ON THE NUMBER OF TRLANGLES
 CONTAINED IN CERTAIN GRAPHS

P. Erdős

(received October 11, 1963)

Let $G(n ; m)$ denote a graph of n vertices and m edges. Vertices of G will be denoted by $x_{1}, \ldots, y_{1} \ldots$; edges will be denoted by (x, y) and triangles by (x, y, z). $\left(G-x_{1}-x_{2}\right.$ -... - x_{k}) will denote the graph G from which the vertices x_{1}, \ldots, x_{k} and all edges incident to them have been omitted. $G-\left(x_{i}, x_{j}\right)$ denotes the graph G from which the edge $\left(x_{i}, x_{j}\right)$ has been omitted.

A special case of a well known theorem of Turán states that every $G\left(n ;\left[\frac{n^{2}}{4}\right]+1\right)$ contains a triangle and that there is a unique $G\left(n ;\left[\frac{n^{2}}{4}\right]\right.$) which contains no triangle [3]. Rademacher proved that every $G\left(n ;\left[\frac{n^{2}}{4}\right]+1\right)$ contains at least $\left[\frac{n}{2}\right]$ triangles (Rademacher's proof was not published). I gave a very simple proof of Rademacher's theorem [1] and recently proved that if $k<c_{1} n$ then every $G\left(n ;\left[\frac{n^{2}}{4}\right]+k\right)$ contains at least $k\left[\frac{n}{2}\right]$ triangles and that $k\left[\frac{n}{2}\right]$ is best possible [2]. In [2] I conjectured that this holds for $k<\left[\frac{n}{2}\right]$.

Recently I observed that if a $G\left(n ;\left[\frac{n^{2}}{4}\right]\right.$) contains a triangle it contains at least $\left[\frac{n}{2}\right]-1$ triangles. More generally we shall prove the following:

Canad. Math. Bull. vol. 7, no. 1, January 1964

THEOREM 1. Let $\ell \geq 0$. If a $G\left(n ;\left[\frac{n^{2}}{4}\right]-\ell\right)$ contains a triangle then it contains at least $\left[\frac{n}{2}\right]-\ell-1$ triangles.

The theorem is trivial if $\ell \geq\left[\frac{n}{2}\right]-2$; thus we can henceforth assume

$$
\begin{equation*}
0 \leq \ell \leq\left[\frac{n}{2}\right]-3 . \tag{1}
\end{equation*}
$$

First we show that the theorem is best possible. Let the vertices of our $G\left(n ;\left[\frac{n^{2}}{4}\right]-\ell\right)$ be $x_{1}, \ldots, x_{[(n+1) / 2]}$; $y_{1}, \ldots, y_{[n / 2]}$. Its edges are: $\left(x_{1}, x_{2}\right) ;\left(x_{i}, y_{j}\right)$ for $2 \leq i \leq\left[\frac{n+1}{2}\right]$, $1 \leq \mathrm{j} \leq\left[\frac{\mathrm{n}}{2}\right] ;\left(\mathrm{x}_{1}, \mathrm{y}_{\mathrm{j}}\right)$ for $1 \leq \mathrm{j} \leq\left[\frac{\mathrm{n}}{2}\right]-\ell-1$. Clearly the graph has n vertices, $\left[\frac{n^{2}}{4}\right]-\ell$ edges, and contains only the $\left[\frac{n}{2}\right]-\ell-1$ triangles $\left(x_{1}, x_{2}, y_{j}\right), 1 \leq j \leq\left[\frac{n}{2}\right]-\ell-1$.

Now we prove theorem 1. First we need the following simple lemma.

LEMMA. Assume that G has n vertices x_{1}, \ldots, x_{n} and that it contains the triangle $\left(x_{1}, x_{2}, x_{3}\right)$. Further assume that there are $n+r$ edges each incident to at least one of x_{1}, x_{2} and x_{3}. Then G contains at least r triangles $\left(x_{i}, x_{j}, x_{k}\right)$ with

$$
\begin{equation*}
1 \leq \mathrm{i}<\mathrm{j} \leq 3<\mathrm{k} . \tag{2}
\end{equation*}
$$

We prove the Lemma by induction with respect to r. For $r=1$ the lemma is evident, for in this case there are $\mathrm{n}-2$ edges connecting $\mathrm{x}_{4}, \ldots, \mathrm{x}_{\mathrm{n}}$ with $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}$ and thus at least one $\mathrm{x}_{\mathrm{k}}, \mathrm{k}>3$, is adjacent to two of the $\mathrm{x}_{\mathrm{j}}, \mathrm{j} \leq 3$; thus there is at least one triangle of the form (2).

