ON AN EXTREMAL PROBLEM IN GRAPH THEORY

BY
P. ERDÖS (BUDAPEST)

In the present paper $G(n ; l)$ denotes a graph of n vertices and l edges, K_{p} - the complete graph of p vertices, i. e. $G\left(p ;\binom{p}{2}\right), K\left(p_{1}, \ldots\right.$ $\left.\ldots, p_{r}\right)$ - the complete r-chromatic graph with p_{i} vertices of the i-th colour in which every two vertices of different colour are adjacent.

Vertices of our graphs will be denoted by x, y, \ldots, edges by (x, y). The valence $v(x)$ of x is the number of edges adjacent to x.

Denote by $m(n ; p)$ the smallest integer so that every $G(n ; m(n ; p))$ contains a K_{p}. Turán [6] (comp. also [7]) determined $m(n ; p)$ and also showed that the only $G(n ; m(n ; p)-1)$ which contains no K_{p} is $K\left(m_{1}, \ldots\right.$ $\left.\ldots, m_{p-1}\right)$, where

$$
\sum_{i=1}^{p-1} m_{i}=n \quad \text { and } \quad m_{i}=\left[\frac{n}{p-1}\right] \quad \text { or } \quad\left[\frac{n}{p-1}\right]+1
$$

Dirac [1] and I (independently) proved that every $G(n ; m(n ; p))$ contains a K_{p+1} from which one edge is missing. In fact, the following stronger result also holds:

There is a constant c_{p} so that every $G(n ; m(n ; p))$ contains a K_{p-1} and $c_{p} n$ vertices each of which is joined to every vertex of our K_{p-1} ([2], Lemma $2\left({ }^{1}\right)$).

Denote by $u(n ; p)$ the smallest integer such that every $G(n ; u(n ; p))$ contains a $K(p, p)$. The value of $u(n ; p)$ is not known and its determination seems to be a very difficult problem. As far as I know the first result in this direction is due to E. Klein and myself [3]; we proved

$$
\begin{equation*}
\alpha_{1} n^{3 / 2}<u(n ; 2)<\alpha_{2} n^{3 / 2} \tag{1}
\end{equation*}
$$

${ }^{(1)}$ This lemma concerns only the case $p=3$ but the same proof works in the general case.

Probably $\lim _{n \rightarrow \infty} u(n ; 2) / n^{3 / 2}=1 / 2 \sqrt{2}$, but it is not even known that this limit exists. The best result in this direction is due to Reiman [5] who among others proved that

$$
\lim _{n \rightarrow \infty} \sup u(n ; 2) / n^{3 / 2} \leqslant \frac{1}{2}, \quad \lim _{n \rightarrow \infty} \inf u(n ; 2) / n^{3 / 2} \geqslant \frac{1}{2 \sqrt{2}} .
$$

Kövári, Sós and Turán [4] and independently I proved that for a suitable constant β_{n}

$$
\begin{equation*}
u(u ; p)<\beta_{p} u^{2-1 / p} . \tag{2}
\end{equation*}
$$

Probably $u(n ; p)>\beta_{p}^{\prime} n^{2-1 / p}$, but this is known only for $p=2$ (see [1]).

In this note we prove the following refinement of (2):
Theorem 1. There is a constant γ_{p} such that every $G\left(n ;\left[\gamma_{p} n^{2-1 / p}\right]\right)$ contains a $K(p+1, p+1)$ from which one edge is missing.

Remarks. Clearly the structure of a $K(p+1, p+1)$ from which one edge is missing is uniquely determined.

One could conjecture (by analogy to [1]) that every $G(u ; u(n ; p))$ contains a $K(p+1, p+1)$ from which one edge is missing. This would of course be a much stronger result than Theorem 1, but, if true, it will be hard to prove since we do not know the value of $u(n ; p)$ and have no idea of the structure of the extremal graphs $G(n ; u(n ; p)-1)$ which do not contain a $K(p, p)$.

