists,
then the transform a=Bs is a subsequence of the transform 1=As ; this
implies the monotonicity mentioned in the introductory paragraph .

Theorem 1 . 1f .A is a Toeplitz matrix with the Property that each sequence
o f 0's and I's is the transform A s of some sequence s, and if B is a submatrix
of A, then the convergence field of A is a proper subset of the convergence field
o f B .

Proof . Let A satisfy the hypothesis of the theorem, and let B be obtained
from A by the deletion of the rows with indices nl , n z , . . . . Let

t„ -= 1

	

(n( 1nZ}),

{0 (n,f fns}),
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and let s be defined by the condition s= At . Then the sequence Bs consists
entirely of 0's, while A s consists of infinitely many 0's and l's . This proves
the theorem .

Most of the commonly studied classical Toeplitz matrices satisfy the
hypothesis in Theorem 1 . But it is not generally true of a classical matrix
that every sequence of 0's and l's is the transform A s of a bounded sequence .
Rather, there exist simple, regular matrices A that satisfy the hypothesis
in Theorem 1 and some of whose submatrices have the same convergence
field as A, in the space m of bounded sequences . In other words, some matrices
have unnecessarily many rows for the maintenance of their divergence fields
in m .

Definitions . Corresponding to each Toeplitz matrix A we denote by (A)
the set of bounded sequences s whose transform A s exists and converges,
and we call (A) the bounded convergence field of A . We say that A is re-
dundant provided it has a submatrix B such that (A)=(B) . If A is not
redundant, it is laconic .

A matrix is redundant, for example, if it has infinitely many pairs of
rows that resemble each other sufficiently well . To make this statement
precise, we denote by A i 1 the one-rowed matrix (a i0 - a 0 , ail-a11, . . .),
and we call the matrix with the rows A10 , A20, A21, A 30 , A 31 , A 32 , A 40 ,
the internal-difference matrix of A .

Theorem 2 . If A is a matrix of finite norm and its internal-difference
matrix has a submatrix whose row-norms tend to 0, then A is redundant .

Proof. The hypothesis of the theorem implies that, for some increasing
sequence {n. j},

lim

	

a,,.,, k

	

a„z ,+ I, k I

	

0 ., k=0

Let B be obtained by the deletion from A of the rows with indices n0 , n 2 , n4 , . . . .
If s is any bounded sequence, we can obtain Bs from t=As by deleting
the elements with indices n0, n 2 , n 4 , . . . . The deleted sequence {t, , t„ , . . .}
differs by a nullsequence from the sequence fl,", t, , . . .}, which has not been
deleted in the passage from As to Bs, and hence Bs converges if and only
if A s converges . Therefore A is redundant .

2. Laconicity of Hausdorff matrices
The Hausdorff matrices of finite norm are the triangular matrices of the

form A ..=A(i)=(a„k) with

( 1 )

where a (u) is a function of bounded variation on [0, 1], normalized by the
rule that a (0) = 0 and

2a(u)=a(u+0)--a(u-0)

	

(0<u<1)
(see [4]) .

1

a,,k=(k)J u k (1 -it)n-k da( ,it),

0



Theorem 3 . A Hausdorff matrix A(a) is laconic if and only if the func-
tion a is discontinuous at u=1 .

Proof. Suppose first that a is continuous at it =1 . The redundancy of
A will follow from Theorem 2 when we have shown that

nil
Jim L Ia, 1I

	

a n , 1 ,k~--0 .
~~k 0

Let s> 0, and choose a constant 6 (0<6<4) such that
1
da(u) <k' .

a=

(2)

where

(3)
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For each n, we consider first separately the indices k less than n6 . Equa-
tion (1) implies that

1
a ., r; - a, . . 1, k -=1 f ( ,it, it, k) d a (u)

0

k)

	

uk (1 - u)n-i. - k
l
('2 1))

	

(0 < h < n ) .

