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COMBINATORIAL PROBLEMS IN MEASURE THEORY

AND SET THEORY

P. Erdös and A . Hajnal

To the memory of our friend and collaborator, J . Czipszer

1. INTRODUCTION

A well-known theorem of Ramsay [12 ; p . 264] states that if the k-tuples of an in-
finite set S are split into a finite number of classes, then there exists an infinite
subset of S all of whose k-tuples belong to the same class . (For k = 1, this is
trivial .)

Suppose that with each element x of an infinite set S there is associated a
measurable set F(x) in the interval [0, 1] . It is known that if the measure m(F(x))
of the sets F(x) are bounded away from zero, then some real number c is contained
in infinitely many sets F(x) . For the sake of completeness, we prove this .

It clearly suffices to consider the case where S is the set of natural numbers .
For each t in S, let

oo
G t = U F(n) and G = n Gt ,

n=t

	

t=1

where m(F(n)) > u > 0 for n E S . Clearly, m(G t ) > u and Gt+l C G t (t = 1, 2, . . .)
(throughout the paper, the symbol C refers to inclusion in the broad sense) . Thus,
by a classical theorem of Lebesgue, m(G) > u . Since each c in G is contained in
infinitely many sets F(t), this completes the proof .

Now, in analogy to Ramsay's theorem, one might consider the following prob-
lem. Suppose that, for some u > 0, there is associated with each k-tuple
X = {x l , • • • , xk } of elements of an infinite set S a measurable set F(X) of [0, 1]
such that m(F(X)) > u . Does there always exist an infinite subset S' of S such that
the sets F(X) corresponding to the k-tuples X of S' have a nonempty intersection?
We study this and related questions . In the course of our investigation we are led to
a surprising number of unsolved problems .

All of our results concern the case k = 2, but we shall state some problems for
k > 2 as well .

Instead of choosing a measurable subset of [0, 1] for every k-tuple of a set S,
we could choose an abstract set having certain properties . Interesting problems of
a new type then arise, which we discuss briefly in Section 4 . There we investigate
some purely graph-theoretical questions, and in particular we give a simple con-
struction of graphs that contain no triangle and have arbitrarily high chromatic
numbers .
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2. NOTATION AND DEFINITIONS

We adopt the following notation :

cardinal numbers : a, b, m, n ;
ordinal numbers : a, i , •` •, v, g, • • • ;

nonnegative integers : i, j, k, f, r, s, t ;
real numbers in [0, 1] : c, u, v, u 1 , u 2 , • • • , 0 ;
abstract sets : S, X, Y ;
the cardinal number of S : S;
elements of sets : x, y, • • • ;

the least cardinal number greater than n : n+ .

The symbols [S] a and [S] < a denote the classes of subsets of S that have car-
dinality a and less than a, respectively . If X and Y are disjoint sets, we write

[X,Y] = {(x,y)jxEX and yEY} .

Let S be a set of power m, and let F denote a function that associates a measur-
able subset of [0, 1] with each X E [S]k. For brevity, we shall say that F is a set-
function on S of type k . (The symbol F will always denote a set-function .) Suppose
0 < u < 1 . If, for each x E [S}k, m(F(X)) > u or m(F(X)) > u, we say that F is of
order at least u or of order greater than u, respectively .

Let Z be a subset of [S]1 . If

I f F(X)
XE Z

we say that Z possesses property .' (with respect to F) .
With specific reference to the problems mentioned in Section 1, we introduce the

following symbols .

(1)

	

(

	

> n

	

and

	

(m, k, > u) = n

represent the respective statements : If S = m and if F is a set-function on S of
type k and of order at least u (of order greater than u), then S has a subset S', of
cardinality n, such that [S']k possesses property V . To say that a statement in-
volving the symbol = is false, we replace = by =0- .

The symbolic statement

(2)

	

(m, u) =-> (n 1, n z)

means that if S = m and F is a set-function on S . of type 2 and of order at least u,
then there exist disjoint subsets S1 and Sz of S with cardinality nl and n z, re-
spectively, such that [Sl , S Z] possesses property 9 . Instead of (m, 2, u)

	

n, we
often write that S contains a complete graph of power n that has property 91 (with
respect to F) .
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The theorems in whose proofs we use the generalized continuum hypothesis are
marked by an asterisk : (*) .

3 . THE CASE m < No

THEOREM 1 . Suppose that 2 < r < w . Then (N o , 2, u) = r + 1 if and only if
u > 1 - 1/r .

Proof. First we show the condition that u > 1 - 1 //r to be necessary . If
B E (0, 1), let

00
8= E~ (0<st <r)

t_ 1 r

	

-

be its r-ary expansion with infinitely many positive coefficients s t . Let S be the
set of positive integers. The desired set-function F of type 2 on S is defined as
follows . If 1 < t1 : t2 < w, then

(4)

	

8 E F({t1, t 2}) if and only if stl * st 2
in the r-ary expansion (3) of B .

Clearly,

m(F({tl , t 2 }) = 1 - T,

and thus F is of order no less than 1 - 1/r . On the other hand, S does not contain a
complete graph of power r + 1 that has property Y . For if S' = { tl, tr+1 } and
[S']? possesses property _`P 1, then there exists a 9 E (0, 1) such that

9 E

		

1 1

	

F({t1 , t j }) ,
t i , tj €S' ; i* j

Therefore, by (4), the numbers stI'

	

' Str+1
are all different, which contradicts

(3) . This establishes the necessity of our condition .
We complete the proof of the theorem by proving not only the sufficiency of our

condition but a stronger result as well ; namely, we prove that corresponding to each
u > 1 - 1/r, there exists an integer k u such that

(ku , 2, u) = r + 1 .

