THE AMOUNT OF OVERLAPPING IN PARTIAL COVERINGS OF SPACE BY EQUAL SPHERES

P. Erdős, L. Few and C. A. Rogers

1. Introduction. We say that a system Σ of equal spheres S_{1}, S_{2}, \ldots covers a proportion θ of n-dimensional space, if the limit, as the side of the cube C tends to infinity, of the ratio

of the volume of C covered by the spheres to the volume of C, exists and has the value θ. We say that such a system Σ has density δ, if the corresponding ratio

$$
\frac{\sum_{r=1}^{\infty} V\left(S_{r} \cap C\right)}{V(C)}
$$

has the limit δ as the side of the cube C tends to infinity. We confine our attention to systems Σ for which both limits exist. It is clear that $\delta=\theta$, if no two spheres of the system overlap, i.e. if we have a packing; and that, in general, the difference $\delta-\theta$ is a measure of the amount of overlapping.

By well-known results of H. Minkowski [1] and H. F. Blichfeldt [2], the maximum density θ_{n} of a packing of equal spheres into n-dimensional Euclidean space satisfies

$$
\frac{\zeta(n)}{2^{n-1}} \leqslant \theta_{n} \leqslant \frac{n+2}{2}\left(\frac{1}{\sqrt{ } 2}\right)^{n}, \quad\left(\zeta(n)=\sum_{k=1}^{\infty} k^{-n}\right) .
$$

These results have been improved, see [3], [4] and [5], but the improvements tell us nothing new about the asymptotic behaviour of $\theta_{n}^{1 / n}$ as $n \rightarrow \infty$. If Σ has $\theta>\theta_{n}$, a general (but not quite trivial) argument shows that $\delta>\theta$; but does not, as far as we can see, give any estimate for $\delta-\theta$.

Our object in this paper is to obtain such an estimate for $\delta-\theta$, for a wide range of values of θ. Our method, which is based on one first used by R. P. Bambah and H. Davenport [6] (see also [7]), does not work for values of θ approaching θ_{n}, but it does work for values of θ, which may become exponentially small as n increases. It is also relatively weak, when θ is close to 1 , as we do not obtain a result so strong as that of H.S. M. Coxeter, L. Few and C. A. Rogers [8] on letting θ tend to 1. It is however the only explicitly known result for

$$
\left(\frac{4}{5}+o(1)\right)^{n / 2}<\theta<1
$$

Our main result is
Theorem 1. If $n \geqslant 2^{20}$ and a system Σ of equal spheres covers a proportion θ of n-dimensional space with

$$
\begin{equation*}
\theta>\frac{4}{3}\left(1-4 n^{-1 / 4}\right)^{-n / 2}\left(\frac{4}{5}\right)^{n / 2}, \tag{1}
\end{equation*}
$$

and has density δ, then

$$
\delta \geqslant \theta+\Theta
$$

where

$$
\begin{equation*}
\Theta=\frac{1}{3}\left[1-\exp \left(16-\frac{1}{2} n^{1 / 2}\right)\right]\left[1-4\left\{\left(\frac{3}{4} \theta\right)^{-2 / n}-1\right\}\left\{1+32 n^{-1 / 4}\right\}\right]^{n / 2} . \tag{2}
\end{equation*}
$$

The estimate for $\delta-\theta$ is not quite as simple as one would wish; one gets a better idea of its consequences on noting that, if

$$
\frac{1}{n} \log \frac{1}{\theta}=o(1)
$$

as $n \rightarrow \infty$, i.e. if θ does not tend to zero exponentially fast, then

$$
\begin{equation*}
\Theta=\frac{1}{3}\left(\frac{3}{4} \theta\right)^{4+\sigma(1)}, \tag{3}
\end{equation*}
$$

as $n \rightarrow \infty$; and that, if

$$
0<\liminf _{n \rightarrow \infty} \frac{1}{n} \log \frac{1}{\theta} \leqslant \lim _{n \rightarrow \infty} \frac{1}{n} \log \frac{1}{\theta}<\frac{1}{2} \log \frac{5}{4}
$$

i.e. if θ does tend to zero exponentially fast at a rate strictly slower than that of $\left(\frac{4}{5}\right)^{n / 2}$, then

$$
\begin{equation*}
\Theta=\left(5-4 \theta^{-2 / n}+o(1)\right)^{n / 2} \tag{4}
\end{equation*}
$$

We remark that Rogers [9] (see also [10]) has a result (Theorem 1), which implies (on choosing V to satisfy $\theta=V-\frac{1}{2} V^{2}$) that, if $0<\theta \leqslant \frac{1}{2}$, then there is a lattice system of spheres, covering the proportion θ of n-dimensional space, and with density at most

$$
\begin{equation*}
\theta+\frac{\theta^{2}}{(1-\theta)+\sqrt{ }(1-2 \theta)}<\theta+2 \theta^{2} \tag{5}
\end{equation*}
$$

This shows that we cannot expect too much overlapping when θ is small.
2. The approximation of spheres by polyhedra. In this section we prove a lemma on the volumes of the parts of a convex polyhedron lying inside and outside a sphere. Our result tells us that, if the volume of a polyhedron Π does not greatly exceed the volume of a sphere S, and if Π has not too many faces, then the volume of $\Pi \cap S$ is substantially smaller than that of S.

