
ON INDEPENDENT CIRCUITS CONTAINED IN A GRAPH

P . ERDŐS AND L . PÚSA

A family of circuits of a graph G is said to be independent if no two of the
circuits have a common vertex ; it is called edge-independent if no two of them
have an edge in common . A set of vertices will be called a representing set
for the circuits (for the sake of brevity we shall call it a representing set),
if every circuit of G passes through at least one vertex of the representing set .
Denote by l(G) = k the maximum number of circuits in an independent
family and by R(G) the minimum number of vertices of a representing set .
Dirac and Gallai asked whether there is any relation between I (G) and R (G)
(trivially R(G) > I(G)) . B . Bollobás (unpublished) proved that if l(G) = 1,
then R(G) < 3 and the coniplete graph of five vertices shows that R(G) < 3
is best possible .

Consider now all graphs with I(G) = k . Denote by r(k) the maximum value
of R(G) for all graphs with I(G) = k . It is not immediately obvious that
r(k) is finite and the theorem of Bollobás states that r(1) = 3 . The value of
r(2) does not seem to be known . We are going to prove the following

THEOREM. There are absolute constants Cl and c2 such that

(1)

	

ci k log k < r (k) < c 2 k log k .

We cannot determine
line r(k)/k log k

and in fact cannot even prove that the liniit exists .
First we prove the lower hound in (1) . In fact we shall prove a somewhat

stronger result. Denote by E (G) the maximuni number of edge-independent
circuits of G. We shall show that for every k there is a graph G with I (G) = k
and
(2)

	

r(k) > c 3 E(G) log E(G) .

(2) is stronger than the lower bound in (1) since clearly E (G) > I (G) = k .
We shall prove (2) by a probabilistic argument and cannot at present give

an explicit example of a graph satisfyinging (2) . Our proof will be very similar to
the one used in (1, 2, and 3) .
First we introduce a few notations . Vertices of G will be denoted by

. . . , y,, . . . ; circuits will be denoted by C ;; the subgraph of G spanned by
the vertices x,, . . . , x a will be denoted by G (x i , . . . , x 1) ; G (n ; m) will denote
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a graph of n vertices and m edges ; II(G) denotes the number of edges of G ;
the edges of G will be denoted by e t , or by (x ;, x ;) ; and G - e, - . . . - e,,,
NN-i11 denote the graph from which the edges e i , . . . , e,,,, have been omitted . The
length of a circuit C i is the number of its edges .
Consider all graphs G(n ; 100n) with n labelled vertices x,, . . . , x,, . The

number of these graphs is clearly

(3)

	

(9)

	

4
100n)

First we state two lemmas .

I-Emt 1 . All but o(_4„) graphs G(n ; 100n) have the property that for every
choice x j~ . . . . x,,,, p = [ n/2], of p vertices,

(4)

	

II (G(x,	x,) , 2n .

LENt34A 2 . Pitt 1 = [(log n)/100] . All but o(A,,) graphs G(n ; 100n) have fewer
than n circuits of length Cl .

Assume that the lemmas have already been proved . "Then we prove (2) as
follows. By Lemmas I and 2 for n > n ,) there is a G(n ; 100n) which satisfies
(4) and for which the number of circuits of length not exceeding l is less than
n . Denote by C;, I C i G m < n, these circuits, and let e j be an arbitrary
edge of C ; . The e's are not necessarily - different . Put

G' = G - e i - . . . - e,,, .

Clearly each circuit of G' has more than l edges and since G' has at most
100n edges, we evidently have

( .>)

	

E(G') < loon/l < 20,000 n1 (log n) .

On the other hand
(6)

	

R(G') > n/2 .

To prove (6) observe that if x ,	v , k < n/2, would represent all circuits
of G', then G'(xk+ ,, . . . , x„) would not contain any circuits, hence would have
fewer than n - k edges, or

II (G' (x k+ ,, . . . , x„)) < n - k < n .

But we evidently have by (4) and m < n (n - k > n/2)

H(G'(xk+ l , . . . , xn)) > II(G(xk+ i, . . . , xn)) - m > 2n - n = n,

an evident contradiction . Hence (6) is proved . (5) and (6) easily imply (2) .
To see this, let n be the largest integer with 20,000n/(log n) C k . For our
graph G' we have by (5) and (6)

E (G') G k,

	

R (G') > ck log k



and by perhaps adding to G' some (at most k) independent circuits we clearly
obtain a graph G,' with

I(G,') = k,

	

E(G,') C 2k,

	

R(G,') > c3E(G,') log E(G,'),

which completes the proof of (2), if (5) and (6) are assumed .
Thus to complete the proof of (2) we only have to prove our lemmas . To

prove Lemma 1, observe that the number of graphs G(n ; loon) which have
p vertices x i„ . . . , x,,,, with

II(G(x i	x i „)) < 2n
is at most (1, pp . 3 .i-6)

(7)

	

I,, - (n)

	

( )(2) (

	

< 2n .2n ((2))(( 72) (2)
P K 2a

	

l

	

loon - 1))

	

2n

	

98n

since

(p) < 2n ,

and a simple computation shows that the terms in the sum (7) are increasing
for l C 2n . Now e 2 n > (2n)2n/(2n!) and p = [n/2] imply that

02)
2)2rt e2n

	

en 2n
(8)

	

2n
< ( n

	

G 16)

and for n > n o we obtain by a simple computation and (3)

((n
2
) (P2)) <

(2) (1 - (n- 1) 2)98n

(9)

	

98n

	

98n

	

(

	

)

3 "n

	

n

	

loon 2n
< (1 + o(1))

(4)
((2)