Corresponding to each constant n (0<)/ < 1) and each pair of integers it
and k, we denote by E(n, k, Tj) the part of the interval [0, 1] that lies in
I k/n - it, k/n -- it], and by F(k, n, rt) the remainder of [0, 1 ] . Since

1

	

1

k lI"tk (1--u)n -k Id a(tc)I < f~ I da(it)I,
11k-. OP 0

	

0

and since the last factor in the right member of (3) is less than t,, in E(n, k, rt)
if k--no and it < rt 6 , we can choose rl so that the inequality

11

	

f I f (u, n, k) I . I da(u)I < f'(4)
k ,,n6 E(n,k, ))

holds for all n . The last factor in the right member of (3) is bounded uni-
formly with respect to n and k (k<n6), and the well-known uniformly rapid
convergence to 0 of

u
nk (1

It)'-k

in F(n, k, 11) implies the analogue of (4) for the range F(n, k, rt), when n is
large enough .

By our choice of it,

	

a„ k < 2 t when n is large enough . Since the last
k n6

inequality implies that
I la,,,, -au 1 kl <4F,

k>nS
we now conclude that

Z I a„k - an+1, k I <6r (n > n,) .
A, 0

This proves Theorem 3 for the case where a is continuous at u -1 .
Mathematische Zeitschrift . Bd . 83
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Suppose next that a is discontinuous at u. =1, and write u (4) - u (1- 0) -h.
Then A (a) - - A (fl) -- A (y), where t4 is continuous at u = I and y is constant
except for a saltus h at u=1 . It follows that A(a)=A(t4)+hI, where I is
the matrix representing the identity transformation, and where the elements
of A (fi) tend to 0 uniformly as their row-indices become large .

Let B be the matrix obtained from A by deletion of the rows with in-
dices n1 , n 2 , . . . . To construct a sequence s= {s„} that lies in (B) but not
in (A), we need only choose s„=4 for all n that belong to a sufficiently thin
subsequence of {n }, and s„=0 for all other values of n . This concludes the
proof of Theorem 3 .

Remark. H. G . BARONE [1] proved that if a triangular matrix A of finite
norm satisfies condition (2), then it transforms every bounded sequence into
a sequence whose set of limit points is connected . In particular, he showed
that the regular Hölder, Cesáro, and Euler transformations satisfy the con-
ditions [1, Theorems 5 .3, 6 .3, and 9 .2] .

If a matrix A of finite norm has the property that its diagonal elements
are bounded away from 0 while every sequence formed from its remaining
elements tends to 0, and if s is a divergent sequence of 0's and 1's (the latter
sufficiently scarce), then the origin is an isolated limit point of the sequence
A s and constitutes a proper subset of the set of all limit points of As .

We can therefore extend BARONE'S Theorems 5 .3, 6 .3, and 9 .2 as follows :
In order that a Hausdorff matrix A(a) transform every bounded sequence into
a sequence whose set of limit points is connected, it is necessary and sufficient
that the function aa be continuous at a =1 .

3. The little Nörlund transformations

l

The Nörlund matrices are the triangular matrices of the form

PO/PO
Nil PO/ 111IV ( p)

VP2/P2 p11I2

	

01 1 2/

n

where p = {p„} is a sequence of complex numbers and P„= Y p,, + 0 for
0

n=0, 1, . . . (see NÖRLUND [5] and WORONOI [9]) . In contexts where the
transformation N(p) is required to be regular, the sequence VII,} must be
bounded away from 0 . We shall focus our attention on the cases where

(5)

	

11 p„I < «> .

Under the restriction (5), regularity of N is equivalent to the convergence
of {P„} to a limit other than zero . In the study of convergence fields of
regular Nörlund matrices subject to (5), we shall therefore incur no loss of
generality if we replace the element p,/1 3,, in the matrix N by P, Once the
P„ have disappeared, the requirement that I-),,+0 is superfluous, and we
drop it .
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With our modified matrix we shall associate the function
Indeed, we shall use the notation

/ih0

P, PO

and we shall call N the little Nörlund transformation associated with / ( or
generated by f) . The matrix product of two little Nörlund matrices N, and
N,z is the little Nörlund matrix Nh , where h (z) = f (z) g (z) . Therefore the little
Nörlund matrices form an Abelian semigroup under matrix multiplication .