Lemma 1. Let S be the sphere with centre \mathbf{o} and radius 1 , and let Π be a convex polyhedron containing $\mathbf{0}$. Let $N(t)$ be the number of faces of Π whose $(n-1)$-dimensional planes are within the distance t of \mathbf{o}. Then, provided $0<h<1<r$, we have

$$
\begin{align*}
& V(S \cap \Pi) \leqslant r^{-n} \Phi V(\Pi)+ \\
& \quad+\left[1-\Phi+\Phi \int_{h}^{r} n N(x)\left(1-\frac{x^{2}}{r^{2}}\right)^{(n / 2)-1} \frac{x}{r} d\left(\frac{x}{r}\right)\right] V(S), \tag{6}
\end{align*}
$$

where

$$
\begin{equation*}
\Phi=\left\{\frac{r^{2}\left(1-h^{2}\right)}{r^{2}-h^{2}}\right\}^{n / 2} \tag{7}
\end{equation*}
$$

Proof. Let $F_{1}, F_{2}, \ldots, F_{N}$ be the ($n-1$)-dimensional faces of Π and let $h_{1}, h_{2}, \ldots, h_{N}$ be the perpendicular distances from o to the $(n-1)$ dimensional planes of these faces. We suppose that the faces are named so that

$$
h_{1} \leqslant h_{2} \leqslant h_{3} \leqslant \ldots \leqslant h_{N} .
$$

For each i let C_{i} denote the semi-infinite cone with vertex o and with F_{i} as one of its sections, i.e. the set of points which can be expressed vectorially in the form $\lambda \mathbf{x}$ with $\lambda \geqslant 0$ and $\mathbf{x} \in F_{i}$.

Let S^{*} be the sphere with centre \mathbf{o} and radius r. Let \mathbf{y}_{i} be the point of F_{i} nearest to \mathbf{o}. If $\left|\mathbf{y}_{i}\right| \geqslant r$ we have

$$
\begin{equation*}
V\left(S^{*} \cap C_{i}\right) \leqslant V\left(\Pi \cap C_{i}\right) . \tag{8}
\end{equation*}
$$

If $h \leqslant\left|\mathbf{y}_{i}\right|<r$, the points of $S^{*} \cap C_{i}$ not in Π are contained in the sphere S_{i} with centre \mathbf{y}_{i} and radius $\left(r^{2}-\left|\mathbf{y}_{i}\right|^{2}\right)^{1 / 2}$. In this case

$$
\begin{align*}
V\left(S^{*} \cap C_{i}\right) & \leqslant V\left(\Pi \cap C_{i}\right)+V\left(S_{i}\right) \\
& =V\left(\Pi \cap C_{i}\right)+\left(r^{2}-\left|\mathbf{y}_{i}\right|^{2}\right)^{n / 2} V(S) \tag{9}
\end{align*}
$$

If $\left|\mathbf{y}_{i}\right|<h$, we again note that the points \mathbf{y} of $S^{*} \cap C_{i}$ satisfying

$$
\begin{equation*}
\mathbf{y} \cdot \mathbf{y}_{i} \geqslant h\left|\mathbf{y}_{i}\right| \tag{10}
\end{equation*}
$$

are contained in a sphere of radius $\left(r^{2}-h^{2}\right)^{1 / 2}$, this time it is the one with centre $h \mathbf{y}_{i} \| \mathbf{y}_{i} \mid$. So the volume of the set of the points \mathbf{y} of $S^{*} \cap C_{i}$ satisfying (10) is at most $\left(r^{2}-h^{2}\right)^{n / 2} V(S)$. Now consider the set H_{i}^{*} of points \mathbf{y}^{*} of $S^{*} \cap C_{i}$ not in Π, but with

$$
\begin{equation*}
\mathbf{y}^{\#} \cdot \mathbf{y}_{i}<h\left|\mathbf{y}_{i}\right| . \tag{11}
\end{equation*}
$$

With each point \mathbf{y}^{*} of H_{i}^{*} we associate the point

$$
\mathbf{y}=\mathbf{y}_{i}+\phi\left(\mathbf{y}^{*}-\mathbf{y}_{i}\right),
$$

where

$$
\phi=\left\{\frac{1-h^{2}}{r^{2}-h^{2}}\right\}^{1 / 2}
$$

The region $C_{i}-\Pi$ is convex and contains both \mathbf{y}^{*} and \mathbf{y}_{i} in its closure. So \mathbf{y} also lies in the closure of $C_{i}-\Pi$. Also, for \mathbf{y}^{*} in H_{i}^{*},

$$
\begin{aligned}
\mathbf{y} \cdot \mathbf{y} & =\left\{(1-\phi) \mathbf{y}_{i}+\phi \mathbf{y}^{*}\right\} \cdot\left\{(1-\phi) \mathbf{y}_{i}+\phi \mathbf{y}^{*}\right\} \\
& =(1-\phi)^{2} \mathbf{y}_{i} \cdot \mathbf{y}_{i}+2 \phi(1-\phi) \mathbf{y}^{*} \cdot \mathbf{y}_{i}+\phi^{2} \mathbf{y}^{*} \cdot \mathbf{y}^{*} \\
& \leqslant(1-\phi)^{2} h^{2}+2 \phi(1-\phi) h^{2}+\phi^{2} r^{2} \\
& =h^{2}+\phi^{2}\left(r^{2}-h^{2}\right)=1 .
\end{aligned}
$$

Thus the transformation $\mathbf{y}^{*} \rightarrow \mathbf{y}$ transforms the set H_{i}^{*} into a sub-set of

$$
S \cap C_{i}-\Pi
$$

Hence

$$
V\left(H_{i}^{*}\right) \leqslant \phi^{-n} V\left((S-\Pi) \cap C_{i}\right),
$$

and

$$
\begin{align*}
V\left(S^{*} \cap C_{i}\right) & \leqslant V\left(\Pi \cap C_{i}\right)+\left(r^{2}-h^{2}\right)^{n / 2} V(S)+V\left(H_{i}^{*}\right) \\
& \leqslant V\left(\Pi \cap C_{i}\right)+\left(r^{2}-h^{2}\right)^{n / 2} V(S)+\phi^{-n} V\left((S-\Pi) \cap C_{i}\right) . \tag{12}
\end{align*}
$$

