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In this paper we consider closed subspaces V of sequential Hilbert space Pz and
of L 2(0, 1) . Our results are of two types : (1) if all the elements of V are "small,"
then V is finite-dimensional ; (2) there exist infinite-dimensional subspaces V con-
taining no small elements (except 0) .

For example, Theorem 3 says that if V is a closed subspace of f2 and if V C- - Qp
for some p < 2, then V is finite-dimensional . On the other hand, the corollary to
Theorem 4 states that there exist infinite-dimensional subspaces V of f 2 none of
whose nonzero elements belongs to any f p -space (p < 2) . [For L2(0, 1) the results
are somewhat different: (1) if V is a closed subspace of L 2(0, 1) and if V c L,,
then V is finite-dimensional . Theorem 6 gives a condition for the finite-dimension-
ality of V in terms of Orlicz spaces, and by Theorem 5 this condition is best pos-
sible; in particular, L . cannot be replaced by Lq for any q < °O . (2) There exist
infinite-dimensional subspaces of Lz none of whose nonzero elements is in any L q -
space (q > 2) (Theorem 7) ] .

Since the elements x E f2 are functions x = (x(1), x(2), on the nonnegative
integers, there are various ways of defining "small" elements . For example, Theo-
rem 1 states that if all the elements x c V satisfy a condition x(n) I = O(pn ), where
Z p ?- <

	

then V is finite-dimensional . On the other hand, Theorem 2 states that if
Epn= cc then there exists an infinite-dimensional closed subspace V all of whose
elements satisfy the condition j x(n) i = O(pn ), but none of whose elements (except 0)
satisfies the condition I x(n) I = o(pn ) .

Theorem 8 gives a formula for the exact dimension of any closed subspace V of
f2 . The paper concludes with an application of Theorem 8 to a problem involving
bounded analytic functions in the unit disc : we give an elementary proof that an in-
ner function cannot have a finite Dirichlet integral unless it is a finite Blaschke
product .

We need the following compactness criterion [3, Chapter I, Section 10] :
If p, > 0 and E pn < -, then { x : x c P 2 , I x(n) I < pr, } is compact .
THEOREM 1 . Let V be a closed subspace of f 2, and let {p n} be given, withi

pn > 0 and Z pn < - . If I x(n) I = O(pn ) for all x c V, then V is finite-dimensional .
Proof. Let V m = { x : x c V, I x(n) < mp,, for all n } . Then V im, is compact

and hence, if V were infinite-dimensional, Vm would be nowhere dense in V . But
this would contradict the Baire category theorem, since V = U Vm .

THEOREM 2 . Let pn > 0, pn - 0 and 1 pn = -. Then there exists an infinile-
dimensional subspace V of f2 such that for each x c V

(i) x(n) I = 0(pn ) ,

(ii) x(n) = o(p,,) ---> x = 0 .
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[In other words, the elements of V are not too large, but nonetheless V contains no
small elements .]

We omit the proof of the following lemma .

LEMMA 1 . If d o > 0, do -> 0, and Z d o

	

then there exists an infinite subset
N of the positive integers such that Z iEN di= 1 .

Proof of Theorem 2 . Let N 1 , N2 , • • • be disjoint infinite subsets of the positive
integers such that

Z pi
= 1

	

(j = 1 , 2 , . . . )
i E N

i

(Apply the lemma repeatedly, each time deleting the subset Nj selected at the pre-
vious stage .)

Consider the functions f l , f 2 ,

	

given by

`p i

~0

	

(i ~Nj ) .

Then {fj I is an infinite orthonormal set in Q2 . Let V be the subspace spanned by
it. Each x E V has the form x = Z ajfj (Z ajJ 2 <-). Let M = max I ajI . Then

I x(i)

(1)

	

Ix(n)I < MPAXII

(i E Nj ),

< Mpi

	

for all i,

which establishes (i) . On the other hand, if x 0 then at least one coefficient, say
a,, is not zero. Hence

Ix(i)I	Ia1'pilim sup	 > lim sup	 = I a1 I > 0,
i-> '

	

pi

	

iEN

	

pi
1

which establishes (ü) .

