on the irrationality of certain ahmes Series

By

P. Erdös and E. G. Straus*
 [Received January 22, 1964]

By an Ahmes series we mean a series of reciprocals of positive integers $\Sigma 1 / n_{k}$. In this note we show that the famous series

$$
\begin{equation*}
1=\frac{1}{2}+\frac{1}{3}+\frac{1}{7}+\frac{1}{43}+\ldots+\frac{1}{n_{k}}+\ldots \ldots \tag{1}
\end{equation*}
$$

with $n_{k+1}=N_{k}+1=n_{k}^{2}-n_{k}+1$, where N_{k} denotes the least common multiple (in this case the product) of n_{1}, \ldots, n_{k}; is typical for Ahmes series with rapidly inoressing denominators which represent rational numbers.

Theorem 1. Let $\left\{n_{k}\right\}$ be an increasing sequence of positive integers so that
(i) $\lim \sup n_{2}^{2} / n_{n+1} \leqq 1$,
(ii) $\left\{N_{n} / n_{k+1}\right\}$ is bounded;
then the series $\Sigma 1 / n_{k}$ is rational if and only if $n_{k+1}=n_{k}^{2}-n_{k}+1$ for all $k \geqq k_{\mathrm{e}}$ in which case

$$
\begin{equation*}
\sum \frac{1}{n_{k}}=\frac{1}{n_{1}}+\ldots+\frac{1}{n_{k_{0}-1}}+\frac{1}{n_{k_{0}}-1} \tag{2}
\end{equation*}
$$

Proof. Assume $\Sigma 1 / n_{n}=a / b$, where a and b are integers. Write $b N_{k}=c_{k} n_{k+1}-d_{k}$ with $c_{k s}, d_{k}$ integers and $0 \leqq d_{k}<n_{k+1}$. Then c_{k} is positive and bounded by condition (ii). Thus, modulo 1 ,

$$
0 \equiv\left(c_{k} n_{k+1}-d_{k}\right)\left(\frac{1}{n_{k+1}}+\frac{1}{n_{k+2}}+\cdots\right)
$$

$$
\begin{equation*}
\equiv-\frac{d_{k}}{n_{k+1}}+\frac{c_{k} n_{k+1}-d_{k}}{n_{k+2}}+O\left(\frac{n_{k+1}}{n_{k+a}}\right) \tag{3}
\end{equation*}
$$

[^0]Hence

$$
\begin{equation*}
d_{k} \equiv c_{k} \frac{n_{k+1}^{2}}{n_{k+2}}-d_{k} n_{k+1}^{n_{k+2}}+o(1)\left(\bmod n_{k+1}\right) \tag{4}
\end{equation*}
$$

But

$$
o \leqq c_{k} \frac{n_{k+1}^{2}}{n_{k+2}}-\frac{n_{k+1}^{2}}{n_{k+2}} \leqslant c_{k} \frac{n_{k+1}^{2}}{n_{k+2}}-d_{k} \frac{n_{k+1}}{n_{k+2}}+o(1) \leqq c_{k}+o(1),
$$

So that (4) yields

$$
\begin{equation*}
d_{k} \leqq c_{k} \text { for all sufficiently large } k . \tag{5}
\end{equation*}
$$

Now

$$
c_{k+1} n_{k+2}-d_{k+1}=b N_{k+1} \leqq n_{k+1} b N_{k}=c_{k} n_{k+1}^{2}-d_{k} n_{k+1}
$$

and therefore

$$
\begin{equation*}
c_{k+1} \leqq c_{k} \frac{n_{k+1}^{2}}{n_{k+2}}+o(1) \leqq c_{k}+o(1) \tag{6}
\end{equation*}
$$

so that $c_{k+1} \leqq c_{k}$ for all sufficiently large k, which means $c_{k}=c=$ constant for all suffieiently large k. Aecording to (6) this is possible only if

$$
\begin{equation*}
\lim n_{k}^{2} / n_{k+1}=1 \tag{7}
\end{equation*}
$$

Then (4) yields $d_{k}=c$ for all $k \geqslant k_{1}$ and (3) becomes

$$
\begin{equation*}
\frac{1}{n_{k+1}}=\frac{n_{k+1}-1}{n_{k+2}}+\left(n_{k+1}-1\right)\left(\frac{1}{n_{k+1}}+\ldots\right), k \geqslant k_{1} ; \tag{8}
\end{equation*}
$$

or

$$
\begin{aligned}
n_{k+2} & =n_{k+1}^{2}-n_{k+1}+\frac{n_{\lambda+1}^{2}}{n_{k+2}} \cdot \frac{n_{k+2}^{2}}{n_{k+3}}+o(1) \\
& =n_{k+1}^{2}-n_{k+1}+1+o(1)
\end{aligned}
$$

so that

$$
\begin{equation*}
n_{k+2}=n_{k+1}^{2}-n_{k+1}+1 \tag{9}
\end{equation*}
$$

for all sufficiently large k.
The last statement of the theorem is now obvious since

$$
\frac{1}{n_{k 0}-1}=\frac{1}{n_{k_{0}}}+\frac{1}{n_{k_{0}+1}}+\ldots+\frac{1}{n_{k-1}}
$$

for all $k>k_{0}$.

