
ON THE REPRESENTATION OF DIRECTED GRAPHS
AS UNIONS OF ORDERINGS

bY
1'. ERDÖS and MOSER L .'

Introduction

Consider an m X n matrix in which each row consists of a permutation
of the integers 1, 2, . . . . n . Such matrices will be called R-matrices (they
really -should have been called m x n R-matrices, but where there is no danger
of confusion we omit the m x n) . Corresponding to such a matrix R we define
an oriented graph on the vertices 1, 2, . . . , n, in which there is an edge oriented
from i to j (notation : i --)- j) provided i precedes j in a majority of the rows
ofR. If i precedes j as often as j precedes i the vertices i and j are not joined
by an edge . It has been known for some time [1] that every directed graph
in which every pair of vertices are joined by at most one oriented edge can be
realized as a graph associated with some R-matrix in this manner . The prin-
cipal object of this paper is to obtain relatively sharp estimates for the smallest
number m(n) such that every oriented graph on ,?? vertices corresponds to some
7nX n matrix of the, type described .

This as well as some related problems which we will treat arise from
questions concerning methods of combining individual transitive preferences
on a set of alternatives by means of majority decisions . Thus we may think
of the rows of the matrix R as representing orderings by individual voters,
of a set of -n candidates 1, 2, . . . , n in order of preference . Although each
voter thus expresses a set of transitive preferences, the majority opinion
need not be transitive and indeed we will prove that every preference pattern
(ties permitted) may be achieved by no more than c, n/log n voters, (c1 a fixed
constant), i .e . m(n) < ci -n/log n. On the other hand it was shown in a relatively
simple way by STEARNS [2] that some preference patterns on n candidates
cannot be Schieved by c2 n/log n voters (where c2 is another fixed positive
constant) so that m(n) > c 2 n/log n .

In § 1 we consider the following problem : What is the largest number
f(n) such that every oriented graph on it vertices in which every pair of dis-
tinct vertices is jointed by a directed edge has at least one subgraph of f(n)
vertices in which the orientation is transitive, i .e. in which i-*j and j-±k
implies t: -* k.Our result here is thatf(n) <2[log2n] -f-1.STEARNShas
shown that f(n) > [ 1og2 n] + 1 .

In § 2 we will develop some lemmas concerning oriented graphs which
can be represented by 2 X n R-matrices . In the voting terminology this means
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that we study the preference patterns of candidates that can he achieved by
a pair of voters -- we will call them a couple. The point in considering such
pairs of voters is that by balancing their transitive preferences in a certain
way the pair of voters can achieve a preference between certain pairs of
candidates in the manner in which these pairs are to be preferred by the
majority, while with respect to all other pairs the preferences of the couple
cancel one another .

In § 3 we relate the graph theoretic lemmas of § 2 to the problem of
estimating 7n (v) and obtain the result

C, n/log u > na(rt) > c2 )z/log n .

W e conclude with a number of unsolved problems .

§1.

The problem discussed and partially solved here is independent of our
main problem the estimation of m(n) . By a complete oriented graph or comp-
lete paired comparison we mean a graph in which every pair of vertices is
joined by one oriented edge . As mentioned in the introduction, STEARNS has
proved that every such graph on a vertices contains a subgraph on I log e n.] -a-- I
vertices on which the orientation is transitive . For the sake of completeness
we sketch the relevant argument : Consider a complete oriented graph on n
vertices . Let w(i) be the number of edges oriented away from vertex i . Relabel
the vertices so that ,r(1) > u'(2) > . . . > w(n) . Since every pair of vertices

contributes 1 to Z:: w(i) we hat .
1 2

J so that u.'(1) > 1' o'~ l . o con-

struct a transitive chain of I loge, n] + I vertices place vertex 1
at the beginning of the chain and use induction to find in the subgraph

--- 1
of

n

	

vertices which are joined to 1 by edges oriented away from 1, a

--1 l
transitive subset of 1092

n
l -

-I
H I vertices . These together with the ver-

textex 1 form the required set .
To obtain a lower bound for the largest transitive set in some com-

plete oriented graph onnvertices, assume that every such graph has a
transitive subset of k elements . Now such a transitive subset must be one

n
of k 1 subsets of k° of the vertices, and any one of these subsets in order

to be transitive, can be ordered in k! ways . Having fixed the transitive
subset (including its order) we observe that such a transitive subset can appear

iii exactly 2 (2)-- (2) complete directed graphs, since the complete graph is

determined by the orientations on its( 2 I edges, ~~J of which have already

been fixed . Finally, since each of tbe 2 ( 2') oriented graphs has a transitive
subgraph of k vertices we have
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k k!2(2 )- O > 2(,



and using
n < nkIk ! we are lead toL.
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< 21og ne
k---~'- -1

lob 2

which completes the proof of

Theorem 1 .
[ 1og2 "] + 1 < f(nn) c. 2[log 2 na] -J,- 1 .