Indeed, let k denote a positive integer, let S = {0, 1, • • • , k - 1}, and let F be a set-
function on S • of type 2 and of order not less than u .

There is no loss of generality in supposing that m(F(X)) = u for each X E [S] 2 ,
For if m(F(X)) were greater than u for some of the X, we could replace each of the
sets F(X) by a subset FI(X), of measure u. Clearly, a subset of [S]2 having
property ' S relative to F 1 would also have property Y relative to F .
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Suppose now that every point c of (0, 1) lies in fewer than u (2) of the sets

F(X) . Then

E2 m(F(X)) < u (2) ,
X E [s]

contrary to the hypothesis that F has order at least u. Hence some c lies in at
least u (2) of the sets F(X) . That is, the graph induced by some c has at least

• (2) edges, and of course the number h of its vertices is at most k . A special
case of a theorem of P . Turán [14 ; p. 26] asserts that a graph with h vertices and
more than 2 (1 + c - 1 /r)h2 edges contains a complete (r + 1)-gon . It follows that
the graph induced by c contains a complete (r + 1)-gon . This completes the proof
of Theorem 1 .

Let S be the set of natural numbers, and let F be a set-function on S, of type 2
and of order at least u . For each subset S' of S, we write

II(S') =

	

1 1

	

F(X) .
XE[S'] 2

The "if" part of Theorem 1 asserts that if u > 1 - 1/r, then some set S' of r + 1
natural numbers has property J11P, that is, satisfies the condition II(S') $ 0 . The
question now arises as to what can be said about the measure of II(S') . We prove
the following assertion, which provides a sharpening, for the special case r = 2, of
Theorem 1 .

THEOREM 1(A) . Let S be the set of natural numbers, and let F be a set-
function on S, of type 2 and of order at least u (u > 1/2) . Then, for every c > 0,
there exists a set S' of three natural numbers such that m(H(S')) > u(2u - 1) - c .

This result is best possible for some special values of u, in the following sense :
If u = 1 - 1/k (k = 3, 4, . . .), then there exist set-functions F otS, of order u and
•

	

type 2, such that m(H(X)) < u(2u - 1) for every X C S with X = 3 .
Remarks . It is obvious that Theorem 1(A) is a generalization of the special case

•

	

= 2 of Theorem 1 . We do not know whether the positive part of this result is best
possible for other values of u . As to the cases r > 2, we conjecture that if
u > 1 - 1/r, then there exists a subset S' c S with S' = r + 1 for which

m(H(S')) > u(2u - 1)(3u - 2) . . . (ru - (r - 1)) - c .

Here we also know that the result, if true, is best possible for certain special values
of u .

Before proving Theorem 1(A), we state some well-known results that we shall
often use in the sequel (see [5] and [9] ) .

(5) To each c > 0 and each positive integer r, there corresponds an integer
So (F, r) with the following property . If {Ak (1 S k , s0(c, r)) is a family of
measurable subsets of [0, 1] and if m(Ak) > u > 0 for all k, then there exist r
integers k l < k 2 < . . . < kr < sp(c, r) such that
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r

m Ak . > ur -En

	

.
i=1

	

1

The following is an easy corollary .
(6) Let {Ak} (1 < k < 00 ) be a sequence of measurable subsets of [0, 1], let

m(Ak ) > u > 0, and let e > 0 . Then, corresponding to each positive integer r, there
exists an increasing sequence { hj } of integers such that

r

m(
n A k

1. )
> ur - e

i-1

for every set { ki } (1 < i < r) taken from { h i } .

Now we outline the proof of Theorem 1(A) . Let S be the set of natural numbers,
let F be a set-function on S satisfying the requirements of Theorem 1(A), and let
e > 0. Without loss of generality, we may assume that m(F(X)) = u for each
X E [S] Z .

First we define a partition

[S] 3 = J l U J Z U J3 U J4

as follows . For each X = {t 1 , t Z , t 3 } (t 1 < t z < t 3) we put

F 1 (X) = F({t l , t 2 }) fl F({t l , t 3}),

F Z(X) = F({t 1 , t 3 }) fl F({t Z , t 3}),

and we write

(7)

X E J l if m(F 1(X)) > u Z - c/2 and m(F Z(X)) > uZ - E/2,

X E JZ if m(F I (X)) > u Z - E/2 and m(F Z(X)) < uZ - s/2,

X E J 3 if m(F 1 (X)) < u 2 - E/2 and m(F Z(X)) > uZ - E/2,

X E J4 if m(F 1 (X)) < uZ - E/2 and m(F Z(X)) < uZ - E/2 .

If S l c S and S l = N ., then S l contains triplets X1 and X Z such that

m(F 1 (X 1 )) > u Z - e/2

	

and

	

m(FZ (XZ)) > uZ - E/2 .

This is so because by (5) (with r = 2) the set Sl contains no infinite subset all of
whose triplets belong to the classes J i (i = 2, 3, 4),

From Ramsay's theorem (see the beginning of the Introduction) it follows that all
triplets of some infinite subset of S belong to J 1 . Let S' _ {t1, t2, t3} (t 1 < t Z < t3)
be any triplet in J l . Then, by the assumption that m(F({t h t2})) = u and by the first
line of (7),

m(ll(S')) > uZ - 2 - [ u - (uZ - 2 / ] = u(2u - 1) - E .
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This completes the proof of the first part of Theorem 1(A) .
Now we prove the "best possible" part of Theorem 1(A) . Let S be the set of

natural numbers, and for any k Z 3, consider the k-ary expansion (3) (with k in
place of r) of an arbitrary B E [0, 1]. Using again the idea of (4), we define
F({tl, t, 1) (for 1 < ti * tZ < w) by the rule

(8)

	

B E F({tl, t2}) if and only if stl # StZ •

Clearly, m(F({tl, t? 1)) = u = 1 - 1/k. On the other hand, suppose that X E [S] 3 ,
X = { t l , tZ, t3 l (t l < tZ < t 3 ) . From well-known properties of the expansion (3)
and from (8) it follows that

m(1T(X)) = k(k	
k3k

	 2)

	

(1 - 1/k) (1 - 2/k) - u(2u - 1) .

