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Let G he a graph . We say that G contains a complete k-gon if there are !c
vertices of G any two of which are connected by an edge, we say that it contains
a complete topological k-gon if it contains k vertices any two of which are con-
nected by paths no two of which have a common vertex (except endpoints) .
Following G . DIRAC we will denote complete k-gons by -k = and complete
topological k-gons by

	

G(k, 1) denotes a graph of k vertices and 1 edges

'the complete k-gon is thus G !c, I t I . P . TURÁN	I I proved that every

k -- 2
2(k - 1

(1)

n

	

r

	

(mod k-- I),

	

() -

contains a _1, . . and showed that this result is best possible . Trivially ever
G(n, n) contains a _3=- t and G. DIRAC [21 proved that every G(n, 2n-2)
contains a -= 4=-, and gave a G(n, 2n-3) which does not contain a
It has been conjectured that every G(n, 3rr-5) contains a <5>, but this has
never been proved and in fact it is not known if there exists a c so that every
G(n, [cnI) contains a Denote by h(lc, n) the smallest integer so that every
G(rt, h(k, n), contains a -k>, It is easy to see that

!i(k . n)

	

cz k"n .

cl, c'2 . . . . denote positive absolute constants (not necessarily the same if there
is no danger of misunderstanding) .

To show (1) it will clearly suffice to show that the complete pair graph
/ 1- \

(1, 1) does not contain a complete N~4i

	

/r, for then if we consider rt
-~ disjoint

l
copies of our (1, 1) we obtain a graph of - 2n vertices,) n

1' edges which contains
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M) V[41
t
2 ~/ r . Choosing now I to be the greatest integer for which ~4l j

we clearly obtain a proof of (I) .
Let xi , . . ., x„ y, . . ., y t be the vertices of our (1, 1) . If it would contain

an /1 41 2' we can assume that at least 21 2 Jof its vertices are x;'s . To connect
any two with disjoint paths we clearly need more than ly ;'s but there are only
1 of them, hence (1) is proved .

Perhaps

(2)

	

h(k, n) -- c2k 2n

holds uniformly in k and n . Thus in particular any (i(u, ca rte) perhaps contains

We can prove this only if c;,

	

In fact we shall prove

THEOREM I. Let r-2, c 3		1- . Then every (G(n, c. n) contains \ .,n` /,
2r+2

where c4 depends on c3 .
We postpone the proof, but deduce tile following

COROLLARY . Split the edges of a graph -==ti> into two classes, then at least
/r

	

\
one of them contains a \[.c nt 2 )A

The corollary follows immediately from Theorem I since at least one of
2

	

n'the classes contains

	

--- . - edges .2I ~2n )

	

n 5

	

6
Denote by ,i(k, 1) the smallest integer so that if we split the edges of an

f(k, 1)> into two classes in an arbitrary way, either the first contains a <k---
or the second an l= . Trivially 1(k, 2) k, f(2, 1) = 1 . Further it is known
131 that

(3)

k

	

8
.2kI
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f(k, k)

	

I
IIkl

k+l --2 1,

	

k-+-I - 2
(', ~

	

)

	

= 1(k, 1) (

	

l
k ._ I

	

k _ I

2

	

k -I
cH k (log k)

	

j (k, 3) = 1 2
.

The exact determination or sharper estimation of f(k,l) seems a difficult
problem .

Denote further by f(k 1 , 1) the smallest integer for which if we split the edges
of an _f(k,, I,)-- into two classes in an arbitrary way either the first class con-
tains a =k-= , or the second class an <l> f . Finally f(k, 1,) denotes the smallest
integer for which if we split the edges of an < f(k, 1,) into two classes in an ar-
bitrary way, then either the first class contains a -=I or the second class
contains a -- 1 --, . Trivially



(i)

(iii)
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1(k, <3> t ) _--

	

k

	

-- 1

since unless U is a tree it contains a <3>, and the vertices of every tree call
be split into two sets none of which contains an edge . It seems likely that

(4)

	

f(k„ 1,) < c,k and perhaps even f(k, l,)< c'k

but we call not prove (4) if 1-- 4 . For I == 4 both inequalities of (4) easily fol-
low from Dirac's result according to which every G(n, 2n-2) contains a <4--- .
(2), or the weaker conjecture : h(k, n)-c;'n would easily imply (4) .