Instead of Theorem 1 we shall prove the following sharper
Theorem 2. Let $l>p$ be any integer. Then there is a constant $\gamma_{p, l}$ such that for $n>n_{0}(p, l)$ every $G\left(n ;\left[\gamma_{p, l} n^{2-1 / p}\right]\right)$ contains a subgraph $H(p, l, l)$ of the following structure: the vertices of $H(p, l, l)$ are x_{1}, \ldots, x_{l}; y_{1}, \ldots, y_{l} and its edges are all $\left(x_{i}, y_{j}\right)$, where at least one of the indices i or j is $\leqslant p$.

In other words, $H(p, l, l)$ is $K(l, l)$ from which the edges $\left(x_{i}, y_{j}\right)$, $\min (i, j)>p$, are missing.

First we prove two Lemmas.
Lemina 1. Every $G(n, m)$ contains a subgraph G^{\prime} each vertex of which has valence (in G^{\prime}) not less than $[m / n]$.

If Lemma 1 would be false we could clearly order the vertices of $G(n ; m)$ into a sequence $x_{1}, x_{2}, \ldots, x_{n}$ where for every $i, 1 \leqslant i \leqslant n, x_{i}$ is joined to fewer than $[m / n]$ vertices $x_{j}, i<j \leqslant n$. But this would imply that the number of edges of $G(n ; m)$ is less than m. This contradiction proves the Lemma.

Consider now our $G\left(n ;\left[\gamma_{p, l} n^{2-1 / p}\right]\right)$. By Lemma 1 it has a subgraph $G(N ; m)$ each vertex of which has valence $u=\left\{\gamma_{p, l} n^{1-1 / p}\right]$. Now we prove

Lemma 2. Let $c_{p, l}>0$ be any constant. Then if $\gamma_{p, l}$ is sufficiently large, our $G(N ; m)$ contains a $K(p-1, s)$ with $s=\left[\begin{array}{cc}c_{p, l} & n^{1 / p}\end{array}\right]$.

For each vertex y of $G(N ; m)$ consider all the $(p-1)$-tuples formed from the vertices which are joined to y. Since by assumption y is joined to at least u vertices, the number of these ($p-1$)-tuples counted for each y separately is at least $N\binom{u}{p-1}$. Now since $N \leqslant n$, we obtain by a simple calculation that for sufficiently large $\gamma_{p, l}$

$$
\begin{equation*}
N\binom{u}{p-1}>c_{p, l} n^{1 / p}\binom{N}{p-1} . \tag{3}
\end{equation*}
$$

Thus to some $(p-1)$-tuples correspond more than $s=\left[\begin{array}{cc}c_{p, l} & n^{1 / p}\end{array}\right]$ vertices y, i. e. (3) implies that there are $p-1$ vertices x_{1}, \ldots, x_{p-1} which are all joined to the same s vertices y_{1}, \ldots, y_{s}. In other words, our graph contains a $K(p-1, s)$ and Lemma 2 is proved.

Now we are ready to prove Theorem 2. Denote by $z_{1}, \ldots, z_{N-p-s+1}$ the remaining vertices of $G(N ; m)$, i. e. those vertices which are not included in $K(p-1, s)$. By our assumption the valence (in $G(N ; m)$) of each y is at least u and clearly for $\gamma_{p, l}>2 c_{p, l}$ and sufficiently large n, $s+p<u / 2$, hence each y is joined to more than $u / 2 z$'s. Hence there are more than $u s / 2$ edges joining the y 's with the z 's. Denote now by $v^{\prime}\left(z_{j}\right)$ the number of y 's which are joined to $z_{j}(1 \leqslant j \leqslant N-p-s+1)$. Clearly

$$
\begin{equation*}
\sum_{j=1}^{N-p-s+1} v^{\prime}\left(z_{j}\right)>\frac{u s}{2} \tag{4}
\end{equation*}
$$

and (Σ^{\prime} denotes that the summation is extended only over the z_{j} for which $\left.v^{\prime}\left(z_{j}\right) \geqslant p+l\right)$