Remark . If all the elements of a closed subspace satisfy an O-condition, then
they satisfy it uniformly . More precisely, if I x(n) I = O(pn ) for every x E V, then
there exists a constant M such that

(x E V) .

Proof. Let en be the n-th coordinate functional, that is, let (x, e n ) = x(n) for
all x. Assume pn > 0 for all n (since (1) holds automatically for indices n for
which p n = 0) .

Let fn = en /p

	

By hypothesis, to each x c V there corresponds a constant c X
such that I (x, fn) r < c X for all n; that is, the functionals {f n } are pointwise
bounded on V . By the uniform -boundedness principle, there exists an M such that

II f n II < M for all n .
THEOREM 3 . If V is a closed subspace of f2 and V C C p for some p < 2,

then V is finite-dimensional .
Proof. Choose en > 0 with Z s n < - . For x c V, let
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Nk(x) _ Z I x(n) Ip ,

	

Rk(x) _ Z I x(n)I 13 .
n<k

	

n>k

Choose an x l E V such that 1 < R o(x l ) < 1 + Ep, and an n1 such that
Nnl (x l ) > 1 .

If V were infinite-dimensional, then by suitably combining n l + 1 linearly in-
dependent vectors we could produce an x z E V such that

x2 (n) = 0 (n < n l )

	

and

	

1 < Rnl (XZ) < 1 + 6P .

Now choose n 2 so that Nn2 (x z ) > 1 .

Continuing in this manner, we construct a sequence {x k} c V and an increasing
sequence of positive integers {nk} such that, for all k,

xk+1(n) = 0 (n < nk),

	

1 < Rnk (xk+l) < 1 + E k+1 ,

	

Nnk (xk) > 1 *

Let

fk(n) _
xk(n)

	

(n < nk) ,

0

	

(n > nk) ,

gk - xk - fk .

Then {fk } is a bounded orthogonal family in f2, and

(2)

	

IIfkIIp > 1,

	

IIgk1IP < Ek .

Let {ak} be a square-summable sequence of positive numbers that is not in Q p ,
and let

yl - Uakfk,

	

y2 - Zak gk , y = y l +y2 .

B the Riesz-Fischer theorem, the series for y 1 converges in f z . Since
E a k IÍg kll p < -, the series for y2 converges in f p and hence in f z (the 2-norm of
an element is less than or equal to the p-norm) . Thus y = Z akxk , with the series
converging in f z , and so y E V .

However, yl f fp . Indeed,

EIyl(n)I p =

	

Iaklp IIfkIIp

by (2) . But y 2 E f p , and so y ~ f p .
THEOREM 4 . If pn > 0 and ']P2 = ~, then there exists an infinite-dimensional

subspace V of f z such that 2; I x(n) I pn = for all x # 0 in V .
Proof. Divide the positive integers into a countable number of disjoint infinite

subsets N l , NZ , . .- such that
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P2

	

°°

	

(j = 1, 2 , . . . ) .
ieN~

Choose unit vectors fl , f2, . . . in k Z such that f j(i) = 0 for i j N j and

E

	

f j (i)p i

	

(J = 1 , 2 , . . . ) .
ie N i

Then {f } is an infinite orthonormal set ; let V be the subspace spanned by it . Let
x = E aj ii E V, x * 0 . At least one coefficient, say a l , is not zero. Thus

x(n) I pn > I ai 1

	

I f(i) I p i =

	

.
i c N

COROLLARY . There exists an infinite-dimensional subspace V of k2 none of
whose nonzero elements belongs to any kp (p < 2) .

Proof. Choose {Pn } E k q for all q > 2, with pn

	

and apply Theorem 4 .
By Hölder's inequality, no nonzero element of V can belong to any class k p (p < 2) .

We now consider L,(0, 1) . Here the situation is quite different . Since L q (-- L 2
for q > 2, the analogue of Theorem 3 would be that if a closed subspace V of L Z is
contained in L q for some q > 2, then V is finite-dimensional . This is false, how-
ever, as the following theorem shows .

