ON A COMBINATORIAL PROBLEM. II*

By
P. ERDÖS (Budapest), member of the Academy

Let M be a set and F a family of its subsets. F is said by E. W. Miller [5] to possess property B if there exists a subset K of M so that no set of the family F is contained either in K or in $\bar{K}(\bar{K}$ is the complement of K in $M)$.

Hajnal and I [2] recently published a paper on the property B and its generalisations. One of the unsolved problems we state asks: What is the smallest integer $m(n)$ for which there exists a family F of sets $A_{1}, \ldots, A_{m(n)}$ each having n elements which does not possess property B ? Throughout this paper A_{i} will denote sets having n elements.

We observed $m(n) \leqq\binom{ 2 n-1}{n}, m(1)=1, m(2)=3, m(3)=7$. As far as I know the value of $m(4)$ is not yet known.

Recently I [3] showed that $m(n)>2^{n-1}$ for all n and thatfor $n>n_{0}(\varepsilon) m(n)>$ $>(1-\varepsilon) 2^{n} \log 2$. W. M. Schmidt [6] proved $m(n)>2^{n}\left(1+4 n^{-1}\right)^{-1}$ and up to date this is the best lower bound known for $m(n)$.

Recently Abbott and Moser [1] proved that

$$
\begin{equation*}
m(a \cdot b) \leqq m(a) m(b)^{a} . \tag{1}
\end{equation*}
$$

From (1) they deduced that for $n>n_{0}, m(n)<(\sqrt{7}+\varepsilon)^{n}$ and that $\lim m(n)^{1 / n}$ exists. Their method is constructive. By non-constructive methods I now prove

Theorem 1. $m(n)<n^{2} 2^{n+1}$.
Theorem 1 thus implies $\lim _{n=\infty} m(n)^{1 / n}=2$. Theorem 1 and the result of Schmidt gives

$$
\begin{equation*}
2^{n}\left(1+4 n^{-1}\right)^{-1}<m(n)<n^{2} 2^{n+1} . \tag{2}
\end{equation*}
$$

It would be interesting to improve the bounds for $m(n)$. A reasonable guess seems to be that $m(n)$ is of the order $n 2^{n}$.

A family of sets F is said to have property $B(s)$ if there exists a set S which has a non-empty intersection with each set of the family, but the cardinal number of the intersection is $<s$. Hajnal and I asked what is the smallest integer $m(n, s)$ for which there exist sets $\left\{A_{i}\right\}, 1 \leqq i \leqq m(n, s)$ which does not possess property $B(s)$? Clearly $m(n, n)=m(n)$.

[^0]Mr. H. L. Abbott pointed it out to me that $m(2 k, 2)=3, m(2 k+1,2)=4$.
Now we prove Theorem 1. We shall construct our $n^{2} 2^{n+1}$ sets of n elements not having property B as subsets of a set M of $2 n^{2}$ elements. Suppose I have chosen already k of the sets $\left(k<n^{2} 2^{n+1}\right) A_{1}, \ldots, A_{k}$ and suppose that there are u_{k} pairs of subsets $\left\{K_{i}, \overline{K_{i}}\right\}, 1 \leqq i \leqq u_{k}$ of M so that no set $A_{i}, 1 \leqq i \leqq k$ is contained either in K or in $\overline{K .}$. If $u_{k}=0$ our Theorem is proved. Assume henceforth $u_{k}>0$. We shall prove that we can find a set A_{k+1} so that

$$
\begin{equation*}
u_{k+1} \leqq u_{k}\left(1-\frac{1}{2^{n}}\right) . \tag{3}
\end{equation*}
$$

(For each $i, 1 \leqq i \leqq u_{k}$, consider all subsets of n elements of K_{i} and \bar{K}_{i}.) For fixed i the number of these subsets is clearly $(|B|$ denotes the number of elements of B)

$$
\binom{\left|K_{i}\right|}{n}+\binom{\mid \bar{K}_{i}}{n} \geqq 2\binom{n^{2}}{n} \quad\left(\left|K_{i}\right|+\left|\bar{K}_{i}\right|=|M|=2 n^{2}\right)
$$

Thus the total number of subsets of n elements under consideration ($1 \leqq i \leqq u_{k}$) is at least $2 u_{k}\binom{n^{2}}{n}$.