In the theory of ordinary Nörlund transformations it is customary to
use the multiplication

( 6)

	

N(p) o N(q)= N(r),

where r„ _= p o q„ ~- p, q, i !- a- P„q o . Now, if for example {p„} = {1, 1, 0, 0,
0, . . .} and {q„}={-1, 2, 0, 0, . . .}, then the matrices N(p) and N(q) are
regular ; but their formal product under (6) is not a Nörlund matrix ; for

(1 z)(-1H-2z) =-1+z±2z 2 ,

f (z) - Y, A, Z'2 .

and therefore N(r) suffers from the defect that R1=r0 +rr =0 . We see at
once that the ordinary Nörlund matrices corresponding to polynomials fail
to form a semigroup under the multiplication (6) unless we subject the ad-
missible polynomials to severe restrictions . Hence, under the restriction (5),
the use of little instead of ordinary Nörlund matrices has advantages beyond
computational and typographical convenience .

Each of the four theorems in the present section is either already in the
literature, or it is at least familiar to many specialists in summability theory
(see the discussion of allgemeine Zweierverfahren by K . ZELLER [10, p. 126]) .
We include the material partly to make the paper as nearly self-contained
as is feasible, and partly because the inclusion permits us to state the theorems
in forms that will be most appropriate in the applications (Section 4) .

Theorem 4 . A necessary and sufficient condition for the convergence field
of a little Nörlund matrix to contain at least one divergent sequence is that
/(z) - 0 for some z in 0<Izl <1 .

Proof . If f (z) --0, then Ns converges for all s. If f (z)=zhg(z), we can
obtain IVs from N,s by adjoining h elements 0 at the beginning of Nxs, and
therefore the convergence fields of N/ and N are identical . In our proof
we may therefore assume that p,+0.

The inverse N1- ' of N, is the matrix whose nit' row is {q,,, q„_ 1 , . . . , q 0 , 0, . . .},
where I q,,z"=1/f (z) in the neighborhood of the origin . Since N7r can not
have finite norm if 111(z) is unbounded in Izl < 1, the sufficiency of the con-
dition in the theorem follows immediately .

To see the necessity, suppose that Z I pn I < oo and 1(z) +0 in JzJ 4 .
Then I I q„ I < oo ( see WIENER [8, p . 14] and ZYGMUND [11, middle of p . 246]) .

27*
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In other words, Nr is also a little Nörlund transformation, and therefore
it preserves convergence . This completes the proof of Theorem 4.

In view of Theorem 4, we naturally expect the convergence field of a
little Nörlund transformation N to depend heavily on the position of the
zeros of f . For the case where f is a polynomial without zeros on Izl -1,
a complete description of the convergence field of N, has been given by
G. M. PETERSEN 6, Theorem 2 .2~ (see A . PEYERIMHOFF [71 for a more general
theorem, and D . BORWEIN [2] for related results) . Our treatment avoids the
restriction that no zeros of / lie on Izl =1 .

Theorem 5 . Let {a 1 } be a set o f j distinct complex numbers, let f z (z) _ (z - a,)'",
where h; is a positive integer, and let f (z)

	

(z) . Then the convergence field

o f Ni is the span o f the convergence fields of the N11 ;

Proof . Again, we may suppose that f (0)+0 . Let S denote the span of
the convergence fields of the transformations N,, and suppose first that

iS=ts„}'. S . Then we call write s,~= Sri ) , where each sequence S (i)={Sri)}
i-1

belongs to the convergence field of the corresponding transformation N. .
Since the matrix N is the commutative matrix product of the matrices N1 .,
and since each of the transformations Nir is conservative, each of the trans-
forms Ns' ) converges. Therefore s belongs to the convergence field of N1 ,
and it follows that this convergence field contains S .