THEOREM 5 . There exists an infinite-dimensional closed subspace V of
Lz(0, 1) each of chose elements f belongs to every class Lq (q < -), and in fact
satisfies the condition

(3)
J

exp {c I f(x) 1
2,

} dx < -

for every c > 0 .
Proof. This is well known from the theory of Fourier series : let V be the sub-

space spanned by the Rademacher functions (see [8, Chapter V, Section 8 .7] ) .

In Theorem 5, we cannot take q = -; in fact, condition (3) is "best possible ."

THEOREM 6 . Let V be a closed subspace of L 2 over a finite measure space .
Let O(x) be a convex, continuous, strictly increasing function on [0, -) with
0(0) = 0, and with

(4)

	

lim ~5(x)e -cx
Z

for each c > 0 . If
J 0(I f I) dµ < - for all f E V, then V is finite-dimensional .

COROLLARY . If V is a closed subspace of Lz over a finite measure space,
and if each function in V is essentially bounded, then V is finite-dimensional .

Before proving the theorem, we introduce some notations about Orlicz spaces
that will be used in the proof .
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Let Bo denote the set of measurable functions f for which

J 0(IfI)dµ < 1 .

E0 is the set of functions f some constant multiple of which belongs to BO (yf E BO
for some y > 0) . We do not distinguish between functions that agree almost every-
where. The proof will show that Theorem 6 is valid under the weaker hypothesis
that V c Eo .

The Orlicz norm II f 11 0 in E0 is defined as follows :

IIfli 'p = o if and only if f = 0 a . e . ;

otherwise, IIfII0 is the reciprocal of the (unique) positive number c for which
0(c I f I) dg = 1 (since 0 is strictly increasing, c is well-defined) .

With this norm, E0 is a Banach space ; B0 is the unit ball . For a discussion
along these lines see [4] and [7] . Using (4), we can show that L, C E0 c Lq for all
q<oo.

It will be convenient to modify the function 0 somewhat. Let

0*(x) = max (o(x), x2- ) .

Then ~* is a convex, continuous, strictly increasing function on [0, -) satisfying (4)
and

o* (x) > xz

	

(x > 0) .

Finally, E0* = E 0, since 0*(x) _ ¢(x) for all sufficiently large x . Since the proof
of Theorem 6 will only require the hypothesis V c E d , we may replace 0 by 0*. In
other words, dropping the star, we may assume in what follows that the function O(x)
of Theorem 6 also satisfies (5) .

LEMMA 2 . E,~ C L z and II f 11 2, < II f ii for all f c E0 .
Proof. It suffices to show that if f c B0, then f E L 2 and II f 11 2, < 1. This fol-

lows immediately from (5) :

If IL dg < J ~(If1)dg < 1 .

We now assume that V is a closed subspace of L L and that V C= E0 .
LEMMA 3. V is a closed subspace of E6 .
Proof. Let { f n } c V, fn --> f in E0 . By Lemma 2, f n -~ f in L z , and hence

f E V .
LEMMA 4. On V the 0-norm and the 2-norm are equivalent.
This is a well-known result of Banach [1, Chapter III, Section 3] .
Proof of Theorem 6 . Assume that V is infinite-dimensional, and let {h n } be

an orthonormal basis for V . Let
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E nk = { x : I hn (x) I < k} .

We distinguish two cases, and we show that Lemma 4 is violated in both . In the first
case much more is true : V cannot be a subset of Lq for any q > 2 .

Case I . There exists a ő > 0 such that

infn

Here, for each k there exists an n such that J I hn 12 dµ > ő, where F denotes
rthe complement of E nk . For each q > 2,

Since k is arbitrary, the q-norm is not equivalent to the 2-norm on V, and thus V
cannot be a subset of L q .

Case II.

All we really require is that

(6)

which establishes (7) .

n

zh nI dµ < 1 - ő

	

(all k) .