We shall prove
THEOREM 2 .

c sk' = f(kt, It) - c, 0k'

(11 1
4

	

2
(ii)

	

e 1 l 3 .(logl) ;

	

f(3.1,)

	

+

c, .)k3 (log k) I

	

f (k, k,) .

S

In a paper of P . ERDÖS and R . RADÓ [4 1 the following partition symbol is
introduced :

m (In, /11) 22 denotes the statement that if we split the edges of a complete
graph of power m into two classes in an arbitrary way then there exists a comp-
lete suhgraph of power In all whose edges belong to the same class . a!

denotes the negation of this statement .
We introduce the symbols m -- (nn,, m,)', m -- (m', m,)= which have a self

explanatory meaning . (Similarly as the notations ,f(k,, I,), f(k, I) .)
THEOREM 3 . Let m be any infinite cardinal . Then

m--- (m,, m,)'.

REMARK . W . SIERPINSKI (5] proved 2t`°

Very likely m-(in, m,)' also holds for every m a,, . We can prove this only
in case in is singular and is the sum of Ro cardinals less than m : using a theo-
rem of a forthcoming triple paper with RADO (6] . We will not give the details .

Now we turn to the proofs of our Theorems .
PROOF OF THEOREM 1 . We need the following

LEMMA . Let s be an integer, a

	

I and let A,,

	

As be subsets of a set
s

S sotisfying

S! _-- n

	

A; ; ::-- an

	

(i = l , . . . , s) .

S' denotes the number o f elements o f the set S) . Then for some 1

A; (1 Aj , = n(sa -- I

	

S
) (

	

I
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The proof follows immediately from the obvious inequality

sun == r	,t4- ~' A , ,- A i .

Let now c g > ,- I 	and let there be given a (G(n, c 0 11 2) = G . A simple argu-
2r+2

ment shows that our G contains at least c13n vertices of valency ~_ c 14n where

c, is an arbitrary number satisfying T I 1 - ('14

	

2c13 and c li could easily be de-

termined explicitely as a function of c14 ) . Denote these vertices of our G by
xl , . . ., x,, (p = [C1311 1) . To each x; I i- p we make correspond the set A,
which consists of the vertices connected to x ; by an edge, A,`=c14 n . Thus
by our lemma among any r± I A,'s say Ai 1 , . . ., Ai, . + , there are two say Aii,
and Ai,, for which

(5)

	

A;i1 ;A 2 > r„n .

Define now a graph G* spanned by the vertices xl , . . ., x,, as follows :
Two vertices x, and x1 are connected in G* by an edge if A ; and Ai satisfy
(5) . By (5) the maximum number of independent vertices of G* is at most r .
Hence by the second inequality of (3) G* contains a complete graph of at least

q vertices Y1 , . . ., y,,, q cj,n Let now s = [c-,n r4 < cls sufficiently small .
A simple argument shows that the vertices y1 , . . ., v, form a s> t , in fact
any two vertices y ; and y1 can be connected by disjoint paths of lenght 2 .
To see this observe that if we want to connect y1 to y; j> i by a path of length
two, by (5) there are c,;n possible vertices we can use for this purpose and at

most
I

I l - l
s

	

r, ;n (if c1 is sufficiently small) have been used up-this proves
. 2

	

2
that y, . . . y3 is an

	

>, in 0 and hence completes the proof of Theorem I .
PROOF OF THEOREM 2 . The upper bound of the first inequality of Theorem 2

is just a restatement of the Corollary of Theorem 1 . We only outline the proof
of the lower bound . It is well known and can be shown by simple probabilistic
arguments 181 that the edges of the graphs --k> can be split into two classes
in such a way that if A; . .(log k) -, --- then every subgraph of =k- of A,,

vertices contains (- ±o(I)I .42. edges of both classes . Let now c,,

	

and consi-

der such a splitting of the edges of a complete graph of (c sk 21 vertices . We
show that neither class contains a < l; >, . For if say the first class would con-

tain a -,: k -, say x1 , . . .,x,;, then

	