This completes the proof of Theorem 1(A) .

THEOREM 1(B) .

{No ,2,>1-r) ,fir+1

	

2<r<w .

We only outline the proof . First we establish the following result .
(9) Let S be the set of natural numbers . Corresponding to each pair tl, t Z

(1 < tl ~ tZ < w) and each E > 0, one can define a set function F{tl t Z } on S, of
type 2 and satisfying the following conditions :

(a) ll(Z) = 0 for every Z E [S]
r+1

(b) m(F{tl tZ } (X)) = 1 - r for every X E [S] z except X = { tl , tZ } ,

(c) m(F{tl,t2}({tl , tz})) > 1 - E •

This can be proved, by a slight modification of the construction used in the proof
of Theorem 1, as follows .

Let I be an integer, put k = Ir, and for any 0 E [0, 1], let

00
T

9 = E
kt

	

(0 < Tt < k) .
t= I

For t E S and i = 0, • • • , r - 1, we now define a set St , j as follows . If t # tl
t # t2 . then S t , j is the set of natural numbers s satisfying the condition
Ii < s < f(i + 1) ; for the other cases,

Stl,O={0, 1, . . .,(( -1)r},

St

	

= {(( - 1)r+ i}

	

for

	

1,
l,i

St

	

= { i }

	

for i = 0, • ,

	

- 2,
2,i

and
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St2,r-1 = {r - 1, . . ., Qr - 11 .

Now we define F({t, t'}) for 1 < t # t' < w by the stipulation that 0 E F({t, t'})

if and only if s t and s t , belong to sets S t,i and Sty i' with i * i' .
F clearly satisfies the requirements (a) and (b) of (9) .
On the other hand,

m(F{t1,tZ }({t1, tZ})) >
kZ

(k - r) Z > 1 - > 1 - e

if f is sufficiently large .
Now let {Xj } (j < w) be a well-ordering of type w of the set [S] Z . It follows

from (9) that, corresponding to every j < w, there exists a set-function FX
j
on S

that satisfies the following conditions :

(10)

	

F
XJ

(X) c
(2-J-1,

2 -3 )

	

for every X E [S] Z ;

the set H(Z) (defined with respect to F Xj ) is empty for every Z E [S]r+ 1 ;

m(FX (X)) _ ( 1 - r ) 2 - i -1

	

for every X E [X] Z except Xj ;

m(FX . (X)) > (1 - E) 2-j-1 .

Next we define the set-function F on S, of type 2, by the condition

(11) F(X) = U FX (X) for every X E[S]2j<w i
We easily see from (10) and (11) that 11(Z) _ 0 for every X E [S]r+1, and that

m(F(Xj)) = 1 - r + ( r - E)

	

1 > 1 - r

if E < r . Hence F is of order greater than 1 - r, and this proves Theorem 1(B) .
The idea of the proof is partly due to J . Czipszer .

Let mj = m(F(Xj)) - ( 1 - r ) for j < w, and write m = E~ p mj . In the case of
the example just constructed, m > 1/r - E . We do not know how far this inequality
can be improved ; we only have some special results which show that if m is suffi-
ciently large for a set-function F on S, of type 2 and of order greater than 1 - 1/r,
then there always exists a complete (r + 1)-gon with the property . . We omit the
proof of this, and we only mention that questions of this type lead to interesting
problems in measure theory .

THEOREM 2 . If u is positive, then (N O , u) -->- (r, No ) for each nonnegative
integer r .

Proof. We are given a set S with cardinality NO . Without loss of generality we
suppose that S = { t l t < w } . Let F be a set-function on S, of type 2 and of order at
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least u . We shall prove that, in fact, to each r and u (u > 0), there corresponds an
integer s = s(u, r) with the following property . Amongst any s integers t1, • • •, ts ,
there exist r integers ti l , . • • , tir such that an infinite subset S' of S exists for

which If t il , • • • , tir}, S'] possesses property 9 .

If s is a positive integer, we let Z = {t l , • • • , is }, and for some t not in Z, we
consider the sets F({ti, t}) (1 < i < s) . Let b be a positive number less than u r .
It follows from (5) that if s is sufficiently large, say s > s o (u r - b, r), then there
exist r vertices til,

	

tir among the t i for which

r
m=m(n F({ti,t}) //> b6

j-1 ~

Since there are infinitely many t ~ Z but only ( rs ) possible choices of indices
i l , . • •, i r , some set of indices, say {il, . .' i t }, corresponds to infinitely many t .
Denote this set of is by S". Then S" is a subset of S of power No •

Let
r

Et = n F({tij , t})

	

(t E S" ) .
j=1

Since m(E t ) > b, the theorem proved in the Introduction guarantees the existence of
a denumerable subset S' such that

n E t ,.O .
tES'

But this means that [{t il , • . ., ti'}, S'] has property 9 . This proves Theorem 2 .