We remark that f(7) = 3 . That f(7) > 3 follows from the left hand
side of the inequality above while f(7) < 3 is obtained by considering the
directed graph on 1, 2, . . ., 7 in which i -~ j iff the number i - j is a quadratic
residue (mod 7) . We would like to call the attention of the reader to the fact
that we have been unable to disprove the conjecture that f(n) _ [log.,u] - 1 .
In particular we cannot decide if ,f(15) - 4 .

§ 2 .

In what follows (I will denote a directed graph in n vertices, not neces-
sarily complete, i .e . each pair of vertices is joined by at most one directed
edge . The graph H will be called bipartite and unidirected if the vertices of
H can be split into two disjoint subsets A and B (on( , of which can be empty)
such that every vertex of A is joined to every vertex of B in the direction
from A to B and no other edges exist in H. Suppose the vertices of A are
a,, . . . , a,, and those of B are b„ b2 ,	b, ( L + 1 = p) . A and B will be called
the levels of our subgraph (A the top level, B the lower level) .

Lemma 1. A bipartite and unidirected graph H can be represented by a
2 x p R-matrix .

Proof. consider the matrix

a, a 2

	

a k br b 2

	

. . .b,)
a k ak_ 1 . . . a, b, b,_i . . . b, .

The graph induced by this matrix has edges directed from each vertex
in A to each vertex in B. However there are no edges joining vertices of A
to vertices of A (or vertices of B to vertices of B) since for i, j < L°, a ; precedes
a, in one row and follows it in the other .

Next, if a graph H can be decomposed into disjoint bipartite and un-
directed graphs it will be called bilevel .

Lemma 1 can be generalized to yield

Lemma 2. A bilevel graph H with n vertices can be represented by a 2 x ar
R-matrix .

Proof. If the lop level of H consists of the disjoint sets of vertices
A,, A 2 , . . . , A„ and the lower level of the corresponding sets Br, B2 , . . . . B,
and if A ; - {a, ,1 , a, ,	}, B, = {b, r , b,,2 , . . . } then the required matrix
has first row consisting of the elements of A i in sonic order followed by those
of B, in some order . These are followed by the elements of A 2 in some order
and the elements of B2 in some order, etc . In the second row we have first
the elements of A„ in the reverse order to that which they had in the first
row, followed by the elements of B, again in reverse order . Then cone the
elements of A„_, followed by those of B„_i again in the order opposite to that
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in which they appeared in the first row . We continue in this way up to the
elements of A t in the reverse order to that in the first, row, followed finally
by the elements of Bs in reverse order. It is easily seen that this matrix induces
the required graph .

We proceed to prove

Lemma 3 . If G is a directed graph with n vertices and e edges with

7z 2

	

n2

	

109 n	 <e_<

	

-- where -

	

-> 122r±4

	

- 22r;-1

	

20 r -4- 1

then G contains a bipartite unidirected graph with levels A and B having L [in. ]
low n

a-wl ---	g 	vertices respectively, and in which the valences of the vertices of
20r ± 1 -

A in the graph G do not exceed 16ni2r .
Proof. Consider first the vertices of G (if any) of valence at least 16n/2r .

If their number is x then we must clearly have x .16n/2r < 2n2/22r+1 or
.e _< ni' 2 r- 4 . 'Thus the number of edges containing two such vertices does not

exceed

	

< n2/22r + 9 . Hence if we omit all these edges there remain more
2 I

than n 2 ' -22 ' edges at least one endpoint of which has valence < 1671/2 1 .
Denote the vertices of valence < 16n/2r (in G) by r 1 , v2 , . . . , yr and let their
valences be yl , y,

	

y,. Clearly

n(1 - 2-(r 4) ) < t < n
and

t

		

n_'

y > 22r 5

Without loss of generality we may assume that

t

	

71 2
yi

	

22r . ,

where y; is the number of edges directed away from v i . Let k(k > 1) be an
indeterminate for the time being . A k-tuple of vertices will be said to belong
to vi (1 < i < t) if every vertex of the k-tuple is adjoined to v i by an edge

directed awav from v i . There are exactly (YiJ k-tuples belonging to v i . Denote
k ~

by S the system of k-tuples belonging to one of the v i ( 1 < i < t) (if a k-tuple
t

belongs to exactly r v's it occurs in S r-times) . Clearly S has 2 ( y ` l elements .
i-1

	

k''

\ow > ( '~t `) will be a minimum if all the y, are equal and if t is as large as
Jk

possible . This is achieved by letting t = n and y'. =
12

n

	

Thus
2r- 6
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n

> 71 22r4-6 1
>

	

n k- 1
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k
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n
16yn

	

20n3 /2
	 log n <

2?