To prove that S contains the convergence field of Ni , we again use the
fact that, with the notation

1 /f (z) -- L q" z"

	

( z

the n°' row of the matrix N r is {q,,, q„- r , . . ., q,,, 0, . . .} . Let t= Ns, that
is, let s - IV,-'t. There exist polynomials g, of degree h,-1 (i=1, 2, . . ., j)
such that

=Z

	

7k = jf(z)q,, z" V 'k .

	

r } t k
` kz

gi (z) (z

	

a,)

	

t,,
r

	

k 0

in some neighborhood of the origin . Define the j sequences s(')-{s(')}
1, 2, . . ., )) by the formulas

N
s,) z" = gi (z) (z - a i )

	

t,, 2k .

n U

	

k U

Then Nj .s (')- .Y,1, and since the transformations Ne ; are conservative, the

convergence of t implies the convergence of N .sli ) . Since also s„=

it follows that if Ns converges, then s is the sum of j sequences s ( ' ) lying in
the convergence fields of the corresponding transformations Ni , . This com-
pletes the proof .

~s

min Ia

(i -



(7)

Laconicity and redundancy of Toeplitz matrices

	

387

Theorem 6 (G. M . PETERSEN) . If 0 < I a I < 1 and f (z)-(z- a) h , where h

is a positive integer, then NJs converges if and only if s has the form

s =a n(b 0

	

b,it

	

. . . + b,, ith-1) + C",

where the b, are constants and {c„} is a convergent sequence .

Proof . If s has the form (7) and Ns-1, there exists a polynomial g such that

sn a n - g (z) (z - a)

	

-I -

	

C,, z",

in other words, such that
n (z - a) " S," 2n -t„ a =

	

bo ( z )
where {y„} converges. Therefore t converges .

To prove that every sequence in the convergence field of N has the
form {7}, we use mathematical induction . Suppose first that h=1 and that
the sequence t-Nf s converges . Since the row with index n in the matrix

N~-r is {a-n-r, a- .n, . ., a-1 , 0, . . .}, we can write

s„=-a-n-1 (t 0 . I . at1 .1 a 2 t2 ~ . . .+ a " t„)--a n

	

ak t1 - L]aktni11k •
k=0

	

k=0

With the notation A - - Y a'- ' t5 , this becomes

s, - .4 la"

	

a'/,,
k 0

If lim t,"=b, the value of the infinite series on the right is e,,+bf(1 --a),

where F, --;,-0 as n-

	

. This proves our assertion for the case where h=1 .
Now write f (z) _ (z -- a) k -- (z - a) g (z) (h > 1), and suppose that the con-

vergence field of N consists of the sequences

(8)

	

{r„} _ {a - n (b0 + /) I n + . . . + b k 2 71 1 -2 ) + c, - {a n Iih-2 (n) ~- C" f ,

where fe,) represents an arbitrary convergent sequence . If the sequence
NVrs=N9~Nz as converges, then N, as has the form (8) ; we may therefore
write s=N-1a r, and it follows that

n

	

n

s,~ - - a rc 1 (,r' + a r ,

	

a" r„) _ -- a n r

	

B,, (m)

	

am Cm
M-0

	

on=o

Since the first sum in the last member is a polynomial in n of degree h-1,
and since the sequence {c„} converges (so that the contribution {-- a-a-1-1 1 a- c .1

is covered by the first stage of our proof), it follows that {s„} is of the form
(8) with I3,, 2 replaced by a polynomial of degree h-1 . This completes the
proof of Theorem 0 .

In the following theorem, the symbol 1 1),, denotes the difference b,"-b,"
and 1 , b, is defined by the equation /Ihb,"=A(llh-rb„) .