The question may now be asked : if u is positive, is the statement

(no , u) -->- (N o , N o )
true? We were not, in general, able to answer this question, which is one of the
most interesting unsolved problems of our paper . We describe a simple example
by means of which J. Czipszer showed that the answer is negative if u < 1/2 . Let S
be the set of natural numbers, and let 2 < r < co . Czipszer defined a set-function
Fr of type 2 on S as follows . If (t 1 , t2 ) is any pair with 1 < t l < t2 < W, and if
{ s t } denotes the sequence of digits in the nonterminating r-ary expansion of a
number B in (0, 1], then

(12)

	

B E Fr({t l , t 2 }) if and only if s tl > s tZ .
Clearly, m(F *z (X)) = 2 (1 - r ) ; hence F*, is of order at least 2 (1 r) Since

2 (1 - r)

	

2 , we only need to show that if S', S" are disjoint infinite subsets of
S, then [S', S"] does not possess property 9 with respect to Fj for 2 < r < w . In
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fact, if S' and S" are disjoint infinite subsets of S, then there exists an infinite in-
creasing sequence { t k} of natural numbers such that t k E S' if k is odd and
tk E S" if k is even, and [S', S"] does not possess property 9 with respect to F*
since the set of edges {ti, ti+1} (1 < i < k) also fails to possess property 9 for
k > r .

Czipszer's example leads to some interesting new questions . First we need
some definitions .

Let S be the set of natural numbers, let T r = { tl,

	

tr+1 } be a sequence of
r + 1 natural numbers, and let T., _ {t 1 ,

	

tr,

	

be an infinite sequence of dif-
ferent natural numbers . Put

Jr+1 = { { ti , ti+1 } } (1 < i < r),

	

J am = { { ti , ti+1 } } (1 < i < co) .

Further, let F be a set-function defined on S, of type 2 and of order at least u . We
briefly say that S contains a path Jr+1 of length r + 1 (with property 9) or an in-
finite path J. (with property 9) if there exists a Tr or a T, such that the corre-
sponding sets Jr+1 or J,, possess property 9 (with respect to F), respectively . If
in addition the sequences T r or T., are increasing, we say that S contains an in-
creasing path of length r + 1 or an increasing infinite path, respectively . We do not
know under what conditions on u the set S contains an infinite path . Perhaps this is
the simplest unsolved problem in our paper .

Now Czipszer's set-functions F* show that for u < 1/2 the set S need not con-
tain an infinite increasing path, and more generally, that with respect to a set-

function of type 2 and order at least 2 (1

	

S need not contain an increasing
path of length r + 1 . The question arises whether this is best possible in u . It may
be true that if u > 1/2 then there exists an infinite increasing path, or that if
u > 2 ( 1 - r) then there exists an increasing path of length r + 1, respectively . We
can prove this only for r = 2 .

The character of a problem concerning increasing paths is somewhat different
from that of the problems treated so far in our paper ; for the problem is meaning-
ful only if the basic set S is an ordered set, and the answer depends not only on the
power of S, but also on its order type .

Now we give our result concerning the case r = 2 .
THEOREM 3 . Let S be the set of natural numbers, and let F be a set-function

defined on S, of type 2 and of order at least u . If u > 1/4, then there exists an in-
creasing path 13 with property 9 . For u < 1/4, this is not necessarily true .

We do not know what happens in case F is merely required to be of order
greater than 1/4 .

Proof. The negative part of our theorem is shown by the set-function FZ de-
fined in (12) . Consider now a set-function satisfying the requirements of Theorem 3 .

For t = 1, 2, • • • , define

(13)

	

Et =

	

U

	

F({ t, t'})

	

and
t<t'<W

mt = m(E t),
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and let 0 < E < u - 1/4. There exists a real number m and an infinite subset
S' c S such that Im - mt l < e/2 for t E S' .

By (5) and (13), there exist t l and t2 (1 < tl < t2 < w, t1, t2 E S') such that

rn(E tl n Et.) > mm - F/2 .

Now F({t 1 , t2 }) c Etl , and m + &/2< m z -F,/2+u, since e < u - 1/4<m? - m + u .

Hence

and therefore

Thus, by (13),

m(F({tl, t 2 }) n Et2) > 0,

F({t1 , t 2 }) n Et2 o p" .

F({t 1 , t 2}) n F({t 2 , t 3 }) ~ 0 for some t 3 > t 2 .

By the definition of a path with property JP, this completes the proof of Theorem 3 .
Theorem 3 implies immediately that each infinite subset S' of S contains an in-

creasing path J 3 . Now there are two kinds of nonincreasing paths J3 : either
t 2 < t 1 , t 3 , or else t2 > t 1 , t 3 . It follows from (5) that each infinite subset S' of S
contains nonincreasing paths J3 of both kinds, for each u > 0, and that each infinite
subset S' of S contains two elements X, Y E [S] 2 , with X = { tl, t2 } , Y = { t3, t4 } ,
and X n Y = 0, such that F(X) n F(Y) * 0 for each prescribed ordering of
t 1 , t 2 , t 3 , t 4 . With a partition of [S]3 and [S] 4 similar to the partition we used in
the proof of Theorem 1(A), we can (by applying Ramsay's theorem) prove the fol-
lowing result .

THEOREM 4 . Let S be the set of natural numbers, and let F be a set-function
on S, of type 2 and of order at least u with u > 1/4 . Then there exists an infinite
subset S' of S such that F(X) n F(Y) ~ J0 for every pair X, Y E [S] 2 . The condition
u > 1/4 is necessary .

We omit the proof .
Here we may ask the following question . Let S again be the set of natural num-

bers, and let a system Z c [S] 2 of edges be called independent if x n Y = 0 for
every pair X * Y (X, Y E Z). Is it true that if F is a set-function on S, of type 2
and of order at least u (u > 0), then S contains an infinite subset S' such that each
independent system Z c [S'] 2 possesses property '?

