On a problem of Sierpiński

(Extract from a letter to W. Sierpiński)

by

P. Erdös (Budapest)

Denote by μ_{s} the least integer so that every integer $>u_{s}$ is the sum of exactly s integers >1 which are pairwise relatively prime. Sierpiński ([3]) proved that $u_{2}=6, u_{3}=17$ and $u_{4}=30$ and he asks for a determination or estimation of u_{s}. Denote by $f_{1}(s)$ the smallest integer so that every $l>f_{1}(s)$ is the sum of s distinct primes; $f_{2}(s)$ is the smallest integer so that every $l>f_{2}(s)$ is the sum of s distinct primes or squares of primes where a prime and its square are not both used and $f_{3}(s)$ is the least integer so that every $l>f_{3}(s)$ is the sum of s distinct integers >1 which are pairwise relatively prime. By definition $f_{3}(s)=u_{s}$. Clearly

$$
f_{3}(s) \leqslant f_{2}(s) \leqslant f_{1}(s) .
$$

Let $p_{1}=2, p_{2}=3, \ldots$ be the sequence of consecutive primes. Put

$$
A(s)=\sum_{i=1}^{s} p_{i}, \quad B(s)=\sum_{i=2}^{s+1} p_{i}
$$

Theorem. $f_{2}(s)<B(s)+C$ where C is an absolute constant independent of s.

First we prove two lemmas.
Lemma 1. Let C_{1} be a sufficiently large absolute constant. Then

$$
\begin{equation*}
f_{1}(s)<A(s)+c_{1} s \log s \tag{1}
\end{equation*}
$$

We shall first prove

$$
\begin{equation*}
f_{1}(s)<A(s)+c_{1} s \log s \log \log s \tag{2}
\end{equation*}
$$

and then we will outline the proof of (1).
Denote by $r_{k}(N)$ the number of representations of N as the sum of k odd primes. It easily follows from the well-known theorem of Hardy-Little-wood-Vinogradoff ([2], p. 198), that

$$
\begin{equation*}
r_{3}(N)>c_{2} N^{2} /(\log N)^{3} . \tag{3}
\end{equation*}
$$

The well-known theorem of Schnirelmann ([2], p. 52) states

$$
\begin{equation*}
r_{2}(N)<\frac{c_{3} N}{(\log N)^{2}} \prod_{p \mid N}\left(1+\frac{1}{p}\right)<\frac{c_{4} N \log \log N}{(\log N)^{2}} . \tag{4}
\end{equation*}
$$

(The last inequality of (4) follows from the prime number theorem, or from a more elementary result.)

From (4) we obtain that the number of solutions of

$$
\begin{equation*}
N=p_{i_{1}}+p_{i_{2}}+p_{i_{3}}, \quad i_{1} \leqslant s \tag{5}
\end{equation*}
$$

is less than

$$
\begin{equation*}
c_{4} s N \log \log N /(\log N)^{2} . \tag{6}
\end{equation*}
$$

From (6) and (3) we obtain by a simple calculation that if $N>$ $>c_{1} s \log s \log \log s$ then

$$
\begin{equation*}
N=p_{u}+p_{v}+p_{w}, \quad s<u<v<w \tag{7}
\end{equation*}
$$

is solvable (since the number of solutions of $N=2 p+q$ is clearly $<$ $<c N / \log N)$.

Consider now the integer

$$
A(s)+t, \quad t>c_{1} s \log s \log \log s
$$

Put

$$
t_{1}= \begin{cases}p_{s-2}+p_{s-1}+p_{s}+t & \text { if } \quad t \text { is even } \\ 2+p_{s-1}+p_{s}+t & \text { if } \quad t \text { is odd }\end{cases}
$$

By (7)

$$
t_{1}=p_{u}+p_{v}+p_{w}, \quad s<u<v<w
$$

is solvable. Thus $A(s)+t$ is the sum of s distinct primes which proves (2).
Now we outline the proof of (1). It is easy to see that (1) will follow if we can prove that for

$$
\begin{equation*}
c_{1} s \log s<N<c_{1} s \log s \log \log s \tag{8}
\end{equation*}
$$

the number of solutions $\psi(N)$ of (5) satisfies

$$
\begin{equation*}
\psi(N)<c_{4} s N /(\log N)^{2} . \tag{9}
\end{equation*}
$$

But by the above mentioned theorem of Schnirelmann

$$
\begin{equation*}
\psi(N) \leqslant \sum_{i=1}^{s} r_{2}\left(N-p_{i}\right)<\frac{c_{3} N}{(\log N)^{2}} \sum_{i=1}^{s} \prod_{p \mid\left(N-p_{i}\right)}\left(1+\frac{1}{p}\right) \tag{10}
\end{equation*}
$$

