A PROBLEM ON INDEPENDENT r-TUPLES

By

P. ERDŐS

Department of Analysis of the Eötvös Loránd University, Budapest (Received October 2, 1964)

G(n; l) denotes a graph of *n* vertices and *l* edges. A set of edges is called independent if no two of them have a vertex in common. GALLAI and I [1] proved that if

(1)
$$l > \max\left(\binom{2k-1}{2}, (k-1)(n-k+1) + \binom{k-1}{2}\right)$$

then G(n; l) contains k independent edges. It is easy to see that the above result is best possible since the complete graph of 2k-1 vertices and the graph of vertices $x_1, \ldots, x_{k-1}; y_1, \ldots, y_{n-k+1}$ and edges $(x_i, x_j), 1 \le i < j \le k-1; (x_i, y_j), 1 \le i \le k-1, 1 \le y_j \le n-k+1$ clearly does not contain k independent edges. By an r-graph $G^{(r)}$ we shall mean a graph whose basic elements are its

By an r-graph $G^{(r)}$ we shall mean a graph whose basic elements are its vertices and r-tuples; for r = 2 we obtain the ordinary graphs. $G^{(r)}(n; m)$ will denote an r-graph of n vertices and m r-tuples. For r > 2 these generalised graphs have not yet been investigated very much. A set of r-tuples is called independent if no two of them have a vertex in common.

f(n; r, k) denotes the smallest integer so that every $G^{(r)}(n; f(n; r, k))$ contains k independent r-tuples. (1) implies that

(2)
$$f(n; 2, k) = 1 + \max\left(\binom{2k-1}{2}, (k-1)(n-k+1) + \binom{k-1}{2}\right).$$

It does not seem easy to determine f(n; r, k) for r > 2 and every k. For k = 2 Ko, RADO and I [2] proved that for $n \ge 2r$

(3)
$$f(n; r, 2) = {\binom{n-1}{r-1}} + 1.$$

The case n < 2r is trivial since then no two *r*-tuples are independent.

Denote by g(n; r, k-1) the number of those r-tuples formed from the elements x_1, \ldots, x_n each of which contain at least one of the elements x_1, \ldots, x_{k-1} . Clearly f(n; r, k) > g(n; r, k-1) and a simple computation shows that

(4)
$$g(n; r, k-1) = \sum' {\binom{k-1}{i} \binom{n-k+1}{r-i}} \ge (k-1) {\binom{n-k+1}{r-1}}$$

where the dash indicates that i runs from 1 to min (r, k-1).

Now we prove the following

THEOREM. For $n > c_r k$ (c_r is a constant which depends only on r)

f(n; r, k) = 1 + g(n; r, k-1).

The proof uses induction with respect to k. For k = 2 the result is known [2]. We assume that it holds for k - 1 and prove it for k.

Let $n > c_r k$ and consider an arbitrary $G^{(r)}(n; 1+g(n; r, k-1))$. Denote by $v(x_i)$ the number of r-tuples in our $G^{(r)}(n; 1+g(n; r, k-1))$ which contain x_i . Without loss of generality we can assume that $\max v(x_i) = v(x_1)$. We distinguish two cases. Assume first

(5)
$$v(x_1) < \frac{1+g(n;r,k-1)}{(k-1)r}$$

and let R_1, \ldots, R_i be a maximal system of independent *r*-tuples of our $G^{(r)}$. We show

 $(6) l \ge k.$

If (6) would be false our r-tuples R_1, \ldots, R_l would contain at most (k-1)r vertices and by (5) the number of r-tuples containing any of these vertices is less than

1+g(n; r, k-1).

Thus our $G^{(r)}(n; 1+g(n; r, k-1))$ contains an R_{l+1} which is independent of all the $R_i, 1 \le i \le l$, which contradicts the maximality of R_1, \ldots, R_l , hence l < k leads to a contradiction, which proves (6) and disposes of the first case.