We know that there always exists an infinite subset S' satisfying the weaker
condition that every independent system Z c [S] 2 of edges possesses property ?
provided Z < 3 . This can be shown similarly to Theorem 4 .
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4. THE ABSTRACT CASE

In this section, S always denotes the set of natural numbers .
We say that F is an abstract set-function of type 2, provided F associates with

each X E [S]z a subset F(X) of a fixed set H, and that F possesses property 4(k)
if

k
1 1 F(X i ) # 0
i=1

for every sequence {X 1} ( 1 < i < k) in [S] 2 .
A set-function F of type 2 and of order at least u (u > 1 - 1/k) obviously is an

abstract set-function with property .d(k) . The following result shows that in the
positive theorems proved in Section 3, the assumption that F is of order at least u
(u > 1 - 1/k) can not be replaced by the corresponding assumption that F possesses
property .d(k) . However, some weaker results hold . We state two of them without
proof .

THEOREM 5. (a) Suppose that F is an abstract set function with property 4(k)
for some k (3 < k < w) . Then there exists an infinite subset S' of S such that each
nonincreasing path 13 c [S'] z has property 9 .

(b) There exists an abstract set-function F, possessing property 4(3), such
that no increasing path 13 of S has property .' with respect to F.

We shall now describe some graph-theoretic constructions suggested by these
considerations. Let be a graph, and let G denote the set of vertices of 16 . A
subset G' of G is said to be afree subset of 16 if no two vertices belonging to G'
are connected by an edge in 46 . The graph 1,11, is said to have chromatic number n
provided n is the least cardinal number such that G is the sum of n free subsets .

A well-known result of Tutte [2] states that if n is an integer, then there exists
a finite graph 16 that contains no triangle and has chromatic number n . Several
other authors have constructed such graphs and have given estimates for the mini-
mal number of vertices of W (see [4, p . 346] and [11]) . In our next theorem, we
shall give a construction for such graphs that we believe to be simpler than the
previous ones ; unfortunately, it does not give a very good estimate for the minimal
number of vertices of ~6 .

It is sufficient to construct a graph 16 that has chromatic number No and con-
tains no triangle, since, by a theorem of N . G. de Bruijn and P . Erdös (see [1] ), if
every finite subgraph of a graph 16 is r-chromatic, then 16 is also r-chromatic .
(In place of this argument, we could also use Ramsay's theorem .)

THEOREM 6 . Let G = [S]z (S = 11, 2,

	

and let the graph w with the set G
of vertices be defined by the rule that two distinct vertices X = { s l , s z } and
Y = { t l , tz } (1 < s l < s z < w; 1 < t l < t z < w) are connected if and only if either
s2 = t l or t2 = s1 . Then g contains no triangle, and its chromatic number is No.

Proof. The first statement is trivial. Suppose that the second is false . Then
G = G1 U • • • U Gk, where k is finite and G1, • • • , Gk are free sets in i . Consider-
ing that G = [S]z, we see from Ramsay's theorem that there exists an S' C S
(S' _ No > 3) such that [S']2, c Gi for some i (1 < i < k) . Let t1 , t 2 , t3 E S'. Then
X = { t1, t?}, Y = It?, t3 j E Gi, and X and Y are connected in W, contrary to the
assumption that Gi is a free set . This completes the proof of Theorem 6 .
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Generalizing Tutte's theorem, P . Erdos and R. Rado proved [8, p . 445] that if n
is an infinite cardinal number, then there exists a graph ~Ij, that contains no triangle
and has chromatic number n . Moreover, the graph constructed by them has n ver-
tices . Their construction is not quite simple . Using the same idea as in the proof
of Theorem 6 and applying a generalization of Ramsay's theorem, we can now give a
very simple proof for a part of this result. Namely, we can similarly construct a
graph i that contains no triangle and has chromatic number n; but the set of ver-
tices of this graph is of power greater than n .

P. Erdos proved [3, p . 34-35] the following generalization of Tutte's theorem .
If k and n are positive integers, then there exists a graph 16, of chromatic number
at least n, that contains no circuit of length i for 3 < i < k .

One could have believed that, in analogy with Tutte's theorem, this theorem also
could be generalized for n > N 0 . Surprisingly, this is not so :

If a graph 16 contains no circuit of length 4, then its chromatic number is at
most N O .

We shall publish the proof of this theorem in a forthcoming paper in which we
shall also try to determine what kinds of subgraphs a graph 16 of chromatic number
greater than No must contain. A typical result : 16 must contain an infinite path
and an even graph [S O , S 1 ], where Sp = r, S1 = N 1 •

On the other hand, we prove the following generalization of the theorem of Erdos
and Rado cited above .

THEOREM 7. Let k be a positive integer, and let n be an infinite cardinal
number. Then there exists a graph V that has chromatic number at least n and
contains no circuit of length 2i + 1 for 1 < i < k .

In our construction, the set of vertices of ~& is of power greater than n . We do
not know whether there exist such graphs w with G = n . (Added in proof. Recently,
we proved that such graphs exist for every n .)

We only outline the proof of Theorem 7 . Let m be a cardinal number greater
than n, and let 0 denote the initial number of m . To define 11, we put Z = { v}
(v < b) and G = [Z]k+1 and for arbitrary different elements

X _ { v l , . . ., vk+1 }

	

and

	

Y = { µ1, . . . µk+1}

(vl < . . . < vk+l ; µ1 < . . . < µk+1 )

of G, we let X and Y be connected in ., if and only if either

P2 -
µ1 v3

- µZ, . . . vk+l = µk

or

µ2 - vl , µ 3 - v2,

	

p'k+1 - vk

The fact that !& contains no circuit of length 2i + 1 for 1 < i < k is assured by a
simple and essentially finite combinatorial theorem, which we omit .

