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On a problem of Sierpinski

(Extract from a letter to W . Sierpinski)

by
P . ERDÖS (Budapest)

Denote by r°8 the least integer so that every integer > u s is the sum
of exactly s integers > 1 which are pairwise relatively prime . Sierpiú-
ski ([3]) proved that n2 - 6, u3 = 17 and u 4 = 30 and he asks for a de-
termination or estimation of u8 . Denote by f1 (s) the smallest integer so
that every l > f1 (s) is the sum of s distinct primes ; f2 (s) is the smallest
integer so that every l >f2(s) is the sum of s distinct primes or squares
of primes where a prime and its square are not both used and f3 (s) is
the least integer so that every 1 >f3(s) is the sum of s distinct integers > 1
which are pairwise relatively prime . By definition f3 (s) = u 8 . Clearly

L ( s ) < f2 (s) ~ f1 (s ) .

Let p1 = 2, P2 = 3, . . . be the sequence of consecutive primes . Put
8

A (s) _ ~, pi, B (s) =
s+1

pi .

THEOREM. f2 (s) < B(s)+C where C is an absolute constant independent
of s .

First we prove two lemmas .
LEMMA 1 . Let C 1 be a sufficiently large absolute constant . Then

(1)

	

fl (s) < A(s)+e,slogs .
We shall first prove

(2)

	

f1 (s) < A(s)+c 1 slogsloglogs

and then we will outline the proof of (1) .
Denote by r k (N) the number of representations of N as the sum of k

odd primes. It easily follows from the well-known theorem of Hardy-Little-
wood-Vinogradoff ([2], p. 198), that

(3 )

	

r3(N) > c2N 2 /(logN)3 .
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well-known theorem of Schnirelmann ([2-1, p. 52) states
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(The last inequality of (4) follows from the prime number theorem, or
from a more elementary result .)

From (4) we obtain that the number of solutions of

(5)

	

- = pi g +pi 2 -4- py 3 ,

	

2,

	

s

is less than

(6 )

	

C4 8N log log N /(log N) 2 .

From (6) and (3) we obtain by a simple calculation that if
c,slogsloglogs then

(7)

	

N = p,,+p,+pw,

is solvable (since the number of solutions of N = 2p-+-q is clearly <
< cN/log N) .

Consider now the integer

t3y (i)

(n)

A(8)+t,

	

t > e,slogsloglogs .

Put
ps z+ps---1 +p.5

t l =_
2+ps , -i-p s { t

t, = pu+pv+p?, .,

if t is even,
if

	

t is odd .

s< u<v<u;

is solvable. Thus A(s)-I-t is the sum of s distinct primes which proves (2) .
Now we outline the proof of (1) . It is easy to see that (1) will follo`N

if we can prove that for

c,slogs < N < e,slogsloglogs

the number of solutions ?p(N) of (5) satisfies

(9)

	

V(N) < c,8N/(logN)'

tilut by the above mentioned theorem of Schnire.lmann
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Now it can be proved that if N satisfies (8) then

1=i r)l(N-Pi)

1 )
p

< I' .~ s .

We supress the proof of (11) since it is not quite short but uses fairly
standard arguments and it is of no great importance for us to have Lein-
ma 1 in the sharpest possible form . (9) follows immediately from (10)
and (11) . Hence (1) is proved and the proof of Lemma 1 is complete .

The estimation given by Lemma I is best possible (apart from the
value of c,), since considerations of parity shows that B(s)-2 can not
be the sum of distinct primes and clearly

B(s) > A (s)+c, slogs

	

(since p s > c ' slogs) .

Perhaps fl (s) = B(s)+o(slogs) but this . I have not been able to prove .
It is easy to see though that

limsup(f,(s)-B(s))
.s -ro

and probably
lim(f,(s)-B(8» = oo .

L1.~ZVIla 2 . Pvt a,. = p,'- p,,., k

	

2 . '/'hev there exists arrn absolute con-
,4ant .9 so that emery even integer greater than A is the sung of distivet

One can easily deduce Lemma 2 from a theorem of Cassels ([1]) (it
easily follows from the results on Vinogradoff ([4]) that if 0 < a < 1 then
(;')a(modl) has at least one limit point different from 0, thus the theorem
of C'assels eau be applied) . An elementary and direct proof of Lemma 2
should be possible which would have the advantage, of determining the
best possible value of A . Such a proof would perhaps require a considerable
amount of numerical calculation and I have not carried it out .

Now we are ready to prove our Theorem . We shall in fact show that
for s > s o (c, )

(12)

	

f2 (8)

	

B(s)+A .

Let now a B(s)-~-A . If -n. > A(s)+c,slogsloglogs then by Lem-
ma 1 n is the sum of s distinct primes (we only use (2)) . Thus we can
assume

B(s)---A < n < .1 (s)+e,slogsloglogs .

Assmne first n. - B(s)+2t . Since 2t > A, by Lenima 2
2 1

	

(UkI . . + ax., ,

	

k, < . . . < k',•,
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B(s)+2t =
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but 2t < c l slogsloglogs clearly implies that for s > s o = so (e l ), k r < s
(since a s = ps-ps > c l slogsloglogs) . Thus

s+1 r

i=2

gives a representation of B (s) + 2t as the sum of s distinct primes or squa-
res of primes where p and p 2 are not both used.

Assume next n = B(s)+2t+1. Then n = A (s)+21 17 2t, < eslogsx
X loglogs . Thus the same proof again gives that n is the sum of s distinct
primes of squares of primes where p and p2 are not both used . Thus (12)
and hence our Theorem is proved (the cases s < s o can be ignored because
of Lemma 1) .

Finally we remark that f3 (s) > B (s) - 2 since B (s) - 2 can not be
the sum of s distinct integers > 1 which are pairwise relatively prime .
To see this we only have to observe that by considerations of parity no
even number can occur in such a representation .
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