Summing the results (8), (9) and (12), we obtain

$$
V\left(S^{*}\right) \leqslant V(\Pi)+\phi^{-n} V(S-\Pi)+N(h)\left(r^{2}-h^{2}\right)^{n / 2} V(S)
$$

$$
+V(S) \int_{h}^{r}\left(r^{2}-x^{2}\right)^{n / 2} d N(x) .
$$

Integrating by parts, we have

$$
\begin{aligned}
& \int_{h}^{r}\left(r^{2}-x^{2}\right)^{n / 2} d N(x) \\
& \quad=-\left(r^{2}-h^{2}\right)^{n / 2} N(h)+\int_{h}^{r} n x\left(r^{2}-x^{2}\right)^{(n / 2)-1} N(x) d x .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\Phi V(S)= & r^{-n} \Phi V\left(S^{*}\right) \\
\leqslant & r^{-n} \Phi V(\Pi)+\{V(S)-V(S \cap \Pi)\} \\
& +\Phi V(S) \int_{h}^{r} n N(x)\left(1-\frac{x^{2}}{r^{2}}\right)^{(n / 2)-1} \frac{x}{r} d\left(\frac{x}{r}\right) ;
\end{aligned}
$$

so (6) follows.
3. Periodic systems of spheres. We say that a system of equal spheres S_{1}, S_{2}, \ldots is a periodic system with period R, if the spheres of the system have a representation

$$
\begin{equation*}
S+\mathbf{a}_{i}+\mathbf{b}_{j}, \quad i=1,2, \ldots, M, \quad j=1,2, \ldots, \tag{13}
\end{equation*}
$$

where S is a fixed sphere with o as centre, where $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{M}$ is a finite set of points, and where b_{1}, b_{2}, \ldots is an enumeration of the points of the lattice Λ_{R} of points whose coordinates are integral multiples of R. We use $\Sigma\left(S ; \mathrm{a}_{1}, \mathrm{a}_{2}, \ldots, \mathrm{a}_{M} ; R\right)$ to denote this system (13).

Our next lemma shows us that, if, when we keep S, M and R fixed and vary $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{M}$ to ensure that $\Sigma\left(S, \mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{M} ; R\right)$ covers the largest possible proportion of space, we find that this proportion is not too close to 1 , then not too many of the centres

$$
\mathbf{a}_{i}+\mathbf{b}_{j}, \quad i=1,2, \ldots, M, \quad j=1,2, \ldots
$$

can lie in spheres of radius $2 h$ centred on these points.
Lemma 2. Let S be the sphere with centre \mathbf{o} and radius 1 in n-dimensional Euclidean space, with $n \geqslant 4$. Let $R>2$ be given, Let M be a positive integer. Let $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{M}$ be chosen so that the system

$$
\Sigma\left(S ; \mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{M} ; R\right)
$$

covers the largest possible proportion of the whole space. Suppose that this proportion is θ and that

$$
\begin{equation*}
\theta \leqslant 1-\left(1-n^{-1 / 2}\right)^{n / 2} \tag{14}
\end{equation*}
$$

Then, for each k with $1 \leqslant k \leqslant M$, and for each h with $0<h<\frac{1}{2} R$, the number $N_{k}(h)$ of the centres

$$
\mathbf{a}_{i}+\mathbf{b}_{j}, \quad i=1,2, \ldots, M, \quad j=1,2, \ldots
$$

within distance $2 h$ of a_{k} satisfies

$$
\begin{equation*}
N_{k}(h)<\left(4 h^{2}+1\right)^{n / 2} \exp \left(2 n^{3 / 4}\right) . \tag{15}
\end{equation*}
$$

Further, if $n \geqslant 2^{20}, 1<r^{2}<\frac{5}{4}\left(1-4 n^{-1 / 4}\right)$,
and

$$
\begin{equation*}
h^{2}=r^{2}-\frac{1}{4}+4 n^{-1 / 4} \tag{16}
\end{equation*}
$$

then

$$
\begin{equation*}
\int_{h}^{r} n N_{k}(x)\left(1-\frac{x^{2}}{r^{2}}\right)^{(n / 2)-1} \frac{x}{r} d\left(\frac{x}{r}\right)<\exp \left(-2 n^{3 / 4}\right) \tag{17}
\end{equation*}
$$

Proof. Suppose that $1 \leqslant k \leqslant M$ and $0<h<\frac{1}{2} R$. Let

$$
\mathbf{c}_{m}=\mathbf{a}_{i(m)}+\mathbf{b}_{j(m)}, \quad m=1,2, \ldots, N_{k}(h)
$$

be the points of the system within distance $2 h$ of the point \mathbf{a}_{k}. As $h<\frac{1}{2} R$ it follows that the points

$$
\mathbf{a}_{i(m)}, \quad m=1,2, \ldots, N_{k}(h),
$$

are all distinct.
We take

$$
\begin{equation*}
y=\left\{1-\left(\frac{1}{2}\right)^{2 / n}(1-\theta)^{2 / n}\right\}^{1 / 2}, \tag{18}
\end{equation*}
$$

and consider the sphere Σ with centre \mathbf{a}_{k} and with radius

$$
z=\left[(2 h+y)^{2}+\left(1-y^{2}\right)\right]^{1 / 2}=\left[4 h^{2}+1+4 h y\right]^{1 / 2}
$$

It is clear that if the sphere

$$
S+\mathbf{c}_{m}
$$

has any point not in Σ, the whole set

$$
\left(S+\mathbf{c}_{m}\right)-\Sigma
$$

will be contained in the sphere Σ_{m} with centre

$$
\mathbf{a}_{k}+(2 h+y) \frac{\mathbf{c}_{m}-\mathbf{a}_{k}}{\left|\mathbf{c}_{m}-\mathbf{a}_{k}\right|}
$$

and with radius

$$
\left(1-y^{2}\right)^{1 / 2}
$$

It follows that the volume of the union

$$
\bigcup_{m=1}^{N}\left(S+\mathbf{c}_{m}\right)
$$

is at most

$$
V(\Sigma)+\sum_{m=1}^{N} V\left(\Sigma_{m}\right)=\left[\left(4 h^{2}+1+4 h y\right)^{n / 2}+N_{k}(h)\left(1-y^{2}\right)^{h / 2}\right] V(S)
$$