Suppose now that the chromatic number of 16 is less than n . Then
G = Ua <~, Ga , where Vi < n and where Ga is a free subset of '6 for every
a < 4' . If m is chosen to be greater than
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2 n

2 2

	

(k symbols 2),

then, as a corollary of a generalization of Ramsay's theorem that was proved by
P . Erdos and R . Rado (see [7, p . 567] ), there exist a subset S' of S ,O' = k + 2) and
an a < 0 such that [S' ]k+1 c Ga

Let S' _ { v1, • • ' , vk+1, vk+Z} (v 1 < . . . < vk+2) Then

X - {v1, . . . vk+1} , Y = {v2, . . . 1)k+2} E Ga ,

and X, Y are connected in W . This contradicts the assumption that Go, is free .

5 . THE CASE m = i`t l OR m = 2~ 0

In this section we shall often refer to the partition symbol m - --p (b,) r introduced
by P . Erdos and R . Rado [6, p . 428] . For the convenience of the reader we restate
the definition .

Let m and c (c > 2) be cardinal numbers, let r be an integer (r > 1), let 0 de-
note the initial number of c, and let (b v ) (v < gyp) be a sequence of type 0 of cardinal
numbers .

The implication m --> (bv)r means that if S is a set of power m and (J,) (v < 0)
is a partition of the set [S] r (that is, [S] r = Uv<0 Jv ), then there exist a subset S'
of S and a vo < 0 such that S' = b vo and [S']r C Jvo . The expression m -/- (bv) c

means that the above statement is false .
Several results concerning the symbolic statement m (bv)c are proved in [6]

and [7] . A forthcoming paper by P. Erdos, A . Hajnal, andR. Rado [5] will contain an
almost complete discussion of the symbol .

Note that the problem of proving that m --> (b ,)r is a generalization of the prob-
lem settled by Ramsay's theorem . Indeed, Ramsay's theorem (see Section 1) as-
serts that if c is finite, then rt0

	

( 0

	

o)c (or, more precisely, that
No

	

(bv)r provided c is finite and b y = 1`! o for every v < 0 .)
Now we turn to our original problems . First we prove the following negative

result .
(*) THEOREM 8 . If S is a set of power 2 X0 , then there exists a set-function F

on S, of type 2 and of order at least 1, such that no Z 1 c [S]Z with cardinality
greater than N o possesses property V ; that is, if m = 2 N0 , there need not exist a
graph that has at least N 1 vertices and possesses property ' .

Proof. Let {u,} (v < wl) and {X1,} (v < co l ) be well-orderings of type w l
of the sets [0, 1] and [S] 2 , respectively . For each v < co,, we define

F(Xv ) _ {uµ }

	

( v < µ < WI) .

Since each F(Xv ) has a denumerable complement, m(F(X v )) = 1 if v < w l , and thus
F is of order at least 1 . On the other hand, the intersection of any X 1 of the sets
F(Xv ) is obviously empty . This completes the proof .



120

	

P. ERDÖS and A . HAJNAL

A corollary of Theorem 8 : if 0 < u < 1, then (2 0, 2, u) =/~N- NJ provided (*) is
assumed. Without the generalized continuum hypothesis, we can prove only the fol-
lowing weaker result .

THEOREM 9. If u < 1/2, then (2 0, 2, u) s X21 .

Proof. Let S be a set of power 2 N0 . By a result of Sierpinski [13], there
exists a partition of [S]2 such that the statements

[S]2 = JI U J2,

	

J1 n J2 = 0,

	

S' c S, and [S']2 c Jj (j = 1, 2)

imply that S' < No . (In terms of the partition relations implied by m -+ (bv)c, this
means that 2~0 f+ (nl, idl)2 .

Now we define

(0, 1/2)

	

if X E Jl
F(X) =

(1/2, 1)

	

if X E J2 .

This set-function obviously satisfies the requirement of our theorem .

If u > 1/2, the argument above is inconclusive . Now, the edges of a complete

graph of power 2No can presumably be split into 2No disjoint classes in such a
way that each subset of S of power N 1 contains an edge from each class . This
theorem has never been proved, not even for three classes, without the help of the
generalized continuum hypothesis (*) . A proof using (*) is given in [5] . If we could
prove the theorem for r classes (r > 2) without using (*), then by following our
proof of Theorem 9, we could clearly show that for each r < w,

(2 N0, 2, 1 - 1/r) ;/-* Nil

On the other hand, it is easy to see without using (*) that (2 0 . 2, > 0) 3 . To
prove this, we let S be the interval [0, 1], and we let F({x, y}) be the open interval
(x, y) . Obviously,

m(F({x, y})) = Ix - yl > 0,

and no triangle has the property 9 .
Trees whose longest paths have length at most 2 are unions of stars . It is well

known that every complete graph of power N 1 is a countable sum of trees, in fact,
a countable sum of trees that are unions of stars . Thus, if we assume the continuum
hypothesis, then we can construct an F(X) such that m(F(X)) > 0 and no graph con-
taining a path of length 3 has property ~ . For the sake of completeness we remark
that if c = N1 and S is a set of power we can construct by the above remark a
set-function on S, of positive order and type 2, so that no graph of power rt 1 and
no path of length 3 has property Y .

Our only positive result in this section is the next theorem .
THEOREM 10. If u is positive and m > No, then (m, 2, u) =)- No .
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Remark . If u < 1/2, we know by Theorem 9 that this result is best possible if

m < 2 00 . If we assume (*), then, by Theorem 8, Theorem 10 is best possible for
each u < m and each m<2 ~ 0 .

Proof. It is sufficient to prove that if u > 0, then (fit 1 , 2, u) = 8t 0 .
Let S be a set of power rt1 ; without loss of generality, we suppose that S = {a }

(a < w 1 ) . Let F be a set-function on S, of type 2 and of order at least u . For
brevity, we write

F({a 1 , a 2}) = Fat a2 = Fat ai .

Let X o Y denote the symmetric difference x u Y - (X fl Y) of the sets X and
Y. The following theorem is well known (see [10, p . 168] ) .