+o(I)~k2 of the edges (x„ x) I ~ i

	

k
4

is in the second class . Thus these I-+o(l)Ik2 pairs of vertices (x,x1 ) have to
4

be connected by disjoint paths of length at least two (using edges of the first
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class) . But for this purpose we need at least
4

;-o( I ))k°> c„k vertices (if h>

>k„(c,,) is sufficiently large). Thus the first inequality of Theorem 2 is proved .
The upper bound of the second inequality of Theorem 2 is the upper bound

in the third inequality of (3). The lower bound follows easily front the lower
bound of the third inequality of (3) . From this inequality it follows that we
can split the edges of an

	

n> into two classes so that the first class does not
/

	

'
contain a triangle and the second class does not contain a V~c,,n 2 log n'/ .
Thus it follows from (1) by a simple computation that for sufficiently large

t \

c o (log n)' ~/ contains more than n edges of the first class . Thus
/

	

:c

	

? \
if the second class would contain a VLc larta (log n)2 ]/ t we would need more
than n vertices for the necessary disjoint paths - this completes the proof of
the second inequality .

Now we outline the proof of the third inequality of Theorem 2 .
t

	

2

Split the vertices of a complete graph of ii vertices into 1n :t (log rn) ; ]

	

p
classes C;, each having nearly the same number of vertices (i . C . each C I - i p

2

	

2

	

2-

	

2_
contains C n :' ( log n) ; I I or [n' (log t1) :1

J

+
I

vertices) . Two vertices which are
in different C i's are connected by an edge of the first class . The edges of each
C; we divide amongst the two classes in such a way that every complete sub-

2

	

2
graph of h(n) vertices of C; satisfying h(n) log n -- ' --> -, contains 11t :f (log n) °
edges of both classes . See p. 146 of this paper. A simple argument (used
already in the proof of Theorem 2) gives that the first class does not

/

	

T

	

T \

contain a \/L1911 ' ( log n)' ]/ and the second class does not contain a

<1C 1 ,1 1 ;" ( log ii) ; J/ if c l ,, is sufficiently large .
We do riot know how far the third inequality of Theorem 2 is from being

hest possible, since we have no satisfactory upper bound for f(k, k,), we can

only show lim /(k, k)'`

	

I and we do not give the details since probably this

estimation is very poor . It seems possible that every ro (,tt, e 11 2
1) contains a

I c2„c =-, any two vertex of which are connected by disjoint paths of length
one or two. This result if true would be very useful in deducing good upper
hounds for our function f(k, kr ) but we have not been successful in deciding it .
PROOF or THEOREM 3. Consider a set S of power m and assume that the
edges of the complete graph spanned by S are split into two classes I and 11 .
Define a two valued measure on the subsets of S so that all sets of power < m
have measure 0. Without loss of generality we can assume that there is a sub-
set S' of measure I so that if x c S' the set of vertices connected with x in class
I is of measure 1 . But then a simple argument by transfinite induction shows
that any two vertices of S' can be connected by disjoint paths of length two,
whose edges belong to class I (since if .v S', yF S' the set of vertices /, for which
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the edges (x, z) and (y, z) both belong to class I is of measure I and therefore
of power in) . This completes the proof of Theorem 3 .

In connection with Theorem I we can put the following problem : Let
e21 - 1, c 22 --c;, be two constants rj2 and let there be given n sets of measure
1-~ c21 in (C, 1) and determine the largest integer An, r, c2J c22) = f so that there
are always at least / sets any r of them have an intersection of measure = c22•'
One can easily obtain lower hounds for /(n, r, c, 1 , c.,,) by Ramsay's theorem which
are not too bad for r --= 2, in fact as in the proof of Theorem I we obtain from
the second inequality of (3) that

(6)

	

/(n, 2, c21, c22) - n`t`'2, . 2 ..>

where t(c,,, rz2) depends only o1, c21 and c 22 . For r> 2 the lower bounds obtained
for f(n, r, c_,, c.,,) by Ramsay's theorem are probably very poor, quite possibly

/(n, r c21, ('22) > n1(1,

	

, c z ;) .

