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ABSTRACT

An r-graph is a graph whose basic elements are its vertices and r-tuples . It is
proved that to every 1 and r there is an e(l, r) so that for n > no every r-graph
of n vertices and n'-E(i, r) r-tuples contains r . /vertices P),I5 j < r, l < i < l,
so that all the r-tuples (x i ,( 1 ), xi2 (2 ) ' . . . , x1 (')) occur in the r-graph .

By an r-graph G (')(r >_ 2) we shall mean a graph whose basic elements are its
vertices and r-tuples ; for r = 2 we obtain the ordinary graphs. These generalised
graphs have not yet been investigated very much . G ( ') (n ; m) will denote an r-graph

of n vertices and m r-tuples ; Gt'1(n
;(n)),

the complete r-graph of n vertices,
r

will be denoted by K(')(n), i .e ., Kt' 1(n) contains all the r-tuples formed from
n elements . Kt' 1(n 1 , . . ., n,) will denote the r-graph of E = 1 ni- vertices andfj= 1 ni
r-tuples defined as follows : The vertices are

x;'1,

	

:5 r, 1<i<==n,

and the r-tuples of our r-graph are the frj =1 nj r-tuples

(xi 1 ), xia > ' . . . x~' 1 ), 1 < i,< nj ,

	

1 <j < r.

Thus K(2)(2,2) is simply a rectangle.
Denote byf(')(n) the smallest integer so that every G(')(n ;f(')) contains a com-

plete r-graph of l vertices .
As is well known Turán [5] determined f'(2)(n) for every l and n and also proved

that there is a unique G (2) (n ;ff 2)(n) - 1) which contains no complete 2-graph
of l vertices (ordinary graphs have to be denoted as 2-graphs here). In particular
f32 (n) = [n'/4] + 1 .

For r > 2 the determination of f( "'( n) seems to be a very difficult question
which is unsolved for all r > 2, 1 > r . (This question was also posed by Turán .
Turán in particular conjectured that

(1)
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f 5 3)(n) = n 2(n - 1) .
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Vera T. Sós observed that if (1) is true then the extreme graphs are certainly
not unique, and this may be one reason why the proof of (1) is difficult .

It is easy to see that

nlim ft( ' ( n),/

	

) = Cdr)
n=oo

	

r

exists, but the value of c;' ) is not known for any r > 2, 1 > r.
Denote by f(n ; K(')(I1, . . .,1,)) the smallest integer so that every

G(''(n ;f(n ; K(`)(I1, . . . ,1,))

contains a K ( ' ) (11 ,1,).If~1=1h>n we define : f(n ;K(')(l1, ,l,))= (n )+1.

In particular, f (n ; K (2)(2, 2)) is the smallest integer so that every
G(2)(n ;f(n ; K(2) (2,2)) contains a rectangle. E. Klein and I [1] proved that

(2)

	

c1n 3 /2 <f(n ;K (2) (2, 2)) < c 2n 3/2•

Very likely

(3)

	

lim f (n ; K(2)(2,2))/n 3/2 = -1
n=00

	

2 J2

but it is not even known that the limit in (3) exists .
Kövári, the Turáns [4] and I showed that

f(n ; K (2)
(1,1)) < cn 2-1 /' .

Probabby

(4 )

	

f(n ;K(2)(1,1)) > c'n

but we are unable to prove (4) for 1 > 2 .

Stone and I [2] proved that for every s > 0 and a sufficiently small c, and
n > no(s)'

(4')

	

f (n ; K (2)([c E log n], [c log n])) < En 2 .

It can be shown by probabilistic methods (similar to those used in [4] that for

sufficiently large c E

(4")

	

f(n ;K (2)([c j logn],[c" e logn])) > (1 -s)(2 ) .

In the present paper we first of all shall prove the following
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THEOREM 1 . Let n > no (r, 1),l > 1 . Then for sufficiently large C=(C is - inde-
pendent of n, r, 1)

(5)

We only prove the upper bound and will discuss the lower bound later . We use
induction with respect to r . First we prove the right side inequality of (5) for
r = 2, (this is substantially contained in [61, then we use induction with respect
to r.
Consider now the case r = 2 . Denote the vertices of our graph G (2)(n ; t),

t >= n 2-1" by x1, • • • , x,,, and by v(x,) we denote the valence of x i (i .e . v(x i ) denotes
the number of edges incident to x 1 ) . Clearly

(6)

	

Z v(x i ) >_ 2n2-1/1
i=1

Let xlil , • • •, X""() ,, be those x,'s which are joined to x i . Form all the l-tuples from
these vertices for all i, 1 <_ i <_ n . The number of these l-tuples (each counted
with the proper multiplicity) clearly equals

(7)

An elementary inequality states that the sum (7) is a minimum if all the v(xi) are

equal ( Y-i= 1 v(x i) satisfies (6) ((
1

) = 0 if y < 1 . Thus by a simple computation

for n > n o (1)

i =1 (

v(l i)
) > n (

2n'
1 1 )

nr-c(/II_1)<f(n ;K(')(l . . . 1)) < n r - (1/1r -1 )

n
V(xi)

i=1

	

l

	

)

Hence there are 1 vertices y 1 , • • • , y1 which are all joined to the same l vertices
x,,, • • • x 11 , which means that our graph contains a K (2)(l,1) as stated .