Let now $r>1$ and assume that the lemma holds for $r-1$. Just as in the case $r=1$, there is at least one triangle (x_{i}, x_{j}, x_{k}) satisfying (2). In the graph $G-\left(x_{i}, x_{k}\right)$ there are $n+r-1$ edges incident to x_{1}, x_{2} and x_{3}, so by our induction hypothesis it contains at least $r-1$ triangles. G contains further the r-th triangle $\left(x_{i}, x_{j}, x_{k}\right)$. Hence the proof of our lemma is complete.

Now we prove Theorem 1. The theorem is trivial for $n \leq 5$. By the assumption of Theorem 1 our $G\left(n ;\left[\frac{n^{2}}{4}\right]-\ell\right)$ contains a triangle, say $\left(x_{1}, x_{2}, x_{3}\right)$. Assume first that

$$
\left(G\left(n ;\left[\frac{n^{2}}{4}\right]-\ell\right)-x_{1}-x_{2}-x_{3}\right)
$$

has not more than $\left[\frac{(n-3)^{2}}{4}\right]$ edges. In this case there are at Ieast

$$
\left[\frac{n^{2}}{4}\right]-\left[\frac{(n-3)^{2}}{4}\right]-\ell=n+\left[\frac{n}{2}\right]-2-\ell
$$

edges incident to x_{1}, x_{2} and x_{3}. Thus by our lemma there are at least $\left[\frac{\mathrm{n}}{2}\right]-2-\ell$ triangles in our graph which satisfy (2). Together with $\left(x_{1}, x_{2}, x_{3}\right)$ this gives the required $\left[\frac{n}{2}\right]-\ell-1$ triangles and hence our theorem is proved in this case.

Assume next that

$$
\left(G\left(n ;\left[\frac{n^{2}}{4}\right]-\ell\right)-x_{1}-x_{2}-x_{3}\right)
$$

has more than $\left[\frac{(n-3)^{2}}{4}\right]$ edges. By Rademacher's theorem it then has at least $\left[\frac{n-3}{2}\right]$ triangles and together with $\left(x_{1}, x_{2}, x_{3}\right)$
we obtain that $G\left(n ;\left[\frac{n^{2}}{4}\right]-\ell\right)$ has at least $\left[\frac{n-1}{2}\right] \geq\left[\frac{n}{2}\right]-\ell-1$ triangles $(\ell \geq 0)$. This completes the proof of Theorem 1 .

Our proof used Rademacher's theorem, but the latter would be quite easy to prove by our method. In fact an induction argument easily gives the following theorem.

THEOREM 2. Consider a graph $G\left(n ;\left[\frac{n^{2}}{4}\right]+\ell\right)$ and assume that if $\ell \leq 0$ it contains at least one triangle. Then it contains at least $\left[\frac{n}{2}\right]+\ell-1$ triangles.

For $\ell \leq 0$ this is our Theorem 1; for $\ell=1$ it is Rademacher's theorem; for $\ell>1$ [2] contains a sharper result.

We suppress the details of the proof since they are similar to those of Theorem 1. For $\ell \leq 0$ there is nothing to prove. If $\ell>0$ by Turán's theorem our graph contains at least one triangle. We now use induction from $n-3$ to n and the proof proceeds as the proof of Theorem 1.

REFERENCES

1. P. Erdös, Some theorems on graphs. Riveon lematematika, 10 (1955), 13-16 (in Hebrew).
2. P. Erdös, On a theorem of Rademacher-Turán. Illinois Journal of Math. 6(1952), 122-127.
3. P. Turán, Eine Extremalaufgabe aus der Graphentheorie. Mat. Fiz. Lapok 48 (1941), 436-452 (in Hungarian). See also, P. Turán, On the theory of graphs. Colloquium Math. 3 (1954), 19-30.

University of Manitoba

