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INTRODUCTION

A complex-valued function g(n) (n = 1, 2, 3, --•) defined on the set of natural
numbers is called multiplicative if, for all pairs n, m of relatively prime natural
numbers,

(0.1)

	

g(n • m) = g(n) • g(m) .

A multiplicative function g(n) is called strongly multiplicative if for all primes
and all positive integers k it satisfies the additional condition

and completely multiplicative if (0 .1) holds for all pairs n, m of natural numbers .
We say that the number-theoretical function g(n) has a mean value if the limit

exists . The question of the existence of the mean value M(g) has been much studied,
but it has been solved only for certain subclasses . One of the definite results is the
following theorem, due to H . Delange [2] (throughout the paper, p denotes a prime,
and E and n denote a sum ana a product, respectively, taken over all primes) :

p .

	

p
If g(n) is a strongly multiplicative number-theoretical function such that

i g(n) I < 1 for n = 1, 2, • • • , and such that the series

(0.2)

converges, then M(g) exists and

(0.3)

Received September 10, 1964 .

g(pk ) = g(p),

N
lim

N Z g(n) = M(g)
N---N-+- , n=1

g(p)- 1

p

	

p

M(g) = I (1 +g(p)- 1
p

Conversely, if g(n) is a strongly multiplicative function such that I g(n) I < 1
(n = 1, 2, • • • ), M(g) exists, and M(g) 31 0, then the series (0.2) converges, g(2) * -1,
and (0.3) holds .

In the present paper we shall consider only real, nonnegative multiplicative
functions .

The following theorem has been proved by P . Erdős [3] :
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THEOREM 1. If g(n) is a nonnegative, strongly multiplicative function such that
not only the series (0.2) but also the series

(0.4)

converges, then M(g) exists and (0 .3) holds.

Erdős asked whether the convergence of the series (0.2) is in itself sufficient for
the existence of M(g), and if not, whether the requirement that the series (0.4) con-
verges can be relaxed . The aim of this paper is to investigate these questions .
While the answer to the first question is negative [that is, convergence of the series
(0.2) does not by itself ensure the existence of M(g)], the following theorem, to be
proved in Section 2, shows that the answer to the second question is affirmative .

THEOREM 2. Let g(n) be a nonnegative and strongly multiplicative function
such that the series (0.2) together with the series

(0.5)

	

1; gz(P)

N<p<N(1+E)

z (g(p) - i) ?-

p

	

p

2
p

converges, and such that for each s > 0 there exist positive constants b (e) and
N(e) with the property

(0.6)

	

Li

	

g(p)pg p > b(e) for N > N(e) ;

then M(g) exists and (0.3) holds .

Theorem 1 is not directly contained in Theorem 2, but Theorem 2 is neverthe-
less stronger than Theorem 1, in the sense that Theorem 1 can be deduced from
Theorem 2 . The relation between the two theorems is as follows : Suppose a func-
tion g(n) satisfies the conditions in Theorem 1, and let 5o denote the set of primes
for which g(p) < 1/2; then

r, 1/p < . .
PEI-41

If for each prime p c _Y we change the value of g(p) to 1, then the function gi(n)
thus obtained already satisfies the conditions of Theorem 2, and thus M(g l ) exists ;
the existence of M(g) and the validity of (0 .3) follow easily from the existence of
M(g i ) and the validity of the corresponding formula for M(g i ) . On the other hand,
Theorem 2 can be applied in many cases in which Theorem 1 gives no information .

In proving Theorem 2 we shall make use of an analytic method that H . Delange
devised to prove his theorem mentioned above . The second-named author [6] has
recently found a much simpler proof of Delange's theorem, but for the case studied
in the present paper, the method of Delange seems more appropriate . Besides this
method, we shall need an argument that resembles a step in the elementary proof of
the prime number theorem (see [1], [4] ) .

In order to simplify the application of the method of Delange, we shall deal first
with certain functions that we call exponentially multiplicative functions . A multipli-
cative function is called exponentially multiplicative if for all primes p and all
natural numbers k > 2 it satisfies the condition
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g(pk) _ (gkp))k ,

In Section 1, we establish Theorem 3, which concerns a special class of exponentially
multiplicative functions . In Section 2, we deduce Theorem 2 from Theorem 3 and
show how Theorem 1 can be deduced from Theorem 2, while in Section 3 we deduce
from Theorem 2 a corresponding result (Theorem 4) for general nonnegative multi-
plicative functions . In Section 4 we deal with cases where the mean value of a
multiplicative function is 0 or -, and we give some counterexamples .