Now it can be proved that if N satisfies (8) then

$$
\begin{equation*}
\sum_{i=1}^{s} \prod_{p} l_{\left(N-p_{i}\right)}\left(1+\frac{1}{p}\right)<c_{5} s \tag{11}
\end{equation*}
$$

We supress the proof of (11) since it is not quite short but uses fairly standard arguments and it is of no great importance for us to have Lemma 1 in the sharpest possible form. (9) follows immediately from (10) and (11). Hence (1) is proved and the proof of Lemma 1 is complete.

The estimation given by Lemma 1 is best possible (apart from the value of c_{1}), since considerations of parity shows that $B(s)-2$ can not be the sum of distinct primes and clearly

$$
B(s)>A(s)+c_{6} s \log s \quad\left(\text { since } p_{s}>c_{7} s \log s\right) .
$$

Perhaps $f_{1}(s)=B(s)+o(s \log s)$ but this. I have not been able to prove. It is easy to see though that

$$
\limsup _{s=\infty}\left(f_{1}(s)-B(s)\right)=\infty
$$

and probably

$$
\lim _{s=\infty}\left(f_{1}(s)-B(s)\right)=\infty .
$$

Lemma 2. Put $a_{k}=p_{k}^{2}-p_{k}, k \geqslant 2$. Then there exists an absolute constant A so that every even integer greater than A is the sum of distinct a_{k} 's.

One can easily deduce Lemma 2 from a theorem of Cassels ([1]) (it easily follows from the results on Vinogradoff ([4]) that if $0<\alpha<1$ then $\binom{p}{2} \alpha(\bmod 1)$ has at least one limit point different from 0 , thus the theorem of Cassels can be applied). An elementary and direct proof of Lemma 2 should be possible which would have the advantage of determining the best possible value of A. Such a proof would perhaps require a considerable amount of numerical calculation and I have not carried it out.

Now we are ready to prove our Theorem. We shall in fact show that for $s>s_{0}\left(c_{1}\right)$

$$
\begin{equation*}
f_{2}(s) \leqslant B(s)+A . \tag{12}
\end{equation*}
$$

Let now $n \geqslant B(s)+A$. If $n>A(s)+c_{1} s \log s \log \log s$ then by Lemma $1 n$ is the sum of s distinct primes (we only use (2)). Thus we can assume

$$
B(s)+A<n<A(s)+c_{1} s \log s \log \log s .
$$

Assume first $n=B(s)+2 t$. Since $2 t>A$, by Lemma 2

$$
2 t=a_{k_{1}}+\ldots+a_{k_{r}}, \quad k_{1}<\ldots<k_{r},
$$

but $2 t<c_{1} s \log s \log \log s$ clearly implies that for $s>s_{0}=s_{0}\left(c_{1}\right), k_{r} \leqslant s$ (since $a_{s}=p_{s}^{2}-p_{s}>c_{1} s \log s \log \log s$). Thus

$$
B(s)+2 t=\sum_{i=2}^{s+1} p_{i}+\sum_{i=1}^{r} a_{k_{i}}
$$

gives a representation of $B(s)+2 t$ as the sum of s distinct primes or squares of primes where p and p^{2} are not both used.

Assume next $n=B(s)+2 t+1$. Then $n=A(s)+2 t_{1}, 2 t_{1}<c s \log s \times$ $\times \log \log s$. Thus the same proof again gives that n is the sum of s distinct primes of squares of primes where p and p^{2} are not both used. Thus (12) and hence our Theorem is proved (the cases $s \leqslant s_{0}$ can be ignored because of Lemma 1).

Finally we remark that $f_{3}(s) \geqslant B(s)-2$ since $B(s)-2$ can not be the sum of s distinct integers >1 which are pairwise relatively prime. To see this we only have to observe that by considerations of parity no even number can occur in such a representation.

References

[1] J. W. S. Cassels, On the representation of integers as the sums of distinct summands taken from a fixed set, Acta Szeged 21 (1960), pp. 111-124.
[2] K. Prachar, Primzahlverteilung, Springer 1957.
[3] W. Sierpiński, Sur les suites d'entiers deux à deux premiers entere eux, Eenseignement Math. 10 (1964), pp. 229-235.
[4] I. M. Vinogradoff, The method of trigonometrical sums in the theory of numbers, Interscience Publishers, Chapter XI.

Regu par la Rédaction le 20. 10. 1964