Assume now that the right side inequality of (5) holds for r - 1, we shall prove
it for r . First we need the following

LEMMA . Let S be_a set of N elements y 1i • • •, yN and let A i, 1 <_ i <_ n, be subsets of
f . (Assume that fl(A i denotes the number of elements of A i)

(8)

	

Y. A, Z nN
i=1

	

W
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Then if n >_2hw1 there are 1 distinct A's, A,,, • • • , A,,, so that

(9) n A11 >_N .i = 1

	

2w

Denote by f,(y) the characteristic function of A; (i .e ., f,(yj) = 1 if yj is in A,, and
is 0 otherwise) . Put

n

F(y) _

	

fl(y) .
1=1

Clearly by (8)

N

	

nN
(10)

	

E F(yj) -w .
j=1

Thus from (10) we obtain by an elementary inequality that

N

E F(yj)i
j=1

is minimal if for all j F(yj) = n/w, or

(11)

	

E F(yj)`~ N (~)i .j = 1

	

w

On the other hand we obtain by a simple argument

(12)

	

E F(yj)`= E Ti,-r) A,2 n • n A,,
j=1

where the summation in (12) is extended over all the choices of i, 	i, (1 <_ i, <_ n) .
There are H;1 (n - i) <_ n 1 choices of i,, . . ., i, where all the indices are distinct,
and if (9) would be false the contribution of these terms to the sum (12) would be
less than

Nn'
2w'

The number of the summands in (12) where not all the indices are distinct is
easily seen to be less than 1 2 n1-1 . The contribution of each of these terms to the
right side of (12) is clearly at most N . Thus finally from (12) and (13)
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F(y;) ' <
Nnt + l 2n l-1N.

l=1

Now since n >= 21 2w' (14) contradicts (11) . Thus (9) must hold for at least one
choice of distinct A,'s, 1 <_ i < l which completes the proof of the Lemma .

The Lemma is clearly not best possible, but is good enough for our purpose .
Now we are ready to prove the right hand inequality of (5) for r > 2 . Assume

that it has already been proved for r - 1 if n > n o(r - 1, 1), and we are going to
prove it for r if n > n o(r,1) . Suppose then that we have a G ( " )(n ; t) with
t > nr-(1/,"- ') . Denote by x 1 , • • , x„ the vertices of our G (" ) and by y1, • • • , YN,
N= (rn ),t* set of all (r - 1)-tuples formed from the x,, 1 S i -<- n. P(" ) , • , P("~

denotes the t r-tuples of our G ( " )(n ; t). To apply our Lemma denote by A; the set
of all (r - 1)-tuples yj such that y;Ux, = Pk" ) for some 1 <_ k t . We evidently
have

n _
I A,= rt >_ rnr-1/j'-' > nNr ! n-1/~' '

Thus our Lemma applies with N = ( r n 1 ) , w = n"'-'/r!, since for

n > n o (r,1) n z 21 2 w 1 is clearly satisfied . We thus obtain that there are I distinct
A's A,,, • • •, A,, for which

I I

A > 1( n) (r! n-'/"-')' > nr
i=1 `~ - 2 r-1

By (15) there are more than nr-l-l ,,r-2 (r - 1)-tuples

(16)

	

p(r-1) , . . . p(r-1) , t1 > n r-1

so that all the r-tuples

(17)

	

(x,, 0 P("-1) x,,UP;'-1), 1 < s < 1 , 1 Sj < t1

is clearly satisfied by our construction) are one of the P ;') 's of our G ( ' )(n ; t) .
These (r - 1)-tuples define a

G('- 1) (n - 1 ; t1)' tj > n

which by our induction hypothesis contains a K ('- 1)(l, if n > I + no(r - 1, I) .
By (17) this implies that our G(") ( n ; t) contains a K~' )(l, , l) which proves the
right side inequality of (5) .
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Theorem 1 easily implies the following

COROLLARY . Let n > no (r, 1), t1 > n, i = 1, , r . Let

"
G (r) (y_ 1 t . ; U ), U > nl/fir_ 1 `H t,

be s subgraph of K(r) (t" . . .' tr) . Then G(r)( L,,izl ti ; U) contains a K(")(l, . . ., 1)
A set of t, elements can be decomposed into the (non-disjoint) union of

[t;/[(n/r)]] + 1 sets having [n/r] elements . Hence clearly a K(")(tl, . . .,tr) can be
decomposed into the union of at most

t
PI[

	

n
l -[ r

]
-

3 "r"
<	fl t;n" =1

K (" ([n/r], • • •, [n/r])'s (the union is non-disjoint but every r-tuple of K( ")( t 1 , • • •, t' )
occurs in at least one of the K(")([n/r], • • •, [n/r])'s) . Thus at least one of these
K(r)([n/r], • • •, [n/r]'s say K (r) contains at least n r-1 " -"r-tuples. Our K ( " ) has
r[n/r] S n vertices, hence the corollary follows from theorem 1 (the right side
inequality of (5)) .