Let V_{m} be the volume of the part of $S+\mathbf{c}_{m}$ which lies in no other sphere

$$
S+\mathbf{a}_{i}+\mathbf{b}_{j}
$$

with

$$
\mathbf{a}_{i}+\mathbf{b}_{j} \neq \mathbf{c}_{m} .
$$

Then clearly

$$
\begin{aligned}
\sum_{m=1}^{N} V_{m} & \leqslant V\left(\bigcup_{m=1}^{N}\left(S+\mathbf{c}_{m}\right)\right) \\
& \leqslant V(\Sigma)+\sum_{m} V\left(\Sigma_{m}\right) \\
& =\left[\left(4 h^{2}+1+4 h y\right)^{n / 2}+N_{k}(h)\left(1-y^{2}\right)^{n / 2}\right] V(S) .
\end{aligned}
$$

So we may suppose that m is chosen with $1 \leqslant m \leqslant N_{k}(h)$ so that

$$
\begin{equation*}
V_{m} \leqslant\left[\left(N_{k}(h)\right)^{-1}\left(4 h^{2}+1+4 h y\right)^{n / 2}+\left(1-y^{2}\right)^{n / 2}\right] V(S) \tag{19}
\end{equation*}
$$

For convenience we may suppose that $i(m)=1$. Let $S^{\prime}+\mathbf{c}_{m}$ denote the part of $S+\mathbf{c}_{m}$ not lying in any of the sets $S+\mathbf{a}_{i}+\mathbf{b}_{j}$ with $\mathbf{a}_{i}+\mathbf{b}_{j} \neq \mathbf{c}_{m}$.

Then the sets

$$
\bigcup_{j=1}^{\infty}\left(S^{\prime}+\mathbf{c}_{m}+\mathbf{b}_{j}\right), \quad \bigcup_{i=2}^{M} \bigcup_{j=1}^{\infty}\left(S+\mathbf{a}_{i}+\mathbf{b}_{j}\right)
$$

are disjoint and their union is

$$
\bigcup_{i=1}^{M} \bigcup_{j=1}^{\infty}\left(S+\mathbf{a}_{i}+\mathbf{b}_{j}\right) .
$$

Comparing the densities of these sets, we see that the density of the set

$$
\bigcup_{i=2}^{M} \bigcup_{j=1}^{\infty}\left(S+\mathbf{a}_{i}+\mathbf{b}_{j}\right)
$$

is

$$
\theta-V_{m} R^{-n}
$$

So, if $\sigma(\mathbf{x})$ is the characteristic function of the set

$$
E=\bigcup_{i=2}^{M} \bigcup_{j=1}^{\infty}\left(S+\mathbf{a}_{i}+\mathbf{b}_{i}\right) .
$$

and C is the cube defined by

$$
0 \leqslant x_{i}<R, \quad i=1,2, \ldots, n,
$$

we have

$$
R^{-n} \int_{C} \sigma(\mathbf{x}) d \mathbf{x}=\theta-V_{m} R^{-n}
$$

Now consider the density $\theta(\mathbf{t})$ of the set

$$
E \cup\left\{\bigcup_{j=1}^{\infty}\left(S+\mathbf{t}+\mathbf{b}_{j}\right)\right\}
$$

If $\rho(x)$ is the characteristic function of S, we have

$$
\theta(\mathbf{t})=R^{-n} \int_{C}\left[1-\left(1-\sum_{j=1}^{\infty} \rho\left(\mathbf{x}-\mathbf{t}-\mathbf{b}_{j}\right)\right)(1-\sigma(\mathbf{x}))\right] d \mathbf{x} .
$$

So

$$
\begin{aligned}
R^{-n} \int_{C} \theta(\mathbf{t}) d t & =R^{-2 n} \int_{C} \int_{C}\left[1-\left(1-\sum_{j=1}^{\infty} \rho\left(\mathbf{x}-\mathbf{t}-\mathbf{b}_{j}\right)\right)(1-\sigma(\mathbf{x}))\right] d \mathbf{x} d \mathbf{t} \\
& =1-R^{-n} \int_{C}\left[R^{n}-V(S)\right](1-\sigma(\mathbf{x})) d \mathbf{x} \\
& =1-\left(1-R^{-n} V(S)\right)\left(1-\left(\theta-R^{-n} V_{m}\right)\right)
\end{aligned}
$$

But by the original choice of $a_{1}, a_{2}, \ldots, a_{m}$ to maximize the density we have

$$
\begin{gathered}
\theta(\mathbf{t}) \leqslant \theta, \\
\theta \geqslant 1-\left(1-R^{-n} V(S)\right)\left(1-\theta+R^{-n} V_{m}\right),
\end{gathered}
$$

and

$$
V_{m} \geqslant \frac{(1-\theta) V(S)}{1-R^{-n} V(S)}>(1-\theta) V(S)
$$

Substituting this in (19) we have

$$
1-\theta<\left(N_{k}(h)\right)^{-1}\left(4 h^{2}+1+4 h y\right)^{n / 2}+\left(1-y^{2}\right)^{n, 2}
$$

so that

$$
\begin{aligned}
N_{k}(h) & <\frac{\left(4 h^{2}+1+4 h y\right)^{n / 2}}{1-\theta-\left(1-y^{2}\right)^{n / 2}} \\
& \leqslant \frac{\left(4 h^{2}+1\right)^{n / 2}(1+y)^{n / 2}}{(1-\theta)-\left(1-y^{2}\right)^{n / 2}} \\
& =2(1-\theta)^{-1}\left(4 h^{2}+1\right)^{n / 2}(1+y)^{n / 2} .
\end{aligned}
$$

by (18).
Since

$$
\theta \leqslant 1-\left(1-n^{-1 / 2}\right)^{n / 2}
$$

and $n \geqslant 4$, we have

$$
\begin{aligned}
(1-\theta)^{-1} & \leqslant\left(1-n^{-1 / 2}\right)^{-n / 2} \\
& =\exp \left\{-\frac{1}{2} n \log \left(1-n^{-1 / 2}\right)\right\} \\
& =\exp \left\{\frac{1}{2} n^{1 / 2}+\frac{1}{2} \cdot \frac{1}{2}+\frac{1}{2} \cdot \frac{1}{3} n^{-1 / 2}+\ldots\right\} \\
& <\exp \left\{\frac{1}{2} n^{1 / 2}+\frac{1}{2}\right\} .
\end{aligned}
$$