Theorem 7 . Let f (z) - (z-a)h , where I aI =1 and h is a positive integer.

If a* 1, then the sequence N s convergences if and only if s has the form

- an b„ 4 c,
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where {b, y} is a sequence such that 4 h b,, -*0, and where c is a constant . I f a =1,
then Ns converges if and only if A's,, tends to a constant .

In the special case where a =1, the theorem follows immediately from
the fact that for n>h the element t„ of the transform Nf s has the value
t„= L1 I

LS„ h .

With regard to the case where a + 1, we observe first that if Nls converges
to d and sn* -= s---(1-a)-hd, then N/s*-->-0 . We may therefore restrict our-
selves to the case where Nfs-s0. Now, if t =Ns, then

/~,

	

'
- IL I )L = a-, '~h (a S A) ,

and since I a l =1, /,,-->o if and only if 4 5 (a" s„) ->0 as n->-cc . This completes
the proof of Theorem 7 .

4. Laconicity of little Nörlund transformations
Theorem 8 . I f f is a polynomial o f degree at most 2 and f (0) $ 0, then

N, is redundant if and only if f (z) = ( z -a) 2, with I a I =1 .
Proof. If /(z) -- c+0, then N,--c1, where I is the identity transformation,

and N, is obviously laconic .
For the case where f (z) -z-a (a$0), we shall suppose that M is the

matrix obtained by deleting from NI the rows with indices n i (i =1, 2, . . .),
and we shall construct a bounded sequence s such that MssO while A'S
diverges . It is sufficient to carry out the construction under the assumption
that because the deletion of additional rows would tend to
increase the convergence field even further .

Suppose first that I a I > 1 . For n < n,, we choose s, 0 ; for i =1, 2, . .
we write

s>> z ;r=a

	

(0<r<n,i ~ I -nz .

Inspection shows that the sequence Ms consists exclusively of 0's . Also,
the sequence s consists of blocks of elements, the first of which contains
only 0's while each of the others consists of an clement I followed by ele-
ments of smaller modulus . Clearly, s is hounded, but A s diverges, and there-
fore N, is laconic .

If al <1, we proceed similarly, except that in order to preserve bounded-
ness of s, we choose

I (0Gr < ni;-ni I) .

That is, we construct s so that it consists of blocks that begin with a small
element and end with a 1 .

If I a I =1, there is no danger of unboundedness of s ; but a sequence
constructed according to the pattern used above might accidentally lie in
the convergence field of A', . Should this happen, we multiply all elements
of the i 11' block by (-I)' . This concludes the discussion of the case where
f is a first-degree polynomial .
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If f (z) _ (z - a) (z - b) (a b + 0), one of seven more or less different cases
arises . We list these cases in order of increasing difficulty :

(i) lal = I b I =1,

	

bra ;

(ii)

	

jai <1,

	

Ibl> 1 ;

(iii)

	

lal=1,

	

lbI> 1 ;
(iv)

	

Ial=1,

	

Ibl<1 ;

(\')

	

Jai <1,

	

Ib <1 ;

(vi)

	

Jai >1,

	

Ibi>1 ;
(vii)

	

Jai - 1,

	

b--a .

Suppose again that M is obtained from N~ by deletion of the rows with
indices n i (i =1, 2, . . . ; n i , I - it, -->- oo) . In the first six cases, we shall con-
struct a bounded sequence s such that Ms converges but IVs diverges . In
the last case, we shall show that if Ms converges but Nl s diverges, then s is
unbounded .

In case (i), we set s„=1 for n<n,, and for n 1 n<nj ,, we write

J
s, 1/a
'S It -1/h

(i even),
(i odd) .

Since I a I = 11) ==1, s is bounded ; and since a + b, Theorem 7 implies that
N7 s diverges . On the other hand, if of three consecutive elements of s the
first two are related by one of the formulas in (9), while the second and the
third are related by the other formula, then this triplet of elements does
not enter the formation of any element of Ms . Hence Ms has only finitely
many nonzero elements, and A, is laconic .