(n2
loon

	

/2)

(1

	

(á)98n (Z00)2n
_

	

-f- o(1)) n An

From (7), (8), and (9) we have
In < ( 1 + O(1))':4,(4)98n200 2 n = o(An ) .

which proves Lemma 1 .
Now we prove Lemma 2 (1, p . 36). The number of graphs G(n ; loon) which

contain a given circuit (x,, x2 ), (x 2 , x 3 ), . . . , (x,_,, x,), (x„ x,) clearly equals
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A circuit is determined by its vertices and their order . Thus there are
n(n - 1) . . . (n - r + 1) < nr such circuits . Therefore the expected number
of circuits of length r < I = [(log n)/100] is less than

((n
_1

	

nl

	

100n
2

	

E n' C2/ - r < (1 + 0(1)) E n' nl

	

= o(n) .
I00n

	

3G'"

	

100n - r

	

'<'<

	

C2/

Therefore by a simple and well-known argument the number of graphs
G(n ; 100n) having n or more circuits of length not exceeding I is o(A,z ), which
proves Lemma 2 and hence the proof of (2) is complete .
To complete the proof of our theorem we now have to prove that

r(k) < c2 k log k . We are going to use two theorems, the first, due to ourselves
(1, p. 9), which states : There exists an absolute constant c 3 so that every
G(n, n + I) contains at least c 3 l/log l edge-independent circuits .

Assume now that everv vertex of our graph has valency <3 . Then clearly
it contains c,; l/log l independent circuits ; since if two circuits are edge-
independentand not independent, then every common vertex of the two circuits
must have valency 4 .
The second theorem is due to T . Gallai (4) . Let G be a graph . Designate

some of its vertices, say x i , . . . , x z„ as principal vertices ; the other vertices,
y,, . . . , y r of G, will be the subsidiary vertices . A path is called a principal
path if its end points are principal vertices and it contains no other principal
vertices . (A circuit having only one principal vertex is not allowed .) Denote by
V.,,, the maximmn number of independent principal paths (two principal
paths are called independent if they have no vertex [principal or subsidiary]
in common) . IIn ,,,, denotes the smallest integer such that there are 11,,, ;,, vertices
representing all the principal paths-in other words there are k = H mj,,
vertices x j	j , (principal or subsidiary) so that every principal path
contains one of the x, z's and one cannot find fewer than k vertices with this
property. Gallai's theorem asserts that

(10)

	

11 min < 2 Vinax-

`'ow we are ready, to prove the right-side inequality of (1) . Assume that in G
the maximum number of independent circuits is k and let

(7) C2,

	

1 <i<k,

be a maximal system of independent circuits of G . Omit all the edges of C„
1 < i < k, but retain the vertices of C, . Thus we obtain the graph Gi . Let the
principal vertices of G, be the vertices of C ;, 1 < i < k, all other vertices being
subsidiary ones . Consider now a maximal system of independent principal
paths of G, .'The circuits C j and the maximal s~-stem of independent paths
define a graph G* every vertex of which has valency not exceeding three .
(G* is a subgraph of G but not of G, .) Let m denote the number of vertices of
G* . Then clearly the number of edges of G* is



independent circuits . Hence
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M + Vmax

since each principal path gives an excess of 1 of the number of edges over the
numher of vertices . Thus by our theorem G* (and therefore G) contains at
least

c3 hroax/IOg Vmax

	 C3Vmax

1og Vmax
< k or imax < c 4 k log k .

Now let y,, . . . , y, be a minimal system of vertices representing all the principal
paths of G, . By (12) and Lanai's theorem

(13)

	

t < 2c 4 k log k .

For some i, 1 < i < k, there iuav exist a circuit D i which has one (and only
one) common vertex xi with C ti , which is independent of C;(1 < j < k, j i)
and does not pass through any of the y;, 1 < j < t . But for a given i there
cannot be two such D i 's, say D i , and D i,, whose unique common vertex with
C ti is x ;, and x ti ,, where x ti , and x i . are distinct . To see this, observe that if
Di , and D,, are independent, then the k + 1. circuits

C; (I < j < k,j

	

i),

	

Dig,

	

Die

would be independent, which contradicts the maximality property of k. If
D j , and D ti _ are not independent, then their union contains a principal path
connecting x ;, and x ti , ; hence it contains one of the vertices y;(1 < j < t),
which by assumption represent all principal paths ; but this contradicts our
assumption that D ti , and D i , do not contain any of the y i ( 1 < j < t) .

If C i is such that there is a D i corresponding to it, adjoin their common
vertex x ti to the y's ; otherwise choose any vertex of C ti , denote it by xi, and
adjoin it to the y's . Some of the x i's might have already occurred amongst the
y's ; but in any case the system

(14)

	

y; (1<j<t),

	

x i (I<i<k)

contains at most

2c 4 klogk+k<c2 klogk

vertices . Our proof will be complete if we show that the system (14) represents
every circuit of G . Let C be any circuit of G . We have to show that it contains
at least one of the vertices (14) . The circuits C ti are clearly represented by the
vertices (14) ; thus we - can assume that C C ti , 1 < i < k . If C contains
at least two of the vertices of C ;, I < i < k, then C contains a principal path
of G, and hence one of the vertices y;, 1 < j < t . If C contains only one of the
vertices of C~ and does not contain any of the y ; (1 < j < t), then it contains
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xi, 1 G i G k . Finally, C cannot be disjoint of all the C g's because of the maxi-
mality property of the C i , 1 C i G k . This completes the proof of our theorem .

It would be easy to obtain explicit inequalities for c i and c., but they would
be very far from being best possible .
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