A PROBLEM ON INDEPENDENT r-TUPLES

By
P. ERDŐS
Department of Analysis of the Eötvős Loránd University, Budapest
(Received October 2, 1964)

$G(n ; l)$ denotes a graph of n vertices and l edges. A set of edges is called independent if no two of them have a vertex in common. Gallat and I [1] proved that if

$$
\begin{equation*}
l=\max \left(\binom{2 k-1}{2},(k-1)(n-k+1)+\binom{k-1}{2}\right) \tag{1}
\end{equation*}
$$

then $G(n ; l)$ contains k independent edges. It is easy to see that the above result is best possible since the complete graph of $2 k-1$ vertices and the graph of vertices $x_{1}, \ldots, x_{k-1} ; y_{1}, \ldots, y_{n-k+1}$ and edges (x_{i}, x_{j}), $1 \leq i<j \leq k-1 ;\left(x_{i}, y_{j}\right)$, $1 \leq i \leq k-1, \quad 1 \leq y_{j} \leq n-k+1$ clearly does not contain k independent edges.

By an r-graph $G^{(r)}$ we shall mean a graph whose basic elements are its vertices and r-tuples; for $r=2$ we obtain the ordinary graphs. $G^{(r)}(n ; m)$ will denote an r-graph of n vertices and $m r$-tuples. For $r>2$ these generalised graphs have not yet been investigated very much. A set of r-tuples is called independent if no two of them have a vertex in common.
$f(n ; r, k)$ denotes the smallest integer so that every $G^{(r)}(n ; f(n ; r, k))$ contains k independent r-tuples. (1) implies that

$$
\begin{equation*}
f(n ; 2, k)=1+\max \left(\binom{2 k-1}{2}, \quad(k-1)(n-k+1)+\binom{k-1}{2}\right) . \tag{2}
\end{equation*}
$$

It does not seem easy to determine $f(n ; r, k)$ for $r>2$ and every k. For $k=2$ Ko, Rado and I [2] proved that for $n \geqslant 2 r$

$$
\begin{equation*}
f(n ; r, 2)=\binom{n-1}{r-1}+1 \tag{3}
\end{equation*}
$$

The case $n<2 r$ is trivial since then no two r-tuples are independent.
Denote by $g(n ; r, k-1)$ the number of those r-tuples formed from the elements x_{1}, \ldots, x_{n} each of which contain at least one of the elements x_{1}, \ldots, x_{k-1}. Clearly $f(n ; r, k)>g(n ; r, k-1)$ and a simple computation shows that

$$
\begin{equation*}
g(n ; r, k-1)=\Sigma^{\prime}\binom{k-1}{i}\binom{n-k+1}{r-i} \geq(k-1)\binom{n-k+1}{r-1} \tag{4}
\end{equation*}
$$

where the dash indicates that i runs from 1 to $\min (r, k-1)$.
Now we prove the following
Theorem. For $n>c_{r} k$ (c_{r} is a constant which depends only on r)

$$
f(n ; r, k)=1+g(n ; r, k-1) .
$$

The proof uses induction with respect to k. For $k=2$ the result is known [2]. We assume that it holds for $k-1$ and prove it for k.

Let $n>c_{r} k$ and consider an arbitrary $G^{(r)}(n ; 1+g(n ; r, k-1))$. Denote by $v\left(x_{i}\right)$ the number of r-tuples in our $G^{(r)}(n ; 1+g(n ; r, k-1))$ which contain x_{i}. Without loss of generality we can assume that max $v\left(x_{i}\right)=v\left(x_{1}\right)$. We distinguish two cases. Assume first

$$
\begin{equation*}
v\left(x_{1}\right)<\frac{1+g(n ; r, k-1)}{(k-1) r} \tag{5}
\end{equation*}
$$

and let R_{1}, \ldots, R_{l} be a maximal system of independent r-tuples of our $G^{(r)}$. We show

$$
\begin{equation*}
l \geq k . \tag{6}
\end{equation*}
$$

If (6) would be false our r-tuples R_{1}, \ldots, R_{l} would contain at most ($k-1$)r vertices and by (5) the number of r-tuples containing any of these vertices is less than

$$
1+g(n ; r, k-1) .
$$

Thus our $G^{(r)}(n ; 1+g(n ; r, k-1))$ contains an $R_{l^{+1}}$ which is independent of all the $R_{i}, 1 \leq i \leq l$, which contradicts the maximality of R_{1}, \ldots, R_{l}, hence $l<k$ leads to a contradiction, which proves (6) and disposes of the first case.

