ON THE FUNCTION $g(t)=\limsup _{x \rightarrow+\infty}(f(x+t)-f(x))$

by

I. CSISZÁR and P. ERDÖS

The following problem has occured in the theory of regularly increasing functions: ${ }^{1}$

If for a real-valued measurable function $f(x)$ the quantity

$$
\begin{equation*}
g(t)=\lim _{x \rightarrow+\infty} \sup (f(x+t)-f(x)) \tag{1}
\end{equation*}
$$

is finite for every possible t, does this imply that the function $g(t)$ is bounded in every finite interval?

The aim of the present note is to show that
a) if (1) is finite for every real number t, then $g(t)$ is bounded in every finite interval:
b) if (1) is finite for every positive number t, then $g(t)$ is bounded in every closed subinterval of the open half-line $(0,+\infty)$ but not necessarily bounded in the neighbourhood of 0 .

Case a) Suppose that $g(t)$ is not bounded in some finite interval I; then there exists a sequence of real numbers $t_{n} \in I$ such that $g\left(t_{n}\right)>n(n=1,2, \ldots)$. Then, by (1), one could find a sequence $x_{n} \rightarrow+\infty$ such that

$$
\begin{equation*}
f\left(x_{n}+t_{n}\right)-f\left(x_{n}\right)>n \quad(n=1,2, \ldots) \tag{2}
\end{equation*}
$$

Take now an arbitrary finite interval J and consider the sets

$$
\begin{align*}
& Y_{1, n}=\left\{y: f\left(x_{n}+y\right)-f\left(x_{n}\right)>\frac{n}{2} ; \quad y \in J\right\} \tag{3}\\
& Y_{2, n}=\left\{y: f\left(x_{n}+t_{n}\right)-f\left(x_{n}+y\right)>\frac{n}{2} ; \quad y \in J\right\}
\end{align*}
$$

These sets are measurable for each n, and since by (2) $Y_{1, n} \cup Y_{2, n}=J$, we have either $\mu\left(Y_{1, n}\right) \geqq \frac{1}{2} \mu(J)$ or $\mu\left(Y_{2, n}\right) \geqq \frac{1}{2} \mu(J)$ or both (μ denotes the Lebesgue measure).
${ }^{1}$ The problem was told to P. Erdös by R. Bojanic and J. Karamata. In a paper of W. Matuszewska (Regularly increasing functions in connection with the theory of $L^{* \varphi}$-spaces, Studia Math. 21 (1962) 317-344) a proof of statement a) is given; in it, however, there is a gap: $g(t)$ is implicitely assumed to be measurable, although the measurability of $f(t)$ does not imply the measurability of $g(t)$.

Put now

$$
\begin{equation*}
Z_{n}=\left\{z: f\left(x_{n}+t_{n}\right)-f\left(x_{n}+t_{n}-z\right)>\frac{n}{2} ; t_{n}-z \in J\right\} \tag{4}
\end{equation*}
$$

Then obviously $\mu\left(Z_{n}\right)=\mu\left(Y_{2, n}\right)$ and thus we have either

$$
\begin{equation*}
\mu\left(Y_{1, n}\right) \geqq \frac{1}{2} \mu(J) \quad \text { infinitely often } \tag{5}
\end{equation*}
$$

or

$$
\begin{equation*}
\mu\left(Z_{n}\right) \geqq \frac{1}{2} \mu(J) \tag{6}
\end{equation*}
$$

infinitely often
(or both), where all the $Y_{1, n}$'s and Z_{n} 's are subsets of a fixed finite interval. This clearly implies the existence of a real number y_{0} or z_{0} contained in infinitely many $\dot{Y}_{1, n}$ or Z_{n}, respectively. ${ }^{2}$ But then - by the definitions (3), (4) and (1) - we would have $g\left(y_{0}\right)=+\infty$ or $g\left(z_{0}\right)=+\infty$, respectively, contradicting to the assumed finiteness of $g(t)$.

Case b) The first statement follows in the same way as in case a). We only have to place the interval J between the point 0 and the interval I; then, if the statement were false, one would obtain a positive number y_{0} or z_{0}, with $g\left(y_{0}\right)=+\infty$ or $g\left(z_{0}\right)=+\infty$. Now we show by a counterexample, that $g(t)$ need not be bounded in the neighbourhood of 0 . Let us define the function $f(x)$ in the following way:

$$
\begin{aligned}
& f(0)=-2 \\
& f(2 n-1)=f(2 n)=-2^{n+1} \quad(n=1,2, \ldots) .
\end{aligned}
$$

Further put for $n=1,2, \ldots$

$$
f\left(2 n-1+\frac{1}{2^{k}}\right)=f(2 n-1)+2^{k}=-2^{n+1}+2^{k} \quad(k=n, n-1, \ldots, 1)
$$

and

$$
f\left(2 n-1-\frac{1}{2^{n}}\right)=f\left(2 n-1+\frac{1}{2^{n}}\right)=-2^{n}
$$

For any other nonnegative value x define $f(x)$ by linear interpolation (see Figure 1). Then it is easy to see that

$$
g\left(\frac{1}{2^{n}}\right)=\limsup _{x \rightarrow+\infty}\left(f\left(x+\frac{1}{2^{n}}\right)-f(x)\right)=2^{n}
$$

and for $t \geqq \frac{1}{2^{n}}$ we have $g(t) \leqq 2^{n}$. Thus $g(t)$ is finite for every positive number t but obviously

$$
\lim _{t \rightarrow+0} g(t)=+\infty
$$

[^0]
Remarks.

1. The assumption that $g(t)$ is finite for every real t is obviously equivalent with the assumption that

$$
h(t)=\limsup _{x \rightarrow+\infty}|f(x+t)-f(x)|
$$

is finite for every positive t. Thus also the latter condition implies the boundedness of $g(t)$ - and of $h(t)$ - in every finite interval. In the counterexample given above $h(t)=+\infty$ for every t.

Fig. 1
2. If we do not assume the measurability of $f(x)$, then $g(t)$ can be finite for every real t without being bounded in any interval. That is the case e.g. for any non-measurable solution of the Cauchy functional equation $f(x+y)=$ $=f(x)+f(y)$.

0 ФУНкцИИ $g(t)=\limsup _{x \rightarrow+\infty}(f(x+t)-f(x))$

I. CSISZÁR и P. ERDŐS

Резюме

Пусть $f(x)$ - измеримая вещественная функция и положим

$$
g(t)=\limsup _{x \rightarrow+\infty}(f(x+t)-f(x)) .
$$

Доказываются следующие установления:
а) если функция $g(t)$ конечна при любом вещественном t, то она является ограниченной в любом конечном интервале;
б) если функция $g(t)$ конечна при любом положительном t, то она является ограниченной в любом закрытом подинтервале открытого интервала $(0,+\infty)$; но не должнна быть ограниченной в окресности 0 .

[^0]: ${ }^{2}$ If $A_{n}(n=1,2, \ldots)$ are arbitrary measurable sets with $\mu\left(A_{n}\right) \geqq \alpha$ and $u\left(\bigcup_{n=1}^{\infty} A_{n}\right)<+\infty$, then $\mu\left(\limsup _{n \rightarrow \infty} A_{n}\right)=\lim _{k \rightarrow \infty} \mu\left(\bigcup_{n=k}^{\infty} A_{n}\right) \geq \alpha$.