The total number of subsets of M taken n at a time is $\binom{2 n^{2}}{n}$. Hence at least one of these sets, say A_{k+1}, occurs either in K_{i} or in $\overline{K_{i}}$ for at least
4) $\frac{2 u_{k}\binom{n^{2}}{n}}{\binom{2 n^{2}}{n}}=2 u_{k} \prod_{i=0}^{n-1}\left(n^{2}-i\right)\left(\prod_{i=0}^{n-1}\left(2 n^{2}-i\right)\right)^{-1}=$

$$
=\frac{u_{k}}{2^{n-1}} \prod_{i=1}^{n-1}\left(1-\frac{i}{2 n^{2}-i}\right)>\frac{u_{k}}{2^{n}}
$$

values of i. Hence from (4) $u_{k+1}<u_{k}\left(1-\frac{1}{2^{n}}\right)$ and (3) is proved.
Clearly $u_{0}=2^{2 n^{2}-1}$ (since M has $2^{2 n^{2}}$ subsets). Hence from (3)

$$
\begin{equation*}
u_{r} \leqq 2^{2 n^{2}-1}\left(1-\frac{1}{2^{n}}\right)^{r} \tag{5}
\end{equation*}
$$

Hence from (5) if $r=n^{2} 2^{n+1}, u_{r}<1$, thus $u_{r}=0$ and our sets $A_{i}, 1 \leqq i \leqq n^{2} 2^{n+1}$ do not have property B and the proof of Theorem 1 is complete.

By taking M to have $\left[\frac{n^{2}}{2}\right]$ elements we could show by slightly more careful calculation that for every $\varepsilon>0$ and $n>n_{0}(\varepsilon)$

$$
\begin{equation*}
m(n)<(1+\varepsilon) e \log 2 n^{2} 2^{n-2} \tag{6}
\end{equation*}
$$

It seems unlikely that (6) can be improved to any great without some new idea.

By methods used in a paper of RéNYI and myself [4] I can prove the following Theorem 2. Let M be a set of N elements. Put

$$
\begin{equation*}
k=C N 2^{n} \prod_{i=1}^{n-1}\left(1-\frac{i}{N-i}\right)^{-1} \tag{7}
\end{equation*}
$$

where C is a sufficiently large absolute constant. Then for all but

$$
O\left(\begin{array}{c}
N \\
n \\
k
\end{array}\right)
$$

choices of k subsets $A_{i}, 1 \leqq i \leqq k$ of M, the A's will not have property B.
I can show that the order of magnitude in (7) cannot be improved, but I can not determine the correct value of C.

Let M be a set of N elements. Denote by $m_{\mathrm{N}}(n)$ the smallest integer for which there exist subsets $A_{i}, 1 \leqq i \leqq m_{\mathrm{N}}(n)$ of M which do not have property B. The problem makes sense only for $N \geqq 2 n-1$ and clearly $m_{2 n-1}(n)=\binom{2 n-1}{n}$. For $N \geqq 2 n-1$, $m_{N}(n)$ is a non-increasing function of N and for sufficiently large $N, m_{N}(n)=m(n)$. Let N_{0} be the smallest integer for which $m_{N_{0}}(n)=m(n)$, probably $N_{0}=C n^{2}$. It seems to me that perhaps the order of magnitude of $m_{\mathrm{v}}(n)$ is

$$
N 2^{n} \prod_{i=1}^{n-1}\left(1-\frac{i}{N-i}\right)^{-1}
$$

This would in particular imply that if $N<c_{1} n, m_{\mathrm{N}}(n)>\left(2+c_{2}\right)^{n}$. I have been unable to throw any light on any of these questions.

MATHEMATICAL INSTITUTE, EÖTVÖS LORÁND UNIVERSITY. RUDAPEST
(Received 6 January 1964)

References

[1] A. L. Abbott and L. Moser, On a Combinatorial Problem of Erdös and Hajnal, Canad. Math. Bull., 7 (1964).
[2] P. Erdös and A. Hajnal, On a property of families of Sets, Acta Math. Acad. Sci. Hung., 12 (1961), pp. 87-123; see in particular problem 12 on p. 119.
[3] P. Erdős, On a Combinatorial Problem, Nordisk Mat. Tidskrift, 11 (1963), pp. 5-10.
4] P. Erdös and A. Rényi, On the Evolution of Random Graph, Publ. Math. Inst. Hung. Acad., 5 (1960), pp. 17-67.
[5] E. W. Miller, On a property of families of sets, Comp. Rend. Varsovie, (1937), pp. 31-38.
[6] W. M. Schmidt, Ein Kombinatorisches Problem von P. Erdős und A. Hajnal, Acta Math. Acad. Sci. Hung., 15 (1964), pp. 373-374.

[^0]: - This paper was written while the author was visiting at the university of Alberta in Edmonton.