>

	

I hn lq > kq-Z

	

IhJ > ökq-2 .
F

	

F

d < J

		

I hn I~ dµ =
Enk

sup inf

	

I hn IL dµ = 1 .
k n Enk

Ihn1Z dµ > d > 0
Enk

for some fixed k, some fixed constant d, and for infinitely many values of n .
We now show that (6) implies the existence of a positive constant ő and a se-

quence of measurable sets IF n} such that

(7)

	

µ(Fn) > ő,

	

Ihn(x)I > ő (x E Fn ) .

Indeed, fix an a > 0 such that a 2 < min (d, k2 ), and choose any n for which (6)
holds . Let Gn be the subset of Enk where I hr , I < a, and let Fn = Enk - Gn . Then

G a Z '1(Gn)+k2 µ(Fn ) _ (k ?- - a 2)µ(Fn)+a z 1,L (E n k) .

Since µ(Enk ) cannot exceed the measure of the whole space, which we take to
we have the inequality

2
µ(Fn) >	 d- a

2
> 0,

k -a

be 1,
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By considering real and imaginary parts of h n on suitable subsets of F n (which
we continue to denote by F n ), choosing a smaller Ö, and passing to a subsequence,
we may assume that

(8)

	

µ(Fn) > ö,

	

%hn(x) > Ö

	

(x E Fn , n = 1, 2, • • • ) .

By a result of Visser [6], there exists a subsequence of IF,, }, which we continue
to denote by { F n}, for which

(9) µ(F1 n F2 n . . . n Fn) > 2 Ö n

	

(n = 1, 2, . . . ) .

Let fn = (hl + • • • + hn)/nÖ . Then 11 f n1í 2 = 1 16 and 92 f n > Vn on a set E n of
measure at least 2 6' . Choose c > 0 such that Ö e c > 1 . Then

(10)

	

exp (c 1 fn
12) dµ >

2
Ön e cn - °o

	

(n
En

We assert that I ín110 - "~, Indeed, fix E > 0 and choose an N such that
0(cx) > exp (cx2 ) for x > N. Then, for n > N 2 , we have the relation

~5(E 1 f n 1) dµ > )~(E I fn I) dµ > J

	

exp (c 1 f n 1 2 ) dµ ;
En

	

En

the last member tends to infinity, by (10) . Hence 11 í n11 > 1/E . Thus Lemma 4 is
contradicted, and this completes the proof .

We now establish a theorem analogous to Theorem 4 .

THEOREM 7 . If h(x) > 0 (0 < x < 1) and h 2 dx = -, then there exists an in-
finite-dimensional subspace V of L2(0, 1) such that

J
lfh dx = - for all f E V

(f

	

0) .
Proof. Let En= {x : n < h2(x) <n+ 1} (n= 0, 1, • • • ) and let

p 2 =

	

h2 dx < -

	

(n = 0, 1, . . . ) .
n

	

En

Then :' pn = ~ . Let N, , N 2 , • • be disjoint subsets of the positive integers such that

Z p?- _ `°

	

( j = 1 , 2 , . . . )

1 7 5

and let FJ = UiE Nj Ei . Let g l , g 2 ,

	

be nonnegative functions, with g j supported

in F j ,

	

gj2 = 1, and

	

hgj _

	

(j = 1, 2,

	

) . Then I g j } is an orthonormal set .
Finally, let V be the subspace spanned by I g i }, and let f = Z a j g j c V. At least
one coefficient, say a l , is not zero. Thus
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S
1 -

fh i dx >
0

COROLLARY . There exists an infinite-dimensional subspace V of Lz (0, 1)
none of it -hose elements (except zero) is in any space L q (q > 2) .

The proof is similar to the proof of the corollary to Theorem 4 .

We now return to sequential Hilbert space A Z . Evaluation at the n-th coordinate
is a continuous functional on any closed subspace V PZ . Hence there exist ele-
ments X1, X2, . . . in V for which

(11)

	

(x, ~,,) = x(n)

	

(x E V) .