1 . EXPONENTIALLY MULTIPLICATIVE FUNCTIONS

THEOREM 3 . Let g(n) be a nonnegative and exponentially multiplicative function
such that the series (0 .2) converges and condition (0.6) is satisfied. Then the limit

exists, and

Thus

N

M(g) = lim N Zi g(n)
N-+ao n=1

M(g) _ 11 (1 -
1
) exp gpp) .

P

Proof. The Dirichlet generating series of a multiplicative function g(n) evidently
has the product-representation

g(n) _

	

g(pk)
-n-1 ns

	

p k-0 pks

If g(n) is exponentially multiplicative, this can be written in the form

lim s
S -+O

oo
j g(n) = exp Zi g(p)

n= 1
ns

	

p
ps

Now clearly the convergence of the series (0.2) implies the convergence of the infinite
product

L(g) _ 1 (1 -
P

) exp g(pp) .

g(n) _
n =•1 nl+s

00
g(n)

n-1 ril+s

lim ~
(1 + s) = L(g) .

s-~+0

From a well-known Tauberian theorem of G. H . Hardy and J . E. Littlewood [5] it now
follows that
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N
g(n)

(1.1)

	

n
lim n

log N = L(g)N-+-

Thus the logarithmic mean value of the sequence {g(n) 1'10 exists .

We shall need the identity

(1 .2)

	

g(n) log n = Fj g(p) g \ ) log p ,
pln

	

p

which we shall easily deduce from the definition of an exponentially multiplicative
function .

As a matter of fact, if the canonical product representation of n is

k 1 k2

	

k r
n = pl p 2 . . .p r '

then

and for each j we have the formula

(1 .4)

	

kj g(n) = kj g(p g' kj ) - g(p 1 ) gp

	

( p )
\

	

j

Then

(1.5)

We shall show now that

r

(1 .3)

	

g(n) log n = ri g(n) kjlog p j ,
j=1

From (1 .3) and (1 .4) we obtain (1 .2) . Let us now put

N

	

N

G(N) = N Z g(n) ,

	

G* (N) = N log N F1 g(n) log n .

N

Fd G(n) n log (1 + n l
G(N) - G*(N) = A(N) =

n=1

	

N log N

(1 .6)

	

lim 6(N) = 0 .
N -00

N
If we write H(N) _ rj n=1

g(nn	 , then

N-1

(1 .7)

	

G(N) = H(N) - N Fj H(n) .
n=1
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Now (1.1) can be written in the form

(1 .8)

	

lira H(N) = L(g),log .1.4

and it follows from (1 .8) that

N - 00

N-1

ri H(n)
(1 .9)

	

lira n-1

	

= L(g)Nog NLN- -

Combining (1.7), (1 .8), and (1 .9), we conclude that

(1 .10)

	

lim og
) = 0 .lN - ao

From (1 .5) and (1 .10) it follows immediately that (1 .6) holds .

From the identity (1 .2) we deduce that

(1.11)

	

G(N) =
log N

E g(p)log p G ( [ p
]
) + p(N) ,

g<N

where L(N) tends to 0 as N +- Qx] denotes the integral part of x). We shall
now show that (1 .11) implies that

(1.12)

	

lim G(N) = L(g),
N --, -

which is the assertion of Theorem 3 . To prove (1 .12), let us put

A = lim inf G(N),

	

B = lira sup G(N) .

It is easy to see that

N-1
E G(m)

H(N) = G(N) + m=1 m + 1

log N log N

	

log N

Taking into account (1 .8) and (1 .10), we see that 0 < A < L(g) < B <+-. Thus if
(1 .12) were false, at least one of the inequalities E F> L(g) an(FA < L(g) would hold .
We shall show that either of these inequalities leads to a contradiction, and thus we
shall establish (1 .12) .

In what follows, C 1 , C2, • • • will denote positive constants . Let us suppose first
that B = +- . Let INk I be a sequence of natural numbers such that

lim G(Nk) _ +~ and G(Nk) > G(n) for all n < Nkk
k,+-
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Let us choose a number £ (0 < £ < 1/2), and let r k(£) denote the set of those
natural numbers n in the interval 1 < n < Nk for which G(n) < G(Nk) (1 - £). Put-
ting Max N I A(N) I = C 1 , we obtain the inequality

G(N) < G(Nk ) (1 - £)

	

ri

	

g(p) log p +G(Nk)
k - log N k

	

Nk

	

p

	

log Nk
P E rk(£)

It follows that

(1 .14)

(1 .17)

g(p)log P
Nk

	

p

P]Erk(£)

Nk

-P J E rk(£)
p

1

(

Fj g(p)log p lo N + C, logNk
C

P<Nk

	

p

	

g k

	

£ G(Nk)

As is well known, it follows from the prime number theorem that

Li lopP = log x + a + 0(1),
P<x

where a is a constant ; together with the convergence of the series (0 .2), this implies
that

r, (g(p) - 1) log p = .(log x) .
p<x

	

p

Thus we obtain the estimate

(1 .16) E g(p)log P - log x .
P<X

	

p

Therefore we can find a natural number kl(£) such that

E g(p) log p - log Nk

P<Nk

	

p
< £ • b ( 1

£
2£ ) log Nk for k > k (E) .