THEOREM a . There exists a denumerable sequence {E 5 } (s < w) of meas-
urable subsets of [0, 1] such that if E is a measurable subset of [0, 1], then cor-
responding to each E > 0 there exists an s < w for which m(E ° Es ) < E .

Applying Theorem a, we obtain the following result .
THEOREM (3 . There exist an a0 < w1 and a subset S 1 of S with cardinality

bt 1 such that for each a and a' in S 1 ,

m Fao,a ° FaO 'a l ) < E .

Suppose now that Sk c • • • c S1 and the elements a 0 , • • • , a k-1 are already de-
fined for some k (0 < k < w) in such a way that S k has power rt 1 . Then, if we
apply Theorem a k + 1 times, we establish the following result .

THEOREM y . There exist an a k E Sk (ak * a i if i < k) and a subset Sk+l C Sk
with cardinality tZ 1 such that for each i < k and for each a and a' in Sk+1

m(Faia oFa.,a i ) < E2 -k-1

Thus by induction on k, ak and Sk+1 are defined for every k < w . Now let

Gk = I I Fak ta .
t=k+1

For each k < w, it follows from Theorem (3 and Theorem y that

00

m(Gk) > m(Fak,ak+1) E c 2 k-1 '
t=k

hence, if 0 < E < u/2, then

m(Gk) > u - E > u/2 .

Finally, the theorem proved in the Introduction enables us to conclude that there
exists an infinite sequence {k r } (r < w} such that
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oc
1 1 Gk r # f
r=0

Let S' = {a kr } (r < w). Then S' has power 00, and [S']' possesses property Y .
The proof of Theorem 10 is now complete .

6. THE CASE m = N 2 .

Throughout this and the next section we shall assume the generalized continuum
hypothesis (*) .

(*) THEOREM 11 . (N 2 , 2, > 0) => N o .
Proof. Let S be a set of power N 2 , and let F be a set-function on S, of type 2

and of positive order. We split the edges of the complete graph S into countably
many classes J t by stipulating that X E Jt if and only if for each t < w and each
X E [S1 1-

2 t-1 < m(F(X)) < 2-t .

Since the order of F(X) is positive,

[S]2 = U it*
t<w

It follows from a theorem in [5] that

	

(see the definition
0

of m (bv )r in Section 5) . Hence, at least one of the graphs i t contains a com-
plete graph of power 01 ; that is, there exist a subset S' of S of power N 1 and a
to < w such that [S'] 2 c Jto . Applying Theorem 10, with S' playing the role of S,
we obtain the desired conclusion .

Theorem 11 is probably best possible . In fact, it seems likely that even if we
were to assume that the order of F is at least 1, we could not deduce the existence
of a complete subgraph of power N 1 that has property 9 . This question is con-
nected with the following unsolved problem stated in [5] .

Let S be a set of power N 2 . Does there exist a partition of the complete graph
S into disjoint sets J v (v < w l ) such that no countable union of J v's contains a
complete graph of power N 1 ; that is, such that if S' is a subset of S with cardi-
nality NJ, then [S'] 2 fl Jv * 0 for at least N 1 sets J v?

Probably such a decomposition exists, but we have been unable to construct one .
For the sake of the argument, assume that it exists . Let {uv } (v < w1) be a well-
ordering of type co, of the interval [0, 1], and define a set-function of type 2 on S
by the condition

F(X) = {u.1 (v< µ < w l ) for X E [S] 2

if and only if X E J v for each v < w l . Obviously, F is of order at least 1 . More-
over, if S' is a subset of power N 1 of S, then F assumes N 1 distinct values on
[S'] 2 ; hence, [S] 2 does not possess property _P .



SOME REMARKS ON SET THEORY, IX

	

123

7. THE CASE m > tZ 2 .

Under the assumption that m > N?, the connection between our problems and
measure theory becomes tenuous, and the questions become purely set-theoretical .
In this section we shall make heavy use of [5] .

(*) THEOREM 12 . If m = Na+1 and cf (a) > 1, then (m, 2, > 0) > X el .
This theorem is a corollary of the following stronger proposition .

(*) THEOREM 12 (A) . If m = Ka+l, cf ( (y ) > 1 ; and if to each X E [S]' there
corresponds a nonempty subset of [0, 1], then there exists a subset S' of S with
cardinality Na and such that [S'] 2 possesses property F .

Proof. Let { u v } (v < w 1) be a well-ordering of type w 1 of [0, 1] . We define a
partition of [S]2 into sets J v (v < w1) as follows . For each X E [S] 2 and each
v < w1, X is in Jv if and only if v is the least ordinal number for which U V E F(X) .

A theorem of [5] states that, under the hypotheses of Theorem 12 (A),
2

~a+1 -' (~a) tZ l

The next theorem implies that Theorem 12 (A) is best possible even if the com-
plement of each set F(X) consists of one element .

(*) THEOREM 13 . If m = Na and if either R is of the first kind or (3 is of the
second kind and H c f ( R ) is not an inaccessible cardinal greater than No , then

(a) (NO, 2, 1) /-s N o if cf (0) * 0,
(b) for each u < 1, (bt0, 2, u) =,,). H R if cf ((3) = 0 .

Moreover, in case (a) the desired set-function F can be chosen so that the comple-
ment of each F(X) consists of exactly one element .

Proof. Let S be a set of power tZ , and consider the case (a) . A theorem in [5]
implies that there exists a partition ofa[S] 2 into disjoint sets J v (v < w 1) such that
if S' is a subset of S with cardinality NR, and if v < w1, then [S'] Z fl J v # 0 . We let
{u,} (v < w l ) be a well-ordering of [0, 1] of type w l , and for each v< co, and each
X E [S] 2 we define

F(X) = [0, 1] - {u,} if X E Jv .