We now wish to examine to what extent the conditions (i) and (ii) of the theorem are necessary. It is clear that the mere finiteness of \lim sup n_{k}^{2} / n_{k+1} does not suffice. As a trivial example consider the series $\Sigma 1 /\left(a n_{k}\right)$ where a is a positive integer and $\Sigma 1 / n_{k}$ is the series in (1). Here obviously $\lim \quad n_{k}^{2} / n_{k+1}=a$ while condition (ii) remains valid, A somewhat less trivial example with $\lim \sup n_{k}^{9} / n_{k+1}=a$, an integer, and \lim inf $n_{k}^{2} / n_{k+1}=1$ is given by the series $1 / a=\Sigma 1 / n_{k}$ where $n_{1}=a+1$ and $n_{2 k+1}$ is the least integer so that $1 / n_{1}+\ldots+1 / n_{2 k+1}<1 / a$ while $n_{2 k}$ is the lenst integer so that $1 / n_{1}+\ldots+1 / n_{2 k-1}+1 /\left(n_{2 k}-a+1\right)<1 / a$. Then $n_{2 k+1} \equiv 1(\bmod a)$ and $n_{2 k} \equiv 0$ $(\bmod a)$ with $n_{2 k}=n_{2 k-1}^{2}-n_{2 k-1}+a$ and $n_{2 k+1}=\left(n_{2 k}^{2} / a\right)-n_{2 k}+1$ so that $\lim n_{2 k-1}^{2} / n_{2 k}=1$ while $\lim n_{2 k}^{2} / n_{2 k+1}=a$ and $N_{k} / n_{k+1} \leq a^{-[k / 2]+1} n_{1} \ldots n_{k j} / n_{k+1}$ is bounded. It would be casy to modify the rule of construction so that $\left\{n_{k}\right\}$ satisfies no algebraic recursion relation. However, if we strengthen condition (ii) somewhat we can obtain information about the behaviour of n_{3}^{2} / n_{k+1}.

Theorem 2. Let $\left\{n_{k}\right\}$ satisfy
(i) $\left\{n_{E}^{2} / n_{R+1}\right\}$ is bounded;
(ii) $\left\{N_{k}^{*} / n_{2}+1\right\}$ is bounded, $N_{\mathbf{2}}^{*}=n_{1} n_{2} \ldots n_{k}$.

If $\Sigma 1 / n_{k}$ is rational then $\left\{n_{2}^{2} / n_{k+1}\right\}$ has only a finite number of

Proof. We proceed as in the proof of Theorem I replaving N_{k} by N_{k}^{*}. The proof of the boundedness of d_{k} from (4) remains valid, while (6) becomes

$$
c_{k+1}=c_{k} \frac{n_{k+1}^{2}}{n_{k+2}}+o(1)
$$

so that all limiting values of $\left\{n_{i}^{2} / n_{k+1}\right\}$ are rational numbers whose numerators and donominators do not exceed the bound of $\left\{b N_{k}^{*} / n_{\mathrm{k}+1}\right\}$. If $\lim \inf n_{k}^{2} / n_{k+1}=1+8>1$ then

$$
\frac{N_{k}^{*}}{n_{k+1}}=\frac{1}{n_{1}} \cdot \frac{n_{1}^{2}}{n_{2}} \cdot \frac{n_{2}^{2}}{n_{3}} \cdot \cdots \frac{n_{k}^{2}}{n_{k+1}}>C(1+\delta)^{k}
$$

where C is a positive constant, contrary to condition (\ddot{i}^{\prime}).
As to condition (ii), it may well be that Theorem 1 remains valid without it. Its main use in the proof lies in the derivation that c_{k} is constant for large k from the inequality (6). This derivation can be made under weaker hypotheses.

