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ON AX EXTREMAL PROBLEM IN GRAPH THEORY

BY

P . ERDÖS (BUDAPEST)

In the present paper G(a ; l) denotes a graph of a vertices and 1

edges, K,, - the complete graph of p vertices, i .e. G(p ; (2)), K(1) . . .

p r) - the complete, r-chromatic graph with p, vertices of the i-th
colour iii which every- two vertices of different _colour are adjacent .

Vertices of our graphs will be denoted by x, !!	edges by (x, y) .
The valence r(x) of x is the number of edges adjacent to x .

Denote by m (-n ; p) the smallest integer so that every G (n ; vu . (n ; p))
contains a If,, . Turán [6] (comp. also [7]) determined ill ()) ; p) and also
showed that the only G(n ; ill, (n ; p) -1) which contains no K.,, is If (Ill,,
. . . , vn,,, , ), where

n--1

vn = n and
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-

	

or
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p --1
i-1

U,'iZ3/2
: ,a(n ; 2) <1 a 2 n3J2 .

P -1

Dirac [1] and I (independently) proved that every Got ; Ill' (n ; P))
contains a K,y , from which one edge is missing. In fact, the following
stronger result also holds

There is a constant c,, so that every G(n- ; m(n ; p)) contains a
and ca n vertices each of which is joined to every vertex of our K,,--,
([2], Lemma 2 ( 1 )) .

Denote by it ()i ; p) the smallest integer such that every G(n ; u(vt ; p))
contains a K (p, p) . The value of u, (n ; p) is not known and its determina-

tion seems to be a very difficult problem. As far as I know the first result
in this direction is due to E. Klein and myself [3] ; we proved

(1 ) This lemma concerns only the case p =- 3 hot the same proof works in the
general case .
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Probably limn n (n ; 2)/,YZs 2 = 1/21 , 2, bit it is not even known that
2? -Do

this, limit exists. The best result in this direction is due to Reiman
who among others proved that

1
lim supu(n ; 2)/ )1 312

	

limn inf a (a ; 2)/n 3 / 2	 -
n-->oa

	

~

	

n-cx> 2V2

[5 ]

Kövári, 86s and Turin [4] and independently I proved that for
a suitable constant 1

(2)

	

a (a ; p)

	

/i it

	

1 .

Probably a (a ; p) -- 1) ' ,2 '/'', but this is known only for p -- 2
(see [t I) •

Tit this mote we prove the following refinement of (2) :
THEOREM 1 . There is a constant y r, such that every G('a ; [y,;n2 1 J"])

contains a K(p-F-1, p-1 1) from which one edge is massing .
Remarks . Clearly the structure of a K (p -]-1 , p -}-1) front which

one edge is missing is uniquely determined .
One could conjecture (by anatogy to I .1]) that every G(n ; n. (n ; p))

contains a K(p-1-1 . p-}-1) from which one edge is Missing . This would
of course be a much stronger result than Theorem 1, but, if true, it will
be hard to prove since we do not know the value of u. (u ; p) and have
no idea of the structure of the extremal graphs G(?; a (a ; p)-1) which
do not contain a K(p, p) .

Instead of Theorem I we shall prove the following sharper
THEOREM 2 . Let 1 > p be any integer . Then there is a constant
such, that for it > )?,( p, 1) every 0(a; [y„,cir2 ''"']) contains a subgraph
If (p, 1, 1) of the following structure : the vertices of Hop . 1, 1) are x,, . . ., x, ;
JAI . . . , Y1 and its edges are all (x;, y;), where at least one of the indices i
or j is - p .

In other words, Hop, 1, 1) is K(l, 1) from which the edges (x1 , y ;),
min (i, j) > p, are missing .