The corollary has applications in number theory, this will be discussed in a
subsequent paper.
Without much change in the proof of Theorem 1 we could show that the right

side inequality of (5) holds for every n >_ rl. But in fact the right side of (5) is
trivial if 1 > 2 (log n) 1 /r -1 , for then

( n) <
r

	

'

Further we can prove the following

THEOREM 2 . Let a > 0 be any number, n > n o (a,1,r), 2 <_ I < a(logn)
Then we have for a sufficiently large absolute constant C1

(18)

	

(n) n-c,/i'
' <f(n ;K("'(1, . . .,1)) < ( n ) n -1 /I" - ',

r

	

r

We do not prove the upper bound of (18) since it is similar to that of (5), we have
only to carry out the estimations and the induction with respect to r a little more
carefully . The most interesting special cases are those which correspond to (4')
and (4") . For every c > 0 and a sufficiently small c (.")

(18')

	

f(n ;K(")([c(.")(logn)1/(r-1)], . . ., [c(,")(logn)1/(r-1)] < en".
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(18) in fact follows from the fact that the right side inequality of (5) holds for
every n z Ir. Further we have for a sufficiently large c8 (")

(18")

	

f(n;K(r)([c(,")(log')])) > (1 -s)( n )

To give the reader an illustration how to prove the lower bound of (5) and (18)
we prove in full detail (18") for e = 1 . In fact we prove a stronger result . If G ( " )(n ;m)
is an r-graph then G ( " )(n ; m) will denote its complementary graph i .e. the

G( ")(n ;( n)
r

- m) whose r-tuples are precisely those which do not occur in G (" )(n ; in) .

THEOREM 3 . Putt = [4(logn)1""'-')] + 1 . For every n there is a G ( " )(n)* so that
neither G (" )(n) nor G ( ' )(n) contains a K( ' )(t, • • • , t) .

The proof will follow very closely the method used in [3] . The total number
of r-graphs G(')(n) is clearly 2 (ni" ) . The number of those r-graphs for which either
G ( ' )(n) or G (")(n) contains a K(") (t, • t) having the vertices x;') , 1 < i < t ; 1 <_ j <_ r
clearly equals

2 . 2(n/")-try

since the t"r-tuples of our K(') ( t, •t) either all have to belong to our G (") (n), or
none of them belong to our G`)(n) . The number of choices for our K(") ( t, • • •, t)
is clearly less than n"/r! <_ In". Therefore the number of graphs G (')(n) for which
G (" )(n) or G ("'(n) contains a K ( " )(t,

	

t) is clearly less than

n"t ' 2 ("/" )-tr < 2(°1 ") .

Thus there is a G( " )(n) so that neither G (")(n) nor G ( " )(n) contains a K (')(t, . . ., t), as
stated .

The proof of the lower bound of (5) and (18) uses the same methods combined
with the methods of [4] .

It is possible that

lim f(n ; K(') ( 1, . . ., 1))/n

exists and is different from 0 (by (5) it is < A 1), but as stated in (3) this is not
even known for r = l = 2 .

REFERENCES

1 . P. Erdös, On sequences of integers no one of which divides the product of two others and
on some related problems . Izv. Nauk Mat . i Mech . Tomsk 2 (1938), 74-82 . (The best estimation
off(n ; K 2 (2,2)) is due to I. Reiman, Über ein Problem von K . Zaranbievicz, Acta Math. Hung .
Acad. Sci ., 9 (1958), 269-273 .

* G(')(n) is an r-graph having n vertices, the number of its r-tuples is not specified .



190

	

P. ERDÖS

2. P. Erdös and A . H. Stone, On the structure of linear graphs, Bult. Amer. Math . Soc .
52 (1946), 1087-1091 .

3 . P. Erdös, Some remarks on the theory of graphs, Bull. Amer . Math . Soc . 53 (1947),
292-294 .

4. P . Erdös and A . Rényi, On the evolution of random graphs, Publ . Inst . Hung. Acad . Sci .
5 (1960), 17-61 .

5 . P. Turin, On the theory of graphs, Colloqium Math . 3 (1954), 19-30 .
6 . T . Kövári, Sós V.T. and P. Turin, On a problem of K. Zarankiewicz, Colloquium Math .

3 (1954), 50-57 .

MATHEMATICAL INSTITUTE

UNIVERSITY OF BUDAPEST


	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8