	

2r

We remov-e these edges and there still remain

)l 2 20n 32

	

n2
> --

2r

	

22r 4

9 A Matematikai Kutató intézet közleményei IX . A/I-•2 .
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Now the total number of k-tuples that can be chosen from n . points
k

equals
n~<

~~ so that the same k-tuple must occur in S at least	 n
k

	

k !

	

2(2r- 7)k

times . If k

	

log
=

	

-n - a simple computation shows that the same k-tuple
20r + 1 -

will occur at least [Vn] times, or there will be at least [Vn] vertices form a set

A each connected to each vertices of a set B which has I log11 --
elements .

20r+ 1 -
Note that the set A was chosen from the vertices whose valences did not

exceed 16v/2r so the lemma is 1 -moved .
We next prove the crucial

Lemma 4. Let -n > n,, . If G is a directed graph with n vertices and e edges
hire

, i 2

	

„2
< e < - -- and r < 10 loglog n

22r ! 3

	

22r-- I

then G contains a bilevel graph of at least
- it logn

	

edges .
(r+1)2r {15

Proof. First we omit all edges connecting vertices with valences at
n=

least 16-n/21. As before the number of omitted edges is at most -- Hence
22rS9

we are left with at least

n 2 (

	

1

	

n.2
22r I 2'2

	

28 > 22r i
11

edges and b} , Lemma. 3 we have a bipartite undirected subgraph (A,, B,)
with levels and B, previously described . Since the vertices of A I have
valence < 16n/2r and those of BI have valence < n - I and since
r < 10 < loglÖg n the number of edges incident to A, U B, is at most

edges, provided -n n,, . Lemma 3 can therefore be used again and we obtain
a bipartite unidirected graph (A .2 , B,) with levels A 2 and B2 of the required
type. (In the bipartite graphs (A ; . B,) it is not necessarily assumed that the
edges go from A, to B,, their direction may depend on i) . Now we repeat
the procedure and omit the edges incident to A2 U B., . If' we repeat this
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1,, e1)0 "- -N I 0-a', 1"

procedure I- fYb
-~

times we arc left with a graph which has at least
L2O .2r 6

0

	

20n`' 1 '2

	

yrt

	

]

	

7a2
92r

	

2'

	

20 .2r-6

	

22r+

edges. We can therefore apply Lemma 3 once more and thus obtain a bilevel
graph with the components (A ;, B;)

I<i :< 1 -20-2-V /1

	

_1
' -5

Vii

	

{ 1 1 ,t

	

log a

	

>

	

n log ti,f 1 20 •2 r+ 6

	

20 r -- I

	

(r + 1) 2r 15

edges and the proof of the lemma is complete .

Lemma 5. Let G be a connected directed graph of 'm vertices . Then G has a

bilevel subgraph of
Lm-

	

1 edges .

Proof. We prove first that if T is a directed tree then it can be decom-
posed into four bilevel graphs . For this purpose consider first the corresponding
undirected tree T* . Let xl be an vertex of T* . Number I all edges of T* which
can be reached from xt in an odd number of steps. Number II all edges which
can be reached from xi in an even number of steps. The edges labelled I form
a union of disjoint stars (a star is a tree in which all but one vertex has valency
1) which can be split into two bilevel graphs and similarly for the edges label-
led II. The lemma now follows by considering for G a spanning tree T, i .e . a
tree whose edges are a subset of the edges of G and which contains all the
vertices of G . Such a tree clearly has n -- 1 edges .

Lemma 6. Let 0 be aa directed graph of e edges . Then G contains a bilevel

graph of at least e - edges .
8

Proof. A graph G of e edges must have at least [V2e ] vertices . Consider
the connected components G ; of G having a ; vertices, i = 1, 2, . . . , k .

1
Now by Lemma 5, each G ; contains a bilevel graph of

ec •
`-
-

-- edges_

so that G contains a bilevel graph of

it -- I

edges .
We are now ready to prove our main result, namely that every prefer-

ence pattern on n candidates can be achieved by not more than c 1 -n 1log -n
voters. For this purpose it will suffice, by Lemma 2, to show that the directed
graph G corresponding to the preference pattern can be decomposed into
edge-disjoint bilevel graphs G, G2 , . . . . G,, the set of whose vertices is iden-
tical with the set of vertices of G, and t < (" I n;(2 log n) .

of at least
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We are going to define the graphs