Now we consider the second case, that is, we assume

$$
\begin{equation*}
v\left(x_{1}\right) \geq \frac{1+g(n ; r, k-1)}{(k-1) r} . \tag{7}
\end{equation*}
$$

Consider now the r-graph $G^{(r)}$ whose vertices are x_{2}, \ldots, x_{n} and whose r-tuples are those r-tuples of our $G^{(r)}(n ; 1+g(n ; r, k-1))$ which do not contain x_{1}. The number of r-tuples of $G_{1}^{(r)}$ is clearly at least

$$
\begin{equation*}
1+g(n ; r, k-1)-\binom{n-1}{r-1}=1+g(n-1, r, k-1) \tag{8}
\end{equation*}
$$

since there are at most $\left|\begin{array}{l}n-1 \\ r-1\end{array}\right| r$-tuples containing x_{1}. Thus by our induction hypothesis $G_{1}^{(r)}$ contains at least $k-1$ independent r-tuples R_{1}, \ldots, R_{k-1}. The proof of our Theorem will be complete if we succeed to show that there is an r-tuple of our $G^{(r)}(n ; 1+g(n ; r, k-1))$ containing x_{1} which does not contain any of the $(k-1) r$ vertices of R_{1}, \ldots, R_{k-1}. To see this observe that the number of r-tuples containing x_{1} and x_{i} is at most $\binom{n-2}{r-2}$, and therefore the number of r-tuples containing x_{1} and one of the vertices of R_{1}, \ldots, R_{k-1} is at
most $(k-1) r\binom{n-2}{r-2}$. By (7) and (4) we obtain by a simple computation that for $n>c_{r} k$

$$
(k-1) r\binom{n-2}{r-2}<v\left(x_{1}\right) ;
$$

hence there is an r-tuple of our $G^{(r)}(n ; 1+g(n ; r, k-1))$ containing x_{1} which is disjoint from R_{1}, \ldots, R_{k-1}, as stated. This completes the proof of our theorem.

It is not impossible that

$$
\begin{equation*}
f(n ; r, k)=1+\max \left|\binom{r k-1}{r}, g(n ; r, k-1)\right| \tag{9}
\end{equation*}
$$

For $r=2(9)$ is implied by (1) and for $k=2(9)$ is proved in [2], but the general case seems elusive.

References

[1] P. Erdős and T. Gallai, On the maximal paths and circuits of graphs, Acta Math. Acad. Sci. Hung., 10 (1959), $337-357$.
[2] P. Erdős, Chao Ko and R. Rado, Intersection theorems for systems of finite sets, Quarterly J. of Math., 12 (1961), 313-320.

INDEX

TOMUS VIII

CSÁszÁr, Á., Structures syntopog nes et tramails 101
DеÁк, E., Bemerkung 7u einem Beweis der Quadrierbarkeit der n-dimensionalen konvexen Mengen 89
Deák, E., Über eine Aufgabe von A. Rényi 83
Erdós, P., A problem on independent r-tuples 93
Fried, E., A characterization of the adjoints of linear transformations 181
Fuchs, L., Approximation of lattice-ordered groups 187
Harary, F., On minimally nonplanar grar hs 13
Horvath, J., Bemerkungen zur Theorie der Planigone 147
Juhász, I., On extremal valucs of mappings III 155
Juhász, I., Untersuchungen über ω_{μ}-metrisierbare Räume 129
Juhász, I., Über ein Mächtigkeitsproblem für topologische Rảume 75
КАТАИ, И., О разностях простых чисел 61
КАтАИ, И., Счет целых точек в круге 39
Kowalski, O., On archimedean fositively fully ordered semigroups 97
Lánczi, Edit, An extension of Zermelo's method for proving unique factorization to polynomial rings 119
Mader, A., On the automorfhism group and the endomorphism ring of abelian groups 3
Mıкolás, M., UUber den Riesz - Fischerschen Satz und die Vollstảndigkeit der Funk- tionenräume L^{p} 159
Mogyoródi, I., On the law of large numbers for the sum of a random number of inderendent random variables 33
Ruzsa, I., Uher einige Erweiterungen des formalen Systems der elementaren Boole- schen Algebra 163
Suranyı, J., An extension of Zermelo's method for proving unique factorization to polynomial rings. Note on the preceding paper of Mrs. E. Lánczi 125
SzÁsz, P., On power series of the Fejér type 21
Tandorı, K., Ein neues Beispiel für eine stetige Funktion mit in einem Punkt di- vergierender Fuurierreihe 17
Turán, P., On a characterization of Dirichlet's L-functions 65
Walker, E. A., On n-extensions of abelian groups 71