$$
\begin{equation*}
\Sigma^{\prime} v^{\prime}\left(z_{j}\right)>\frac{u s}{2}-(p+l)(N-p-s+1)>\frac{u s}{2}-n(p+l)>\frac{1}{4} \gamma_{p, l} c_{p, l} n \tag{5}
\end{equation*}
$$

for sufficiently large $c_{p, l}$ and $\gamma_{p, l}$.
Form now for every z_{j} satisfying $v^{\prime}\left(z_{j}\right) \geqslant p+l$ all the p-tuples from the y 's which are joined to z_{j}. The number of these p-tuples, counted for each z_{j} separately, clearly equals

$$
\begin{equation*}
\Sigma^{\prime \prime}\binom{v^{\prime}\left(z_{j}\right)}{p} \tag{6}
\end{equation*}
$$

Using (5) we obtain from an elementary inequality that the sum (6) is minimal if all the $v^{\prime}\left(z_{j}\right)$ are as nearly equal as possible and if their number is as large as possible (it is $\leqslant n$). Thus by a simple computation we get

$$
\begin{equation*}
\Sigma^{\prime \prime}\binom{v^{\prime}\left(z_{j}\right)}{p}>n\binom{\left(\left[\frac{1}{4} c_{p, l} \gamma_{p, l}\right]\right.}{p}>(l-p+1)\binom{s}{p} \tag{7}
\end{equation*}
$$

for sufficiently large $\gamma_{p, l}$. Formula (7) implies that the number of these multiply counted p-tuples is larger than $l-p+1$ times the number of all the p-tuples formed from the s distinguished y 's of $K(p-1, s)$. Hence there are $l-p+1 z \prime$'s, say z_{1}, \ldots, z_{l-p+1}, satisfying

$$
\begin{equation*}
v^{\prime}\left(z_{i}\right) \geqslant p+l, \quad 1 \leqslant i \leqslant l-p+1 \tag{8}
\end{equation*}
$$

(only $v^{\prime}\left(z_{1}\right) \geqslant$! will be needed) and which are all joined to the same $p y$'s, say to y_{1}, \ldots, y_{p}. By (8) we can further assume that z_{1} is joined to y_{p+1}, \ldots, y_{l}. Let x_{1}, \ldots, x_{p-1} be the distinguished $p-1$'s of $K(p-$ $-1, s)$. Now the even graph spanned by $x_{1}, \ldots, x_{p-1}, z_{1}, \ldots, z_{l-p+1}$; $y_{1}, \ldots, y_{p}, y_{p+l}, \ldots, y_{1}$ is clearly an $H(p, l, l)$, since, by Lemma 2 , x_{1}, \ldots, x_{p-1} are all joined to all the y 's, y_{1}, \ldots, y_{p} are joined to all the z_{j} $(1 \leqslant j \leqslant l-p+1)$ by the argument following (7) and z_{1} is joined to z_{j} $(p+1 \leqslant j \leqslant l)$ by construction. Thus the proof of Theorem 2 is complete.

REFERENCES

[1] G. Dirac, Extensions of Turán's theorem on graphs, Acta Mathematica Academiae Scientiarum Hungaricae 14 (1963), p. 417-422.
[2] P. Erdös, On a theorem of Rademacher-Turán, Illinois Journal of Mathematics 6 (1962), p. 122-127.
[3] - On sequences of integers no one of which divides the product of two others and on some related problems, Mitteilungen des Forschungsinstitutes für Mathematik und Mechanik, Tomsk, 2 (1938), p. 74-82.
[4] P. Kövari, V. T. Sós and P. Turán, On a problem of K. Zaranliewicz, Colloquium Mathematicum 3 (1954), p. 50-57.
[5] I. Reiman, Über ein Problem von K. Zarankiewicz, Acta Mathematica Academiae Scientiarum Hungaricae 9 (1958), p. 269-279.
[6] P. Turán, Eine Extremalaufgabe aus der Graphentheorie, Matematikai és Fizikai Lapok 48 (1941), p. 436 -452 (in Hungarian).
[7] - On the theory of graphs, Colloquium Mathematicum 3 (1954), p. 19-30.