In case (ii) we again use the formulas (9), with a slight modification that
is needed to ensure the boundedness of s . We note that in each block s n l

is an increasing or decreasing function of n, according to whether the first
or the second formula is in force. Therefore we choose s,=1 for n=n i - 1
(i=1, 3, 5, . . .), and we let the first formula define s„ for n=nti -2, n i - 3,
. . ., n i __,, while the second determines it for n=ni, n i +1, . . ., nir,-1 . Again,
Is,, I < 1 . For even values of i, the element t,L,-, of NI s involves unrelated
"loose ends", and therefore it does not necessarily vanish ; but it is small
when i is large, because of the condition that n irt,-n i - a oo .

Case (iii) calls for a further modification, since I s, l decreases under the
reign of the second formula but remains constant under the first . We over-
come the difficulty by inserting a harmless growth factor ; that is, we retain
the second formula, but replace the first with

IL - I?

	

-1S,

	

s,t 1 a .

Case (iv) is so similar to case (iii) that it needs no further discussion .
In case (v) we can no longer rely on the gradual modification of the ele-

ments s, given by one or the other of the formulas (9) . On the other hand,
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the two formulas produce two blocks of elements in both of which I s„I in-
creases. If a + b, we can use a linear combination of the two blocks, with
coefficients chosen so that the two contributions cancel each other at the
right-hand end of the block that is thus obtained . We write

(10)

	

s„ = a", la" . 1 - bnl/bn f-1

	

(n,-1 < n < n,) .

Then s„=0 for it=nti -1 . Also, s„ is small for n=n; and for it=ni + 1 .
Therefore, with the notation t=Ns, we see that t„=a-b for n-- n,, t„ is
small for n = n i +1, and t„=0 for n,i-I<n<nti . Therefore NI is laconic .

If a=b, we replace (10) by the formula

(11)

	

s„=(nti-1-n)a"i-"

	

(nz 1 <n<n,) .

Again, s is bounded and M s->0 ; since t„

	

a 2 0, N, is laconic .
In case (vi), we replace formulas (10) and (11) by the formulas

s = an;-n--1 _ b"a-n-1

	

(n . - I < n < n . ; 1 - 2),

s,,,=(n-+1 --n1) a ", "

	

(nti -1<n<n 1 1 - 2),
respectively .

It remains to treat case (vii), in other words, to show that if IaI =1
and J (z) = (z - a) 2 , then N, is redundant .

Suppose again that n I -n, oo and that M is obtained from N by
deletion of the rows with indices n ti . We shall prove that if Ms converges,
then either Ns converges or else s is unbounded .

Suppose that Ms-sc . Then, for

	

the condition a2s,,,,1-2as,,
Hs n _ . 1 ->c is satisfied ; that is

a(as, -sn)-(as,,-

	

= c + 0 (1),

a-1-s,,=a--1(as,-s,, )+a-Ic+o(1),

asi .2-s,-I1=a-2(as,,-s,-1)+(a-I+a-2)c-I 0(1),

and more generally, for n, < n + 1 < n + k < n i . 1 ,

a s l , k - sn I h-1 = a k (as,, - s)l 1 ) -f- (a -I 4 . . .

	

c -E 0 (k) .

f f a -1, boundedness of s implies that c = 0 . If a + 1 and sn* = s,, -- c1 l ( 1),
then Ms*->0 . We may therefore restrict ourselves to the case where c=0,
and our hypothesis on s takes the form

(12)

	

42 (a"s„)-->- 0

	

(9,L L2 : : . {nti}) .