Also

$$
(1-\theta)^{2 / n} \geqslant 1-n^{-1 / 2}
$$

and

$$
1-\left(\frac{1}{2}\right)^{2 / n}=1-\exp \{-(2 / n) \log 2\}<(2 / n) \log 2<2 / n
$$

So

$$
\begin{aligned}
y\left\{1-\left(\frac{1}{2}\right)^{2 / n}(1-\theta)^{2 / n}\right\}^{1 / 2} & \leqslant\left\{1-\left(1-\left\{1-\left(\frac{1}{2}\right)^{2 / n}\right\}\right)\left(1-n^{-1 / 2}\right)\right\}^{1 / 2} \\
& <\left\{1-(1-\{2 / n\})\left(1-n^{-1 / 2}\right)\right\}^{1 / 2} \\
& <2 n^{-1 / 4} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
2(1-\theta)^{-1}(1+y)^{n / 2} & <2 \exp \left\{\frac{1}{2} n^{1 / 2}+\frac{1}{2}+\frac{1}{2} n y\right\} \\
& <2 \exp \left\{\frac{1}{2} n^{1 / 2}+\frac{1}{2}+n^{3 / 4}\right\}<\exp \left\{2 n^{3 / 4}\right\}
\end{aligned}
$$

and the result (15) follows.
Now suppose that $n \geqslant 2^{20}$, that

$$
\begin{equation*}
1<r^{2}<\frac{5}{4}\left(1-4 n^{-1 / 4}\right) \tag{20}
\end{equation*}
$$

and that

$$
\begin{equation*}
h^{2}=r^{2}-\frac{1}{4}+4 n^{-1 / 4} \tag{21}
\end{equation*}
$$

Then

$$
\begin{equation*}
\frac{3}{4}+4 n^{-1 / 4}<h^{2}<1-n^{-1 / 4} . \tag{22}
\end{equation*}
$$

Also, provided $h \leqslant x \leqslant r$, we have

$$
\begin{aligned}
\frac{d}{d\left(x^{2}\right)}\left\{\left(4 x^{2}+1\right)\left(r^{2}-x^{2}\right)\right\} & =4 r^{2}-1-8 x^{2} \\
& \leqslant 4 r^{2}-1-8 h^{2} \\
& =-4 r^{2}+1-32 n^{-1 / 4}<0 .
\end{aligned}
$$

Hence

$$
\left(4 x^{2}+1\right)\left(r^{2}-x^{2}\right) \leqslant\left(4 h^{2}+1\right)\left(r^{2}-h^{2}\right)
$$

for $h \leqslant x \leqslant r$, and

$$
\begin{aligned}
\int_{h}^{r} n & N_{k}(x)\left(1-\frac{x^{2}}{r^{2}}\right)^{(n / 2)-1} \frac{x}{r} d\left(\frac{x}{r}\right) \\
& \leqslant \int_{h}^{r} n r^{-n}\left[\exp \left(2 n^{3 / 4}\right)\right]\left(4 x^{3}+x\right)\left[\left(4 x^{2}+1\right)\left(r^{2}-x^{2}\right)\right]^{(n / 2)-1} d x \\
& \leqslant n r^{-n}\left[\exp \left(2 n^{3 / 4}\right)\right]\left(r^{4}+\frac{1}{2} r^{2}\right)\left[\left(4 h^{2}+1\right)\left(r^{2}-h^{2}\right)\right]^{(n / 2)-1} \\
& =n\left[\exp \left(2 n^{3 / 4}\right)\right]\left[\frac{r^{4}+\frac{1}{2} r^{2}}{\left(4 h^{2}+1\right)\left(r^{2}-h^{2}\right)}\right]\left[r^{-2}\left(4 h^{2}+1\right)\left(r^{2}-h^{2}\right)\right]^{n / 2} \\
& =n\left[\exp \left(2 n^{3 / 4}\right)\right]\left[\frac{r^{4}+\frac{1}{2} r^{2}}{\left(4 h^{2}+1\right)\left(\frac{1}{4}-4 n^{-1 / 4}\right)}\right]\left[1-4\left(4-r^{-2}\right) n^{-1 / 4}\right. \\
& \leqslant n\left[\exp \left(2 n^{3 / 4}\right)\right]\left[\frac{\left(\frac{5}{4}\right)^{2}+\frac{1}{2}\left(\frac{5}{4}\right)}{4\left(\frac{1}{4}-\frac{1}{8}\right)}\right]\left[1-12 n^{-1 / 4} r^{n / 2} n^{-1 / 2}\right]^{n / 2} \\
& <\exp \left(2 n^{3 / 4}+\log \frac{15}{8}+\log n-6 n^{3 / 4}\right) \\
& <\exp \left(-2 n^{3 / 4}\right) .
\end{aligned}
$$

This proves (17).
4. Proof of Theorem 1. It is clear from the nature of Theorem 1 that the methods described in Chapter 1 of [12] suffice to reduce the general case of Theorem 1 to the special case when the system Σ is a periodic system of the type (13) described in $\S 3$ with period $R>2$. Suppose then that Σ is a periodic system with period $R>2$, with density δ, and covering a proportion θ of space, with

$$
\begin{equation*}
\theta>\frac{4}{3}\left(1-4 n^{-1 / 4}\right)^{-n / 2}\left(\frac{4}{5}\right)^{n / 2} . \tag{23}
\end{equation*}
$$