Finally we show that (6) is not very far from being best possible . We shall
show that

(7)

	

iln 2,

	

cI -- nftct

	

for

	

I
.f

where 1(c) is a function which we could easily determine explicitely .
Recently G . KATONA proved the following conjecture of CHAO-KO, R .

RADO and P . ERDÖS . [7] (KATONA'S result is not yet published .) Let jSj = 2rn
and {A;}, ; -„ be a family_ of subsets of S so that for every I i- - n
A;

	

.-1 .

	

2k. Then
'U

	

2m(8)

	

max a
f,,-7,

	

I11+r ~ .

(8) will easily imply (7) . We define a graph as follows : Let S 2m and let
the vertices of our graph be the subsets of S containing m or more elements .
\1 e connect two vertices by an edge if the corresponding sets have fewer than

2cm elements in common (c -- I-- . By the theorem of KATONA stated above the
4

maximum number of independent vertices is

(9)

	

2,

	

2m

	

(,~ ., >> )1
`",

.,,, I m + r f

where (, depends only on c (the inequality in (9) is well known and follows bv ,
a simple computation) . Our graph has > 2"ii -1 vertices. Now make correspond

to the i-th element of S the interval 1

	

1

	

l -I and to a subset the union of
2m 2m

the intervals corresponding to the elements . An independent set of vertices
gives a collection of sets any two of which have an intersection of measure

c, but if two vertices are connected their intersection has treasure ~ c, hence
(9) implies (7) .

A well-known resuIt of 191 states thet An, r, c .,,, c_.,)--r if n -n„(r, c .,,, c„) .
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It is easy to see that if c - _ ~ then our graph contains no triangles, hence
h

our construction gives a simple example of a graph of n vertices which contains
no triangle and for which the maximum number of independent vertices is
less than n' .

It is well known that

	

r, c21 , C22) _ t~„ and it is not hard to prove that
if there are given in sets of measure > c 21 there are always in of them so that
the intersection of any R ( , of them has treasure

	

C21 .

References

140

P. TURÁN, ()it the theory of graphs, Colloquium Math ., 3 (1954), 19--30, see also Mat .
és Fiz. Lapok, 48 (1941), 436 -- 452 (in Hungarian) .
G. DIRAC, fit abstrakten Graphen vorhandene vollständige 4-Graphen rind ihre Unter-
teilungen . Math. Nachr ., 22 (1960), 61 -85 .

P. ERDÖS and G . SZEKERES, A combinatorial problem in geometry, Comp. Math ., 2 (1935),
463-470 ; C. FRASNAY, Stir des fonctions d'entiers se rapportant au théoréme de Ram-
say, C. R . Acad. Sci . Francais, 256 (1963), 2507-2510 ; P. ERDÖS, Some remarks on
the theory of graphs, Bull . Amer. Math . Soc., 53 (1947), 292 -299 ; P. ERDÖS, Graph
theory and probability II ., Canad. J. Math ., 13 (1961), 346-352 .

P. ERDÖS and R. RADO, A partition calculus in set theory, Bull. Amer. Math . Soc ., 62
(1956), 427 -4W' .
W. SIERPINSKI, Stir un probéme de Ia théorie des relations, Annali R. Scuola Norm .
Sup. de Pisa, Ser. 2, 2 (1933), 285-287 .

P. ERDÖS, A. HAJNAL and R. RADO, Partition relations for cardinals . This paper is
expected to appear in Acta Math. Acad . Sci . !lung .

P. ERDÖS, C. Ko and R . RADO, Intersection theorems for systems of finite sets, Quart .
J. Math ., 12 (1961), 313 - 320 .

ERDÖS PÁL, Ramsay is Van der Waerden tételével kapcsolatos kombinatorikai kérdé-
sekről, Mat . Lapok, 14 (1963), 29-38 (in Hungarian) .


	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7