G; and GO I < i < 216	
log n]

by induction. We will put G ( ') = G - Gl U G2 U . . . U G; (i .e . we obtain
GO ) by omitting from G the edges of G l, G2 , . . ., G i ) . G 1 is one of the bilevel
subgraphs of G having the maximun number of edges and if G I , . . . . G ; are
already defined then G i+ , is one of the bilevel subgraphs of GO) having the
maximum number of edges . Denote by e ; the number of edges of G(O . Let r
run through the integers r - 0, 1, . . . , [10 loglog n] . Denote by i,, the smallest
integer for which

We shall prove that for

/12

2 2r ' I

r < [10 loglog n]

it < 2Is . r+ 1

	

n
(1)

	

i,.+I --

	

•
2r+1

	

log n

n'
If e ;,<- - then 1r+1 - i t = 0 and (1) is satisfied thus we can assume

22r-! 3

n

	

-
e,1,

> --~L - - . Let i,r < j < it+1 then e; > ~
P

and hence by Lemma 4 G ( J )
22r-{-3

	

-

	

22r ; 3

contains a bilevel subgraph of at least

re log n

(r ± 1) 2r-+15

edges and hence by the maximality property of G i

(2)

	

e - e

	

>

	

~a log 11
J

	

J 1 - (r + 1) 2r +15

(2)

16
bilevel graphs Gi , 1 < i < -2 1I-I we obtain a

log n

G(0=G- U G , l < i

where GO ) has fewer than

9*

11

	

a2
- <

220 loglogn

	

(log -1)13

edges .

immediately implies (1) .
From (1) we obtain that by the removal of at most

215 n

	

r-F-1

	

2 76 n
~,

	

( 2 r-i 1 - 2r) < - - °° -~ _
<_r~[101og1ogn)

	

log n r=0 2r,

	

log 72.

[2 16 n

log 1

1 3 1
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"1'o complete the main result we need to show that a graph with this many

edges is the union of o
ra

	

edge - disjoint bilevel graphs and this is an
flog n

almost immediate consequence of Lemma 6 .
As already stated the proof of m(n) > c 2 n/log n is relatively simple but

we include it for completeness . Since each voter can vote in n ! ways the number
of distinct ways in which m voters can vote is (n!)m .

The number of preference patterns on n candidates is (since ties are

permitted) 3(2 ) . If all these patterns can be achieved we must have (n ! )'n > 3(z )

from which the required result follows by a simple computation .
One might conjecture that that m(n) log n/n tends to a limit but this

conjecture is clearly well beyond the methods used in this paper . W e cannot
log 3

even prove that lim m(n) log n/n. > -
2

Still another problem suggested by the present considerations is to obtain
god estimates for the largest number s = 8(e) such that every ordinary graph
of e edges contains a bilevel (undirected) graph of s edges . By more complicated
arguments than those used here we can prove s > c/e log e .

(Received November 25, 1963)
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17PEACTABJIEHHE YUOPSIjj0 EHHb1X 1'PA(DOB CHCTEMAMH
i1 EPECTAHOBOK

V. ERDÖS a L. A10 81 ,:R

Pe3I0Me

PaccMaTpMBaeM MaTpigy C P CTOJ1b6uaMn 11 C III CTpOKaMn, Ka>K;jaSi CTpOKa

KOTOpoil - HepeCTaHOBKa mce .>i 1, 2, . . . , n. . C 3TOLI MaTpH[Ier MbI Coe,jH11Hn

V clops{;joueHHbIii rpat CJIe/yiowi4M o6pa30M : BepWNHb1 rpatj a 6y;jyT 4rhCiia

1, 2, . . . . n . ECJin B 60JIbUF4HCTBe CTpOK MaTpnrjbl i rnpe/WeCTByeT j, 'roi', a

rpa~1 CO;jepwnT pe6po ynop9,goueHHoe OT i ;j0 j . Ecnn i Hpew1eCTByeT j B CTOJ16-

K14X We CTpOKat, B CKOJIbKHX j npe,IWeCTByeT i, Tor a i H j tie COe;(H11HIOTCA .

nyCTI, 7o(it) olo311a-iaeT HanMeii uee t1BCJiO, TaKOe, 'ITO B3 MaTpHtj C M(n) CTp04-

KaM14 Ilpe;ICTaBVMb[ TaKNM 06pa30M BCC rpa(pbl c n Bepunua:mii, B KOTOpbIX Ka>K -

;jati napa BepWI .11 Coe;[HI1eHHa tie 6o .riee o ;1HON BCpHIHH0FI STEARNS 12] JoKa3a11,

'TO m(n) > c2 n /log n. .
r1$Bnbi[4 pe3yJibTaT IIaCTOBIIjeii pa60Tbi :JOKa3aTeiibCTBO tlepiineliCTBa

m(n) < c, n/log as

it', 11

	

110J[O>KIlTenbiibie KOttCTaIiTbl) .
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