Let Σ be the system $\Sigma\left(\mathbf{S} ; \mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{M} ; R\right)$ introduced in $\S 3$. Let Σ_{0} be a corresponding system

$$
\Sigma\left(S ; \mathbf{a}_{1}{ }^{(0)}, \mathbf{a}_{2}^{(0)}, \ldots, \mathbf{a}_{M}^{(0)} ; \quad R\right)
$$

with the same S, M, R, but with $\mathbf{a}_{1}{ }^{(0)}, \mathbf{a}_{2}{ }^{(0)}, \ldots, \mathbf{a}_{M}{ }^{(0)}$ chosen to maximize
the proportion of space covered by the system. Then the density of Σ_{0} is $\delta_{0}=\delta$ and Σ_{0} covers a proportion $\theta_{0} \geqslant \theta$ of space. Write

$$
\begin{equation*}
\vartheta=\min \left\{\theta_{0}, 1-\left(1-n^{-1 / 2}\right)^{n / 2}\right\} . \tag{24}
\end{equation*}
$$

If $\theta_{0}>\vartheta$, we can obtain a new periodic system Σ_{1}, with density $\partial<\delta$, covering precisely the proportion ϑ of space, and satisfying the required maximality condition, by increasing R to a suitable value $R^{(1)}$ and modifying the choice of $\mathbf{a}_{1}{ }^{(0)}, \mathbf{a}_{2}{ }^{(0)}, \ldots, \mathbf{a}_{M^{(0)}}$ appropriately. Let this new system be

$$
\Sigma_{1}=\Sigma\left(S ; \mathbf{a}_{1}{ }^{(1)}, \mathbf{a}_{2}{ }^{(1)}, \ldots, \mathbf{a}_{M^{(1)}} ; \quad R^{(1)}\right)
$$

If $\theta_{0}=\vartheta$, we take $\Sigma_{1}=\Sigma_{0}$ and write $\bar{\partial}=\delta$.
In either case we arrive at a system

$$
\Sigma_{1}=\Sigma\left(S ; \mathbf{a}_{1}{ }^{(1)}, \mathbf{a}_{2}^{(1)}, \ldots, \mathbf{a}_{M^{(1)}} ; \quad R^{(1)}\right)
$$

of density ∂ covering the proportion ϑ of space, with

$$
\begin{gather*}
R^{(1)}>2, \\
\frac{4}{3}\left(1-4 n^{-1 / 4}\right)^{-n / 2}\left(\frac{4}{5}\right)^{n / 2}<\vartheta \leqslant 1-\left(1-n^{-1 / 2}\right)^{n / 2}, \tag{25}\\
\partial \leqslant \delta . \tag{26}
\end{gather*}
$$

We write

$$
\begin{equation*}
r=\left(\frac{3}{4} \vartheta\right)^{-1 / n} . \tag{27}
\end{equation*}
$$

Then

$$
\begin{equation*}
1<r^{2}<\frac{5}{4}\left(1-4 n^{-1 / 4}\right) \tag{28}
\end{equation*}
$$

We also write

$$
\begin{equation*}
h^{2}=r^{2}-\frac{1}{4}+4 n^{-1 / 4} . \tag{29}
\end{equation*}
$$

Let $\mathbf{c}_{1}, \mathbf{c}_{2}, \ldots$ be an enumeration of the points

$$
\begin{equation*}
\mathbf{a}_{i}{ }^{(1)}+\mathbf{b}_{j}{ }^{(1)}, \quad i=1,2, \ldots, M, j=1,2, \ldots, \tag{30}
\end{equation*}
$$

where $\mathbf{b}_{1}{ }^{(1)}, \mathbf{b}_{2}{ }^{(1)}, \ldots$ is an enumeration of the points whose coordinates are integral multiples of $R^{(1)}$. For each positive integer k, let $\Pi\left(\mathbf{c}_{k}\right)$ be the Voronoi polyhedron of all points \mathbf{x}, satisfying

$$
\left|\mathbf{x}-\mathbf{c}_{k}\right| \leqslant\left|\mathbf{x}-\mathbf{c}_{l}\right|, \quad l=1,2, \ldots .
$$

Let $N_{k}(x)$ be the number of points of the system (30) within distance $2 x$ of the point c_{k}. Then, as $n \geqslant 2^{20}, R^{(1)}>2, \vartheta$ satisfies (25) and r and h satisfy (29), we have, by Lemma 2,

$$
\begin{equation*}
\int_{h}^{r} n N_{k}(x)\left(1-\frac{x^{2}}{r^{2}}\right)^{(n / 2)-1} \frac{x}{r} d\left(\frac{x}{r}\right)<\Xi, \tag{31}
\end{equation*}
$$

where we write

$$
\begin{equation*}
\Xi=\exp \left(-2 n^{3 / 4}\right) . \tag{32}
\end{equation*}
$$

Writing

$$
\begin{align*}
\Phi & =\left\{\frac{r^{2}\left(1-h^{2}\right)}{r^{2}-h^{2}}\right\}^{n / 2} \\
& =\left\{r^{2}\left(5-4 r^{2}\right)\right\}^{n / 2}\left[\frac{1-\left\{16 /\left(5-4 r^{2}\right)\right\} n^{-1 / 4}}{1-16 n^{-1 / 4}}\right]^{n / 2} \\
& <\left\{r^{2}\left(5-4 r^{2}\right)\right\}^{n / 2} \tag{33}
\end{align*}
$$

and using Lemma 1, we deduce that, for each integer k,

$$
\begin{equation*}
V\left(\left\{S+\mathbf{c}_{k}\right\} \cap \Pi\left(\mathbf{c}_{k}\right)\right) \leqslant r^{-n} \Phi V\left(\Pi\left(\mathbf{c}_{k}\right)\right)+[1-\Phi+\Phi \Xi] V(S) . \tag{34}
\end{equation*}
$$