Clearly, the function F has the desired properties .
We now consider case (b) . By virtue of Theorem 1, we may suppose that (3 > 0 .

Doing so, we choose an increasing sequence { (3 t} (t < w) of ordinal numbers less
than (3 and cofinal with (3, and for each t < w we choose a subset S t of S with car-
dinality tZ

at
so that the St are disjoint and

S = U St .
t< w

On the set S* = { S t } (t < w) there exists by Theorem 1 a set-function F*, of type 2
and of order at least u, such that if S*' is a subset of S* of power No, then [S*' 1 2

does not possess property 91 with respect to F* .
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For any {x, y} E [S] Z , suppose that x E S tI and y E StZ , and define F({x, y})

as follows :

F({x, y}) = (0, 1)

	

(t 1 = t 2 ),

F({x, y}) = F*({S tl , St Z }) (t 1 # t a ) .

It is easy to verify that F has the desired properties . This completes the proof .

For the case where H Cf ( R ) is inaccessible and greater than N o , the problem
remains unsolved .

(*) THEOREM 14 . If m = No > No is a limit cardinal and if n < m, then
(m, 2, > 0) = n .

It is a theorem in [5] that

m --- (n) X 1

Both Theorem 12 and Theorem 14 follow from this . Moreover, just as in Theorem
12 (A), instead of assuming that F is of positive order, we can merely assume that
F(X) is nonempty for each X E [S] Z . We omit the details .

The only cases we have not yet discussed are m = Na +1, where a > 1 and
either cf (a) = 0 or cf (a) = 1 .

(*) THEOREM 15 . If m = Na +1, a > 0, cf (a) = 0, and u > 0, then

(m, 2, u) ---- N a .

Proof. Let S be a set of power Ka+1 . Without loss of generality suppose that
S = {v} (v < Co. +1) . Let F be a set-function of S, of type 2 and of order at least
u . We shall use methods employed in [5] .

By the ramification method used there, we know that there exists an increasing
sequence { vp } (p < co .) such that if p < p' < p" < w a , then

(16)

	

F({ vµ , v4 ,1 ) = F({ v p, vµ }) .

We shall write Fp = F({ v µ , vp+ 1 1) . Let {at} (t < w) be an increasing sequence
of ordinal numbers less than a, cofinal with a and such that a t > 2 and At a t is
regular . Since [0, 1] has only K Z subsets, it follows that corresponding to each
t < w, there exist a pt and a set Zt of ordinal numbers

p

	

(Wat_1 < p < (Oa t ; a_1 = 0)

such that Z t has power Nat , and Fp = Fpt for each p in Z t . If t < w, then
m(Fpt ) > u > 0 ; therefore, we conclude from the theorem proved in the Introduction
that there exists an infinite subsequence {t s } (s < w) such that

n F pt * f .
s<W

	

5
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Z = U Z t ,
s<W s

S'= {vg } (g E Z) .

S =

	

Lat at = ~a
S < W

	

s

and, by (16), [S'] Z possesses property Y . This completes the proof of the theorem .

We note that under the hypotheses of Theorem 15, (m, 2, > 0) 56> M a . This is
true because of a theorem in [5] which states that if cf(a) = 0, then

iota+1 f' (Ma)N O

That is, if S is a set of power t`ta+l (cf(a) = 0), then there exists a partition of
[S]2 into disjoint sets Jt (t < w) such that if t < w, S' c S, and [S' ] 2 c Jt , then

S' < x a .

For each X E [S] 2 and each t < w, we define F(X) = (2-t_1 2-~ if X E Jt . For this
F it is obvious that (m, 2, > 0) =~> M a .

(*) THEOREM 16 . If m = Ma+1 , cf (a) = 1, and a > 1, then

(a) (m, 2, 1) 7~,_ iota ,
(b) (m, 2, > 0) > n (n< ~t a ) .
Note that, in harmony with our remarks in the discussion of the case m = tt Z,

we do not know whether or not (m, 2, 1) =/ > Na is true if the condition a > 1 is
omitted .

Proof of Theorem 16 . The conclusion (b) follows trivially from Theorem 14 . To
prove (a), we refer to the following theorem in [5] . Let S be a set of power Ma+1 ,
where cf(a) = 1 and a > 1 . Then there exists a partition of [S] 2 into disjoint sets
J v (v < w l ) such that if S' is a subset of S of Power N a , then

[s , ]'- n Jv # 0

for rZ 1 sets J, .

We now let {uv} (v < w 1) be a well-ordering of type w 1 of the interval [0, 1],
and we define a set-function F by the condition that for each v < W I and each
X E [S]Z,

F(X)={ug } (v<g<w 1 )

	

if XEJv .

By analogy with the remark made after the proof of Theorem 11, it is easy to see
that F has the desired properties .
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8 . THE CASE k > 2

We shall discuss this case only briefly. At present we cannot even settle the
following question: Is it true that for each u > 0

( NJ, 3, u) -s 4 ?

Let k, m, and n be integers. It is an old problem of P . Turin's to determine
the smallest integer f(k, n, m) such that if

A 1 . . . Af(k,n,m)

are k-tuples formed from a set S of m elements, then there always exist n ele-
ments of S such that each k-tuple of these n elements is an Ai . As we stated
earlier, Turin determined f(2, n, m) . For k > 2, the problem appears to be quite
difficult . It is easy to show that

f(k, n, m)Ck = Jim	 kn

	

Ln
m --I oc

exists . The results of Turin [2] imply that

0 < Ck n < k

	

and

	

C2,n = 2 (1 - n	 1 1 ) ;

but even the value of C3,4 is not known .
It is easy to deduce by the methods used to prove Theorem 1 that if u > k! Ck,n,

then

(N 0,k,u) fin .

This is no longer true if u = k! Ck,n .
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