(If we regard V as a Hilbert space of functions on the positive integers, then Xn(j)
is the "reproducing kernel" for V .) Thus

Ix(n)I <

	

Ixjj II1~n1I

1

THEOREM 8 . Let V be a closed subspace of 2, and let D n} C V be the co-
ordinate functionals (11) . Then

dim V =

	

II/~nJI Z

(finite or infinite) .
Proof. Let {xj} be an orthonormal basis for V . Then

dim V = Z II xj 11' = E E I xj(n) I' = E F, I (x j , xn) I - = E 1I'~nV' -
i

	

j n

	

n j

	

n

Theorem 8 has an application to the theory of bounded analytic functions . We
require a few definitions .

An inner function is an analytic function 0(z) = Lan z n , bounded by 1 in the unit
disc, whose radial boundary values have modulus 1 almost everywhere . Equivalent-
ly,

`°

	

0

	

(k = 1, 2, . . . ),
an an+k

n=O

	

1

	

(k = 0) .

We shall show that if 0 is an inner function, then E n I an I
Z < ' (that is, $ has a

finite Dirichlet integral) if and only if 0 is a finite Blaschke product. This result
was proved in [5] by means of the theory of dual extremal problems . Our proof is
based on Theorem 8 . For a discussion of inner functions and of the Hilbert space
HZ of power series with square-summable Taylor coefficients, see [2, Chapter 5] .

By $H Z we denote the subspace of HZ consisting of all multiples of 0 . It is a
closed subspace, since multiplication by is an isometry . We state the following
lemma without proof .

LEMMA 5. Let 6 be an inner function, and let V = (OH ? )' . Then V is finite-
dimensional if and only if 0 is a finite Blaschke product, in auhich case the dimen-
sion of V is the number of factors in the product .

g l h dx = - .

(all n, all x c V) .
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THEOREM 9 . Let 0(z) _ 2,an z n be an inner function . Then

rjn Ianl?' = dim (0H Z ) 1 .

Thus the Dirichlet integral of 0 is finite (and is then an integral multiple of 7r) if
and only if 0 is a finite Blaschke product .

Proof. Let W denote the subspace 0112, , and let V be its orthogonal comple-
ment. Let fen} be the usual orthonormal basis for fZ (en (j) = ö n,~• ) and, as in
Theorem 8, let f 1W denote the coordinate functionals in V . Finally, let f µn} be
the coordinate functionals in W . Then en = an + /In

Note that f zko} (k = 0, 1, . . .) is an orthonormal basis for W . Hence

II A nll ?- = 1 - µn112 = 1 - ZI(Z k~, /Ln )I Z = 1 -

	

Jan-J2 _

	

IakI Z ,
k

	

k<n

	

k>n

since 1; IakI

	

Summing on n, we see that

dim V = En Ia n l' .

Our results can be applied to other function spaces . For example, let H denote
the space of entire functions f = Ia n z n with norm

for all f c V?
In conclusion, we mention a problem that arose in this work and was left unset-

tled. Let T be a bounded linear transformation from f q to f Z for some q > 2 .
Since ( Z C- Q q , we may restrict T to QZ, thereby obtaining a map of Q Z into itself .
Is this new map necessarily completely continuous?

IIf1I ?' _ Zn! IanIZ .

These functions all satisfy the condition
Z

If(z)I?- = o(er ) (r = 1z I),

hence they all have order at most 2, and if the order is 2 then the type is at most
1/2. Suppose that V is a closed subspace of H and that

If(z)I Z = O(e r ~/r4 )

for all f E V. Then, using Cauchy's inequality for the Taylor coefficients, together
with Theorem 1, we can show that V is finite-dimensional . Hence every closed
infinite-dimensional subspace of H contains functions of order 2 and type 1/2 .

On the other hand, our results do not answer the following question : does HZ
contain an infinite-dimensional closed subspace V with

If(z)I = O ( (1	I Z I ) 1/4 )

	

( z < 1)
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Added in proof. Dr. Stephen Parrott has pointed out to us that this last question
has an affirmative answer . In outline, the idea is to consider the adjoint map T *
from f2 to fp c QZ . Using Theorem 3, one can show that the range of T * , regarded
as a subset of Pz , contains no closed infinite-dimensional subspace . The complete
continuity follows from this, via the polar decomposition and the spectral theorem .
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