But by the periodicity of the system with period $R^{(1)}$ in each coordinate, we have

$$
\begin{gathered}
\sum_{i=1}^{M} V\left(\left\{S+\mathbf{a}_{i}{ }^{(1)}\right\} \cap \Pi\left(\mathbf{a}_{1}{ }^{(1)}\right)\right)=\vartheta\left(R^{(1)}\right)^{n} \\
\sum_{i=1}^{M} V\left(\Pi\left(\mathbf{a}_{i}{ }^{(1)}\right)\right)=\left(R^{(1)}\right)^{n}, \\
\sum_{i=1}^{M} V(S)=\delta\left(R^{(1)}\right)^{n} .
\end{gathered}
$$

So summing M inequalities of the form (34), and dividing by $\left(R^{(1)}\right)^{n}$, we have

$$
\vartheta \leqslant r^{-n} \Phi+[1-\Phi+\Phi \Xi] \partial .
$$

Hence

$$
\begin{aligned}
\partial & \geqslant \frac{\vartheta-r^{-n} \Phi}{1-\Phi+\Phi \Xi} \\
& =\vartheta+\frac{\vartheta \Phi+r^{-n} \Phi-\vartheta \Phi \Xi}{1-\Phi(1-\Xi)} \\
& \geqslant \vartheta+\left\{\vartheta \Phi-r^{-n} \Phi-\vartheta \Phi \Xi\right\} \\
& =\vartheta+\frac{1}{4} \vartheta \Phi\{1-4 \Xi\} .
\end{aligned}
$$

But

$$
\begin{aligned}
\Phi & =\left\{\frac{r^{2}\left(1-h^{2}\right)}{r^{2}-h^{2}}\right\}^{n / 2} \\
& =\left\{\frac{r^{2}\left(5-4 r^{2}-16 n^{-1 / 4}\right)}{1-16 n^{-1 / 4}}\right\}^{n / 2} \\
& =r^{n}\left\{1-\frac{4\left(r^{2}-1\right)}{1-16 n^{-1 / 4}}\right\}^{n / 2} \\
& \geqslant r^{n}\left\{1-4\left(r^{2}-1\right)\left(1+32 n^{-1 / 4}\right)\right\}^{n / 2} \\
& =\left(\frac{3}{4} \vartheta\right)^{-1}\left[1-4\left\{\left(\frac{3}{4} \vartheta\right)^{-2 / n}-1\right\}\left\{1+32 n^{-1 / 4}\right\}\right]^{n / 2} .
\end{aligned}
$$

So

$$
\begin{equation*}
\partial \geqslant \vartheta+\frac{1}{3}\left\{1-4 \exp \left(-2 n^{3 / 4}\right)\right\}\left[1-4\left\{\left(\frac{3}{4} \vartheta\right)^{-2 / n}-1\right\}\left\{1+32 n^{-1 / 4}\right\}\right]^{n / 2} . \tag{35}
\end{equation*}
$$

When we have $\theta \leqslant \vartheta$ it follows that

$$
\delta \geqslant \partial \geqslant \theta+\frac{1}{3}\left\{1-4 \exp \left(-2 n^{3 / 4}\right)\right\}\left[1-4\left\{\left(\frac{3}{4} \theta\right)^{-2 / n}-1\right\}\left\{1+32 n^{-1 / 4}\right\}\right]^{n / 2},
$$

so that, certainly

$$
\delta \geqslant \theta+\frac{1}{3}\left[1-\exp \left(16-\frac{1}{2} n^{1 / 2}\right)\right]\left[1-4\left\{\left(\frac{3}{4} \theta\right)^{-2 / n}-1\right\}\left\{1+32 n^{-1 / 4}\right\}\right]^{n / 2} .
$$

When $\vartheta<\theta$ we have $\vartheta<\theta_{0}$ so that

$$
\vartheta=1-\left(1-n^{-1 / 2}\right)^{n / 2}<\theta .
$$

In this case

$$
\delta \geqslant \delta \geqslant \eta_{0}+\alpha\left[1-4 \beta\left\{\left(\frac{3}{4} \eta_{0}\right)^{-2 / n}-1\right\}\right]^{n / 2},
$$

where we write

$$
\begin{gathered}
\alpha=\frac{1}{3}\left\{1-4 \exp \left(-2 n^{3 / 4}\right)\right\}, \\
\beta=1+32 n^{-1 / 4} \\
\eta_{0}=1-\left(1-n^{-1 / 2}\right)^{n / 2}
\end{gathered}
$$

Here

$$
\begin{gathered}
\frac{1}{4}<\alpha<\frac{1}{3}, \\
1<\beta \leqslant 2, \\
0<1-\eta_{0}<\exp \left(-\frac{1}{2} n^{1 / 2}\right) .
\end{gathered}
$$

We write

$$
f(\phi)=\alpha[1-4 \beta\{\phi-1\}]^{n / 2}
$$

and study $f(\phi)$ in the range

$$
\left(\frac{3}{4}\right)^{-2 / n} \leqslant \phi \leqslant\left(\frac{3}{4} \eta_{0}\right)^{-2 / n} .
$$

We have

$$
f(\phi) \geqslant \frac{1}{4}\left[1-8\left\{\left(\frac{3}{4} \eta_{0}\right)^{-2 / n}-1\right\}\right]^{n / 2} .
$$

But

$$
\begin{align*}
\left(\frac{3}{4} \eta_{0}\right)^{-2 / n} & =\left(\frac{4}{3}\right)^{2 / n} \exp \left(-\frac{2}{n} \log \left\{1-\left(1-n^{-1 / 2}\right)^{n / 2}\right\}\right) \\
& <\left(\frac{4}{3}\right)^{2 / n} \exp \left(\frac{4}{n}\left(1-n^{-1 / 2}\right)^{n / 2}\right) \\
& <\left(\frac{4}{3}\right)^{2 / n} \exp \left(\frac{4}{n} \exp \left(-\frac{1}{2} n^{1 / 2}\right)\right) \\
& <\left(\frac{4}{3}\right)^{2 / n}\left(1+\frac{5}{n} \exp \left(-\frac{1}{2} n^{1 / 2}\right)\right) \tag{36}
\end{align*}
$$

$$
\begin{align*}
& <\left(1+\frac{4}{n} \log \frac{4}{3}\right)\left(1+\frac{5}{n} \exp \left(-\frac{1}{2} n^{1 / 2}\right)\right) \\
& <1+\frac{3}{n} \tag{37}
\end{align*}
$$