First we prove two Lemmas .
LEMMA 1 . Every G(a, m) contains a subgraph- G' each vertex of which

has valence (in G') not less than . [-a? /ir] .
If Lemma 1 would be false we could clearly order the vertices of

Got ; 7n) into a sequence x1 , x 27 . . ., x,, where for every i, I < i ~ it, x ;, is
joined to fewer than [m/n] vertices x;, i < j < n. But this would imply
that the number of edges of Got ; m) is less than m. This contradiction
proves the Lemma.
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Consider now our G(n ; [y,, ,i 11 2 -1 I"]) . By Lemma 1 it has a subgraph
G(N ; m) each vertex of which has valence a - {y, i n1-1 p ] Now we prove
LEMMA 2 . Let > 0 be any constamt . Then if y,, , , is sufficiently
large, our G(1Y ; 7n.) contains a K(p-1, s) with s - [c2, ,i m'/"] .

For each vertex y of G(N ; in) consider all the (p-1)-tuples formed
from the vertices which are joined to y . Since by assumption y is joined
to at least -u vertices, the number of these (p-1)-tuples counted for
each y separately is at least N( it 1 ) . Now since N< m, we obtain byG
a simple calculation that for sufficiently large yp,i

(3) -N

	

'it

P-1)

Thus to some (p-1)-tuples correspond more than s = [c, 'J ra y /"]
vertices y, i . e. (3) implies that there are p-1 vertices x,, . . ., x1 which
are all joined to the same s vertices y	y,, art other words, our graph
contains a K(p-1, s) and Lemma 2 is proved .

Now we are ready to prove Theorem 2. Denote by z1 , . . ., zr'-p s+,
the remaining vertices of G(N ; m), i . e . those vertices which are not
included in K(p--l, s) . By our assumption the valence (in G(N ; m))
of each y is at least a and clearly for T,,, > 2c,, ,i and sufficiently large n,
s+p < u/2, hence each y is joined to more than u/2 -Is . Hence there
are more than us/2 edges joining the y's with the --Is. Denote now by
v'(zi ) the number of y's which are joined to z; (1 < j < AT -p-s+1) .
Clearly

N p S I

(4)

N
> cp,j ni2 1) .p

us
2

and (2: ' denotes that the summation is extended only over the z j for
which r' (z!) - p -I - 1)

us

	

us

	

1
(5)

	

~''°''(";) > 2 --(p-~11)(N--p-

	

r'. (p-}-l)

	

4
Yp,zc„'u1

for sufficiently large cp,1 and y p i .
Form now for every z; satisfying v' (z1 ) p -j- l all the p-tuples from

the y's which are joined to z; . The number of these p-tuples, counted for
each z; separately, clearly equals

(r'' (z1)) .
t p
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Using (r) we obtain from an elementary inequality that the sum (6)
is minimal if all the v'(z1 ) are as nearly equal as possible and if their
number is as large as possible (it is rr) . Thus by a simple computation
we get

(v'())zs(([c ii)>t"Iys
(7)

	

p

	

> ~z

	

p

	

1)(7 )
,r

for sufficiently large y,, , , . Formula (7) implies that the number of these
multiply counted p-tuples is larger than 1-p-}-1 times the number of
all the p-tuples formed from the s distinguished y's of K(p--1, s) . Hence
there are 1--P --{- 1 z's, say z, , . . . ,

	

satisfying

v'(zi ) > p<1,

	

1 ~

	

l-p-f-1(8)

P . 1E71 t D f) S

(only v'(z 1)'- wilt be needed) and which are all joined to the same
p g's, say to y 1 , . . ., y p . By (8) we can further assume that z, is joined to
yr+ I I

	

gi • Let x„ . . ., x, ) , be the distinguished_ p -1 x's of [((p-
--1, s). Now the even graph spanned by x17 . . ., x„ r ,

	

„-i -, ;
?h,

	

y,,, y ap-,. , • • • , y, is clearly an H (p, l, 1), since, by Lemma 2,
xl , . . ., x,, , are all joined to all the y's, y„ . . ., y„ are joined to all the z;
(1 j < 1-p+1) by the argument: following (7) and z, is joined to z1
(p +1 < j < 1) by construction . Thus the proof of Theorem 2 is com-
plete .
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