COLLOQUIUM MATHEMATICUM

VOL. XIII

FASC. 2

ON AN EXTREMAL PROBLEM IN GRAPH THEORY

$\mathbf{B}\mathbf{Y}$

P. ERDÖS (BUDAPEST)

In the present paper G(n; l) denotes a graph of n vertices and l edges, K_p — the complete graph of p vertices, i. e. $G\left(p; \binom{p}{2}\right)$, $K(p_1, \ldots, m_r)$ — the complete r-chromatic graph with p_i vertices of the i-th colour in which every two vertices of different colour are adjacent.

Vertices of our graphs will be denoted by x, y, \ldots , edges by (x, y). The valence v(x) of x is the number of edges adjacent to x.

Denote by m(n; p) the smallest integer so that every G(n; m(n; p)) contains a K_p . Turán [6] (comp. also [7]) determined m(n; p) and also showed that the only G(n; m(n; p)-1) which contains no K_p is $K(m_1, \ldots, m_{p-1})$, where

$$\sum_{i=1}^{p-1} m_i = n \quad ext{ and } \quad m_i = \left[rac{n}{p-1}
ight] \quad ext{or } \quad \left[rac{n}{p-1}
ight] + 1 \,.$$

Dirac [1] and I (independently) proved that every G(n; m(n; p)) contains a K_{p+1} from which one edge is missing. In fact, the following stronger result also holds:

There is a constant c_p so that every G(n; m(n; p)) contains a K_{p-1} and $c_p n$ vertices each of which is joined to every vertex of our K_{p-1} ([2], Lemma 2 (¹)).

Denote by u(n; p) the smallest integer such that every G(n; u(n; p)) contains a K(p, p). The value of u(n; p) is not known and its determination seems to be a very difficult problem. As far as I know the first result in this direction is due to E. Klein and myself [3]; we proved

(1)
$$a_1 n^{3/2} < u(n; 2) < a_2 n^{3/2}.$$

^{(&}lt;sup>1</sup>) This lemma concerns only the case p = 3 but the same proof works in the general case.

P. ERDÖS

Probably $\lim_{n\to\infty} u(n; 2)/n^{3/2} = 1/2\sqrt{2}$, but it is not even known that this limit exists. The best result in this direction is due to Reiman [5] who among others proved that

$$\limsup_{n o\infty} u(n;2)/n^{3/2} \leqslant rac{1}{2}, \quad \lim_{n o\infty} \inf u(n;2)/n^{3/2} \geqslant rac{1}{2\sqrt{2}}$$

Kövári, Sós and Turán [4] and independently I proved that for a suitable constant β_n

$$(2) u(u;p) < \beta_p n^{2-1/p}$$

Probably $u(n; p) > \beta'_p n^{2-1/p}$, but this is known only for p = 2 (see [1]).

In this note we prove the following refinement of (2):

THEOREM 1. There is a constant γ_p such that every $G(n; [\gamma_p n^{2-1/p}])$ contains a K(p+1, p+1) from which one edge is missing.

Remarks. Clearly the structure of a K(p+1, p+1) from which one edge is missing is uniquely determined.

One could conjecture (by analogy to [1]) that every G(n; u(n; p)) contains a K(p+1, p+1) from which one edge is missing. This would of course be a much stronger result than Theorem 1, but, if true, it will be hard to prove since we do not know the value of u(n; p) and have no idea of the structure of the extremal graphs G(n; u(n; p)-1) which do not contain a K(p, p).

Instead of Theorem 1 we shall prove the following sharper

THEOREM 2. Let l > p be any integer. Then there is a constant $\gamma_{p,l}$ such that for $n > n_0(p, l)$ every $G(n; [\gamma_{p,l}n^{2-1/p}])$ contains a subgraph H(p, l, l) of the following structure: the vertices of H(p, l, l) are x_1, \ldots, x_l ; y_1, \ldots, y_l and its edges are all (x_i, y_j) , where at least one of the indices i or j is $\leq p$.

In other words, H(p, l, l) is K(l, l) from which the edges (x_i, y_j) , $\min(i, j) > p$, are missing.

First we prove two Lemmas.

LEMMA 1. Every G(n, m) contains a subgraph G' each vertex of which has valence (in G') not less than [m/n].

If Lemma 1 would be false we could clearly order the vertices of G(n; m) into a sequence x_1, x_2, \ldots, x_n where for every $i, 1 \leq i \leq n, x_i$ is joined to fewer than [m/n] vertices $x_j, i < j \leq n$. But this would imply that the number of edges of G(n; m) is less than m. This contradiction proves the Lemma.

Consider now our $G(n; [\gamma_{p,l}n^{2-1/p}])$. By Lemma 1 it has a subgraph G(N; m) each vertex of which has valence $u = \{\gamma_{p,l}n^{1-1/p}\}$. Now we prove

LEMMA 2. Let $c_{p,l} > 0$ be any constant. Then if $\gamma_{p,l}$ is sufficiently large, our G(N; m) contains a K(p-1, s) with $s = [c_{p,l} \ n^{1/p}]$.