Hence

$$
\begin{align*}
f(\phi) & \geqslant \frac{1}{4}\left[1-\frac{24}{n}\right]^{n / 2} \\
& >\frac{1}{4} e^{-13}>e^{-15} . \tag{38}
\end{align*}
$$

But we also have

$$
\begin{aligned}
-f^{\prime}(\phi) & =4 \alpha \beta \frac{1}{2} n[1-4 \beta\{\phi-1\}]^{(n / 2)-1} \\
& <\frac{4 n}{1-8(3 / n)} f(\phi)<5 n f(\phi)
\end{aligned}
$$

So, dividing by $f(\phi)$, and integrating over the range

$$
\left(\frac{3}{4} \theta\right)^{-2 / n} \leqslant \phi \leqslant\left(\frac{3}{4} \eta_{0}\right)^{-2 / n},
$$

we obtain, on using (36)

$$
\begin{aligned}
& \log \left[f\left(\left(\frac{3}{4} \theta\right)^{-2 / n}\right)\right]-\log \left[f\left(\left(\frac{3}{4} \eta_{0}\right)^{-2 / n}\right)\right] \\
&<5 n\left[\left(\frac{3}{4} \eta_{0}\right)^{-2 / n}-\left(\frac{3}{4} \theta\right)^{-2 / n}\right] \\
& \leqslant 5 n\left[\left(\frac{3}{4} \eta_{0}\right)^{-2 / n}-\left(\frac{3}{4}\right)^{-2 / n}\right] \\
&<5 n\left(\frac{4}{3}\right)^{2 / n}\left(\frac{5}{n} \exp \left(-\frac{1}{2} n^{1 / 2}\right)\right) \\
&<26 \exp \left(-\frac{1}{2} n^{1 / 2}\right)
\end{aligned}
$$

Hence

$$
\begin{aligned}
f\left(\left(\frac{3}{4} \eta_{0}\right)^{-2 / n}\right) & >f\left(\left(\frac{3}{4} \theta\right)^{-2 / n}\right) \exp \left\{-26 \exp \left(-\frac{1}{2} n^{1 / 2}\right)\right\} \\
& >f\left(\left(\frac{3}{4} \theta\right)^{-2 / n}\right)\left\{1-26 \exp \left(\frac{1}{2} n^{1 / 2}\right)\right\} .
\end{aligned}
$$

Consequently

$$
\begin{aligned}
\delta \geqslant & \eta_{0}+f\left(\left(\frac{3}{4} \eta_{0}\right)^{-2 / n}\right) \\
& \geqslant \theta-\left(1-\eta_{0}\right)+f\left(\left(\frac{3}{4} \eta_{0}\right)^{-2 / n}\right) \\
& \geqslant \theta-\left[\exp \left(-\frac{1}{2} n^{1 / 2}\right)\right] e^{15} f\left(\left(\frac{3}{4} \eta_{0}\right)^{-2 / n}\right)+f\left(\left(\frac{3}{4} \eta_{0}\right)^{-2 / n}\right) \\
& \geqslant \theta+\left[1-\exp \left(15-\frac{1}{2} n^{1 / 2}\right)\right]\left[1-26 \exp \left(-\frac{1}{2} n^{1 / 2}\right)\right] f\left(\left(\frac{3}{4} \theta\right)^{-2 / n}\right) \\
& \geqslant \theta+\frac{1}{3}\left[1-\exp \left(16-\frac{1}{2} n^{1 / 2}\right)\right]\left[1-4\left\{\left(\frac{3}{4} \theta\right)^{-2 / n}-1\right\}\left\{1+32 n^{-1 / 4}\right\}\right]^{n / 2} .
\end{aligned}
$$

Thus we have the inequality in each case.

References

1. H. Minkowski, " Diskontinuitătsbereich für arithmetische Aequivalenz", J. reine angew. Math., 129 (1905), 220-274.
2. H. F. Blichfeldt, "The minimum value of quadratic forms, and the closest packing of spheres ", Math. Annalen, 101 (1929), 605-608.
3. H. Davenport and C. A. Rogers, "Hlawka's theorem in the geometry of numbers ", Duke Math. J., 14 (1947), 367-375.
4. W. Schmidt, " On the Minkowski-Hlawka Theorem ", Illinois J. of Math., 7 (1963), 18-23 and 714.
5. C. A. Rogers, " The packing of equal spheres ", Proc. London Math. Soc. (3), 8 (1958), 609-620.
6. R. P. Bambah and H. Davenport, "The covering of n-dimensional space by spheres ", Journal London Math. Soc., 27 (1952), 224-229.
7. P. Erdôs and C. A. Rogers, "The covering of n-dimensional space by spheres", Journal London Math. Soc., 28 (1953), 287-293.
8. H. S. M. Coxeter, L. Few and C. A. Rogers, "Covering space with equal spheres ", Mathematika, 6 (1959), 147-157.
9. C. A. Rogers, "Lattice coverings of space with convex bodies", Journal London Math. Soc., 33 (1958), 208-212.
10. -, "Lattice coverings of space: the Minkowski-Hlawka theorem ", Proc. London Math. Soc. (3), 8 (1958), 447-465.
11. -, " A note on coverings ", Mathematika, 4 (1957), 1-6.
12. —, Packing and covering (Cambridge, 1964).

University College,
London.
(Received on the 17th of August, 1964.)