Theorem 3. Let $\left\{n_{k}\right\}$ satisfy (i) and
(ii') $\quad \lim \sup \frac{N_{k}}{n_{k+1}}\left(\frac{n_{k+1}^{9}}{n_{k+2}}-1\right) \leqq 0$,
then $\Sigma 1 / n_{k}$ is rational if and only if $n_{k+1}=n_{k}^{2}-n_{k}+1$ for all $k \geqq k_{0}$.
Note that (i) and (ii) imply (ii') but (i) and (ii') do not imply (ii).
Proof. Condition (i) implies that

$$
\frac{N_{k}}{n_{k+1}} \leqq \frac{N_{k}^{*}}{n_{k+1}}=\frac{1}{n_{1}} \cdot \frac{n_{1}^{9}}{n_{2}} \cdot \frac{n_{2}^{2}}{n_{3}} \cdots \frac{n_{k}^{2}}{n_{k+1}}<C(1+\delta)^{k}
$$

for any $\delta>0$. Thus $c_{k}=o\left(e^{8 k}\right)=o\left(n_{k}\right)$ and (4) remains valid. Now, by (ii"), we have

$$
\begin{align*}
c_{k} \frac{n_{k+1}^{2}}{n_{k+2}} & =c_{k}+c_{k}\left(\frac{n_{k+1}^{2}}{n_{k+2}}-1\right) \tag{10}\\
& =c_{k}+O\left(\frac{N_{k}}{n_{k+1}}\left(\frac{n_{k+1}^{2}}{n_{k+2}}-1\right)\right) \leqq c_{k}+o(1)
\end{align*}
$$

so that (5) remains valid. As before we then get (6) from (10). The rest of the argument is unchanged.

Example 1. The series $\Sigma 1 / n_{k}$, where

$$
n_{k}=a^{2^{k}}+b_{k} ; a, b_{k} \text { integers, } a>1
$$

so that $\Sigma\left|b_{k}\right| a^{-2^{k}}<\infty$, is irrational. [1]

Proof. We have

$$
\frac{n_{k}^{4}}{n_{k+1}}\left(1+2 b_{k} a^{-2^{k}}+b_{k}^{2} a^{-2^{k+1}}\right) /\left(1+b_{k+1} a^{-2^{k+1}}\right) \rightarrow 1
$$

so that condition (i) is satisfied. Also

$$
N_{k}^{*} / n_{k+1}=a^{-1} \prod_{l=1}^{k}\left(1+b_{l} a^{-2^{2}}\right) /\left(1+b_{k+1} a^{-2^{k+1}}\right)
$$

which is bounded so that condition (ii) is satisfied. Thus, according to Theorem 1 , if $\Sigma 1 / n_{k}$ were rational we would have $n_{k+1}=n_{k}^{3}-n_{k}+1$ for all suffieiently large k, or

$$
b_{k+1}=2 a^{2^{k}} b_{k}+b_{k}^{2}-a^{2^{k}}-b_{k}+1
$$

so that $b_{k} \neq 0$ implies for sufficiently large k

$$
\begin{equation*}
\left|b_{k+1}\right|>a^{2^{k^{5}}} \tag{11}
\end{equation*}
$$

Since $b_{k}=0$ implies $b_{k+1}=-a^{2^{k}}+1 \neq 0$, we may assume $b_{k} \neq 0$ and applying (II) repeatedly get

$$
\left|b_{k+1}\right|>a^{k^{2+1}-2^{k}}
$$

so that

$$
\left|b_{k+2}\right| a^{a^{2 k+}}>a^{-2^{k}}
$$

does not tend to 0 as $l \rightarrow \infty$, contrary to hypothesis.
Example 2. The Abmes series $\sum 1 / n_{k}$ where $n_{k+1}=n_{k}^{2}+a n_{k}+b$ is rational if and only if $a=-1$ and $b=1$.

Example 3. If $\left\{n_{k}\right\}$ satisfies (i) and there is a prime p so that $n_{k} n_{k+1} \ldots n_{k+l} \equiv 0(\bmod p)$ for a fixed l and all k then $\Sigma 1 / n_{k}$ is irrational.

Proof. We have to verify that N_{k} / n_{k+1} is bounded. But

$$
\begin{aligned}
N_{k} \leqq p^{-[k l l]+1} N_{k}^{*}=p^{-[k / l]+1} \cdot \frac{1}{n_{1}} & +\frac{n_{1}^{2}}{n_{2}} \cdots \frac{n_{k}^{2}}{n_{k+1}} n_{k+1} \\
& <C p^{-[k / n+1}(1+\epsilon)^{k} n_{k+1}
\end{aligned}
$$

for any $€>0$. Choosing $1+\epsilon<p^{1 / l}$ we get $N_{k} / n_{k+1}<p^{2} C$.

REFERENCE

1. J.W. Golomb, A Special Case, On the sum of the reciprocals of the Fermat numbers and related irrationalities, Can. Journal of Math. 15(1963), 475-478.

[^0]: * The second author was supported in part by a grant from the National Science Foundation. This work was done while the authors were participants at a Number Theory Conference at the University of Colorado. The authors are grateful for the opportunity for collaboration given them by this conference.