Now we consider the second case, that is, we assume

(7)
$$v(x_1) \ge \frac{1 + g(n; r, k-1)}{(k-1)r}$$

Consider now the r-graph $G^{(r)}$ whose vertices are x_2, \ldots, x_n and whose r-tuples are those r-tuples of our $G^{(r)}(n; 1+g(n; r, k-1))$ which do not contain x_1 . The number of r-tuples of $G_1^{(r)}$ is clearly at least

(8)
$$1+g(n;r,k-1)-\binom{n-1}{r-1}=1+g(n-1,r,k-1),$$

since there are at most $\binom{n-1}{r-1}$ r-tuples containing x_1 . Thus by our induction hypothesis $G_1^{(r)}$ contains at least k-1 independent r-tuples R_1, \ldots, R_{k-1} .

The proof of our Theorem will be complete if we succeed to show that there is an *r*-tuple of our $G^{(r)}(n; 1+g(n; r, k-1))$ containing x_1 which does not contain any of the (k-1)r vertices of R_1, \ldots, R_{k-1} . To see this observe that the number of *r*-tuples containing x_1 and x_i is at most $\binom{n-2}{r-2}$, and therefore the number of *r*-tuples containing x_1 and one of the vertices of R_1, \ldots, R_{k-1} is at

most $(k-1)r \binom{n-2}{r-2}$. By (7) and (4) we obtain by a simple computation that for $n > c_k$

 $(k-1)r\binom{n-2}{r-2} < v(x_1);$

hence there is an r-tuple of our $G^{(r)}(n; 1+g(n; r, k-1))$ containing x_1 which is disjoint from R_1, \ldots, R_{k-1} , as stated. This completes the proof of our theorem.

It is not impossible that

(9)
$$f(n; r, k) = 1 + \max \left| \binom{rk-1}{r}, g(n; r, k-1) \right|.$$

For r = 2 (9) is implied by (1) and for k = 2 (9) is proved in [2], but the general case seems elusive.

References

- [1] P. ERDÖS and T. GALLAI, On the maximal paths and circuits of graphs, Acta Math. Acad. Sci. Hung., 10 (1959), 337 – 357. [2] P. ERDŐS, CHAO KO and R. RADO, Intersection theorems for systems of finite sets, Quar-
- terly J. of Math., 12 (1961), 313-320.

INDEX

TOMUS VIII

Császár, Á., Structures syntopogines et tramails	101
DEÁK, E., Bemerkung zu einem Beweis der Quadrierbarkeit der n-dimensionalen	
konvexen Mengen	89
DEÁK, E., Über eine Aufgabe von A. Rényi	83
ERDŐS, P., A problem on independent r-tuples	93
FRIED, E., A characterization of the adjoints of linear transformations	181
FUCHS, L., Approximation of lattice-ordered groups	187
HARARY, F., On minimally nonplanar graphs	13
HORVÁTH, J., Bemerkungen zur Theorie der Planigone	147
JUHÁSZ, I., On extremal values of mappings III	155
JUHÁsz, I., Untersuchungen über ω _μ -metrisierbare Räume	129
JUHÁSZ, I., Über ein Mächtigkeitsproblem für topologische Räume	75
Катаи. И., О разностях простых чисел	61
КАТАИ, И., Счет целых точек в круге	39
KOWALSKI, O., On archimedean rositively fully ordered semigroups	97
LÁNCZI, EDIT, An extension of Zermelo's method for proving unique factorization to polynomial rings	119
MADER, A., On the automorphism group and the endomorphism ring of abelian	
groups	3
MIKOLÁS, M., Über den Riesz - Fischerschen Satz und die Vollständigkeit der Funk-	
tionenräume L^p	159
MOGYORÓDI, I., On the law of large numbers for the sum of a random number of	
inderendent random variables	33
Ruzsa, I., Über einige Erweiterungen des formalen Systems der elementaren Boole-	
schen Algebra	163
SURÁNYI, J., An extension of Zermelo's method for proving unique factorization	1222
to polynomial rings. Note on the preceding paper of Mrs. E. Lánczi	125
Szász, P., On power series of the Fejér type	21
TANDORI, K., Ein neues Beispiel für eine stetige Funktion mit in einem Punkt di-	
vergierender Fourierreihe	17
TURÁN, P., On a characterization of Dirichlet's L-functions	65
WALKER, E. A., On <i>n</i> -extensions of abelian groups	71

Technikai szerkesztő: SCHARNITZKY VIKTOR

65.530. Állami Nyomda, Budapest