Now, if (12) holds also without its restriction on n, then N s converges, by
Theorem 7. If (12) does not hold without its restriction, there exists a sub-
sequence of {n;} for whose elements the quantity 42(a"i-2s„,. .2 )I exceeds
some positive number 21 . For each of the corresponding indices n i , at least
one of the two quantities 1 .1 (an¢- 2 s„I -2) I and 4 (a"I is,,, I) I must exceed ij .
But since the first differences 4(a"s") are nearly constant in the two blocks
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that precede and follow respectively, this implies that {a" s,} (and
hence {s,,}) is an unbounded sequence . Therefore N1 and M have the same
convergence field in the space of bounded sequences . Hence Aj is redundant
in case (vii), and the proof of Theorem 8 is complete .

The question of laconicity and redundancy of Nörlund matrices N,,
where f is a polynomial of degree higher than 2, appears to be difficult . We
believe that the following statement holds .

Conjecture . If f is a polynomial and f (0) +0, then N is laconic if and
only if there exists an integer k and a polynomial g(z), of degree at most 2,
such that f (z) =g (z k ) and NX is laconic . (It is easy to prove the sufficiency
of the condition .)

5 . Laconicity and redundancy of bounded convergence fields
Definitions . We say that the bounded convergence field of a laconic

Toeplitz matrix is laconic . If a Toeplitz matrix A is redundant, and if
moreover each of its submatrices is either redundant or has a bounded con-
vergence field greater than (A), then we say that (A) is redundant .

Theorem 9 . There exist bounded convergence fields that are both laconic
and redundant .

Proof. Let / (z) = z i - 1 and g (z) _= (z + 1) 2 . By Theorem 7, (A'/) = (N) .

By Theorem 8, (Nf ) is laconic, and it remains only to show that (NQ ) is
redundant .

From the last part of the proof of Theorem 8, we can easily see that if
a matrix M is obtained by the deletion from N of all rows with indices n i
(n i,<nj . j ; i=1, 2, . . .), then (M)=(N) if and only if lim(n ; _ r -n,)=oo,
and that M is redundant whenever the latter condition is satisfied . There-
fore (1\l,) is a redundant bounded convergence field, and our theorem is proved .
It remains an open question whether every bounded convergence field is
both laconic and redundant .

Theorem 10 . The hounded convergence field of the Cesáro-1 transformation
is redundant .

Let the matrix M be. obtained by the deletion from C r of all rows except
those of indices n y (n, < n, . i , r =1, 2, . . .) . We shall show that (M) _ (C i )
if and only if
(13)

	

lim n, : 1 ln, = 1 .

Suppose first that (13) holds, and let s be a bounded sequence such that
Ms->0 . For n,<n<;n,,r,

(n

	

1) `' sr -(n

	

' si

	

(n-~ 1)

	

a s," .

The first term on the right tends to 0 by the hypothesis on ills . Together
with the boundedness of s, condition (13) implies that the second term on
the right also tends to 0 as n-soo, and therefore (M) - (C1 ) .
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Suppose next that the deletions have been so extensive that (13) fails .
Then there exist a positive number h and a sequence of indices r j such that
n,+i n,>hn, for rF{r1} . Corresponding to each of these indices we choose
s,,- I in the first half of the block n,< n< n,.,, and s n=- I in the second
half of the block . All remaining s„ are defined to be 0 . Clearly, Ms->O
and C.s+ ~ 0 .

This proves our assertion, and Theorem 10 is established . We point out
that, with the notation used in the proof, M is laconic if and only if the
sequence {n, iln,,} is bounded away from 1 .

Theorem 11 . If B is a regular Toeplitz matrix, then there exist laconic
matrices A and C such that (A)<(B)<(C). In case (B) contains a divergent
sequence, the matrix A can be chosen so that (A) also contains a divergent
sequence .

Proof. To construct the required matrix C, we choose an increasing
sequence {n,} such that, for some appropriate sequences {h,} and {k i } of
integers (h <k 1 <h : i ),

lim l Z -I -- Z

	

b„e, r= 0 .