For each vertex y of G(N; m) consider all the (p-1)-tuples formed from the vertices which are joined to y. Since by assumption y is joined to at least u vertices, the number of these (p-1)-tuples counted for each y separately is at least $N\binom{u}{p-1}$. Now since $N \leq n$, we obtain by a simple calculation that for sufficiently large $\gamma_{p,l}$

(3)
$$N\binom{u}{p-1} > c_{p,l} n^{1/p} \binom{N}{p-1}.$$

Thus to some (p-1)-tuples correspond more than $s = [c_{p,l} \ n^{1/p}]$ vertices y, i. e. (3) implies that there are p-1 vertices x_1, \ldots, x_{p-1} which are all joined to the same s vertices y_1, \ldots, y_s . In other words, our graph contains a K(p-1, s) and Lemma 2 is proved.

Now we are ready to prove Theorem 2. Denote by $z_1, \ldots, z_{N-p-s+1}$ the remaining vertices of G(N; m), i. e. those vertices which are not included in K(p-1, s). By our assumption the valence (in G(N; m)) of each y is at least u and clearly for $\gamma_{p,l} > 2c_{p,l}$ and sufficiently large n, s+p < u/2, hence each y is joined to more than u/2 z's. Hence there are more than us/2 edges joining the y's with the z's. Denote now by $v'(z_j)$ the number of y's which are joined to z_j $(1 \leq j \leq N-p-s+1)$. Clearly

(4)
$$\sum_{j=1}^{N-p-s+1} v'(z_j) > \frac{us}{2}$$

and $(\sum'$ denotes that the summation is extended only over the z_j for which $v'(z_j) \ge p+l$

(5)
$$\sum' v'(z_j) > \frac{us}{2} - (p+l)(N-p-s+1) > \frac{us}{2} - n(p+l) > \frac{1}{4} \gamma_{p,l} c_{p,l} n$$

for sufficiently large $c_{p,l}$ and $\gamma_{p,l}$.

Form now for every z_j satisfying $v'(z_j) \ge p+l$ all the *p*-tuples from the *y*'s which are joined to z_j . The number of these *p*-tuples, counted for each z_j separately, clearly equals

(6)
$$\Sigma'\binom{v'(z_j)}{p}.$$

P. ERDÖS

Using (5) we obtain from an elementary inequality that the sum (6) is minimal if all the $v'(z_j)$ are as nearly equal as possible and if their number is as large as possible (it is $\leq n$). Thus by a simple computation we get

(7)
$$\sum' \binom{v'(z_j)}{p} > n \binom{\left(\left[\frac{1}{4} c_{p,l} \gamma_{p,l} \right]}{p} \right) > (l-p+1) \binom{s}{p}$$

for sufficiently large $\gamma_{p,l}$. Formula (7) implies that the number of these multiply counted *p*-tuples is larger than l-p+1 times the number of all the *p*-tuples formed from the *s* distinguished *y*'s of K(p-1, s). Hence there are l-p+1 z's, say z_1, \ldots, z_{l-p+1} , satisfying

(8)
$$v'(z_i) \ge p+l, \quad 1 \le i \le l-p+1$$

(only $v'(z_1) \ge l$ will be needed) and which are all joined to the same $p \ y$'s, say to y_1, \ldots, y_p . By (8) we can further assume that z_1 is joined to y_{p+1}, \ldots, y_l . Let x_1, \ldots, x_{p-1} be the distinguished p-1 x's of K(p-1,s). Now the even graph spanned by $x_1, \ldots, x_{p-1}, z_1, \ldots, z_{l-p+1}$; $y_1, \ldots, y_p, y_{p+l}, \ldots, y_1$ is clearly an H(p, l, l), since, by Lemma 2, x_1, \ldots, x_{p-1} are all joined to all the y's, y_1, \ldots, y_p are joined to all the z_j $(1 \le j \le l-p+1)$ by the argument following (7) and z_1 is joined to z_j $(p+1 \le j \le l)$ by construction. Thus the proof of Theorem 2 is complete.

REFERENCES

[1] G. Dirac, Extensions of Turán's theorem on graphs, Acta Mathematica Academiae Scientiarum Hungaricae 14 (1963), p. 417-422.

[2] P. Erdös, On a theorem of Rademacher-Turán, Illinois Journal of Mathematics 6 (1962), p. 122-127.

[3] – On sequences of integers no one of which divides the product of two others and on some related problems, Mitteilungen des Forschungsinstitutes für Mathematik und Mechanik, Tomsk, 2 (1938), p. 74-82.

[4] P. Kövari, V. T. Sós and P. Turán, On a problem of K. Zarankiewicz, Colloquium Mathematicum 3 (1954), p. 50-57.

[5] I. Reiman, Über ein Problem von K. Zarankiewicz, Acta Mathematica Academiae Scientiarum Hungaricae 9 (1958), p. 269-279.

[6] P. Turán, *Eine Extremalaufgabe aus der Graphentheorie*, Matematikai és Fizikai Lapok 48 (1941), p. 436-452 (in Hungarian).

[7] - On the theory of graphs, Colloquium Mathematicum 3 (1954), p. 19-30.

Reçu par la Rédaction le 6. 10. 1964