We denote by C, the row of B with index n,, and we define C to be the
matrix whose it row is C1 . Since C is a submatrix of B, the relation (C) j (B)
holds. To see that C is laconic, we note that if I) is a submatrix of C, and
if {s,} is a sequence consisting of 0's, except for l's in the blocks h <n<k
corresponding to the rows deleted in the passage from C to D, then D s ~0
while Cs has the two limit points 0 and 1 .

The other half of the theorem is trivial in case (B) contains no divergent
sequences . In the case where (B) contains a divergent sequence x, we may
suppose that Bx-*0 . But because we shall apply the construction in the
proof of Theorem 2 .2 of [3], we need the hypothesis that our sequence has
two limit points other than 0 . We therefore replace x by a sequence y= {e'°" x„} ;
if P„ m oo slowly enough, then B y •->0 and y has two limit points a and
(a 4-- 04-4) .

There exists a sequence of integers k, such that, in the terminology of [3],
Bz converges whenever z apes y over {k,}, and such that y (k2r ) tea, y (k2r i) ~~ .
With each index n we associate an index p_P,,, selected from the greatest
two integers k, less than n in such a wav that the sequence {(y,, - yp,) -1}
is bounded . For each n, the elements a, , of the matrix A are defined by
the rule

Yna,t pn
Yn - Yp, t '

-
Yp "

	

O

	

(

	

~)a,t ,t

	

a„ Ic --

	

1'

	

n,
Yn - Yp„

The convergence field of A consists of the sequences that ape y over {k,}
(see [3, pp . 141 -142]), and it is therefore contained in the convergence
field of B . To show that A is laconic, suppose that we have obtained D by
deleting from A the rows with indices m i . If n ti t{P,}, then the it," column
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of A contains only one nonzero element, namely its element on the diagonal .
It follows that if infinitely many of the n i do not belong to {p,}, then (D) is
larger than (A) ; for if z,,=0 except for n E {n il \ {p,}, then D z is the sequence
{0} . It remains to deal with the case where all except finitely many of the
{nz} belong to {p,} . Here we note that there exists a sequence {e„}, with
F„=+1 and e,11=(-1)', such that for z„=r y,,, the transform D z is again
the sequence {0} . Since z does not ape y over {k,}, A z does not converge .
It follows that A is laconic, and the proof of Theorem I I is complete .

We do not know whether Theorem 11 can be strengthened so that it
asserts the existence, for each divergent sequence x in (B), of a laconic
matrix A such that xc (A) ( ( B) .

Theorem 12. If 13 is a regular Toeplitz matrix, there exists a regular
matrix E such that (E) is redundant and (E) ) (B) .

Proof. We point out that it is not sufficient to construct a redundant
matrix E whose bounded convergence field is (B) . The matrix E that we
seek must have the additional property that each of its laconic submatrices
has a larger bounded convergence field than B.

Let the symbols C i, have the same meaning as in the proof of Theorem 11,
and let E be the matrix whose m e row is the vector sum (C1 + C2, + • • • + C,,)/n .
Clearly, (E) :) (C) > (B) . If M is obtained by the deletion of all rows of E
except those of indices n, (n,<nr+1 ; r=1, 2, . . .), then M is again laconic
if and only if {n,,/n,} is bounded away from 1, and M is redundant and
equivalent to E if and only if n, , 1 /n,- 1 .

Remark . We defined laconicity and redundancy with reference to the
space of bounded sequences . Naturally, we could have used a larger or
smaller sequence space S . However, the larger the space S used in the
definition, the more difficult becomes the construction of a nontrivial redun-
dant matrix . Of course, we can always construct a redundant matrix by
overloading a preassigned matrix with superfluous but harmless rows . For
the case where S is the space of all sequences, we obtain a more interesting
example if to a matrix A for which As--> .O implies that either s,,--->o or
s,ti --~-oc we adjoin infinitely many rows of the identity matrix . But we do
not know of any matrix whose convergence field is redundant relative to the
space of all sequences, in the sense analogous to that of our definition at
the beginning of this section .
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