As G(Nk )

	

00 , we can by (1 .14) and (1 .16) choose k 2(£) so that

(1 .18)

	

Li

	

g(p) log p < C2 • t (1 E2£ )
log Nk

	

for k > k2(£),

where (for example) we can choose C2 = 2 .

We shall now show that (1 .18) holds also (with some appropriate value of the
constant C2) if B > L(g) is a finite number .

Let {Nk} denote a sequence such that G(Nk) B . Let us choose no(F) so that

G(n) < B (1 + £ • b (1 £2£ ) )

	

for n > no(£),

and let us put supra G(n) = e3 . Let us further choose k3(£) so that

E

	

g(p)log P + C
N -- 11

	

P

	

1 •
k~
P

~rk(£)



We obtain the inequality

Since the quantity
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ID(Nk)1 C e b ( 1
	 E

E )

G( ) < C3	g(p)logp +
B (1 + e • b (1 e 2s	))

	

g(P)log pNk - log Nk Nk

	

p

	

log Nk

	

N k]P< no (E)

	

[P] OkW

+ G(Nk) (Nk e)

	

Nk
E

	

g(p)plogp +6-6 (1
	 e2E

)

	

for k > k3(E)
l]

	

-
P E rk(E)P

Now we choose k4(E) so that

G(Nk) > B (1 - E •
b (1

	 F,

2&) ) and Nk > no (&)

	

for k > k4(E) .

Then, for k> k5 (F-) = max(k3 (0, k4(s)), we have the inequality

Nk

	

g(p)pgp < (2 +
B)

b
(1 E 2e )

1°g Nk + E
~N g(P)pogp _ log Nk

k E rk(E)

	

(p< k
P

C
E

	

1;

	

g(p)log P+
BN

	

P
no E G PG Nk

no(c)

E

	

log p
Nk

	

p
no E)< P< Nk

for k > k3(E) .

is bounded (by a constant depending on s), it follows from (1 .15) that

ri

	

g(p)log p = o(log NO .
Nk

	

p
<P<Nk

Thus we can find a k6(e) such that for k > k6(e)

g(p) log p < BE b (1	 E )
Nk

	

p

	

-C3

	

- E

no(e <P<Nk

Thus, by (1 .17), if k > k7(s) = max(kl(s), k5(E), k6(0, then (1 .18) holds also for the
case where B is finite, if we choose the constant C2 sufficiently large (in fact,
C2 = 4 + 1/B is sufficient) .
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Let us now call those values of n < Nk for which n c I'k(E), that is, for which
-G(n) < (1 - E) G(N k ), F, -bad values . Clearly if n is 2E-bad and 11 -

E
2E n < n, < n,

then

and thus nI is r, -bad . Let n 1 , n 2 ,

	

, n z denote all 2E-bad values of n . Let us
consider the sum

Since all values [Pk] lying in an interval i_EE nj , n ;~ are E-bad, it is evi-

dent that

Sk(e) <

	

r

	

g(p) log p

	

F,

	

1
p

	

N,

	

N

	

n

Pkj EI
k(E)

	

P <n<P \1-2E"
)

Clearly, the sum over n

L

in the right-hand member is less than C 4 E, and therefore

Sk(E) < C4 E
N
E

	

9(p)l0 g p .

[
kl

E rk(E),P

On the other hand,

and thus, by our supposition (0 .6), if k is sufficiently large, then

(1 .20)

G(n 1 ) < n, G(n) < \1 - 2El (1 - 2E) G(Nk) _ (1 - c)G(Nk),

S (E) -

	

1

	

r,

	

g(p)log p
k

	

nú e rJZE) ~ n~ Nk

	

Nk/	 E

	

p

	

)'<P<
J

(1+	
n

	

n • \

	

1-ZE

	 E
/

	

rSk(E)

	

b 1 2E

	

n
n1EIk(2E),nj< Nk t

N(E)

Comparing (1 .18), (1 .19), and (1 .20), we obtain the estimate

	 C4	EE

	

n <	 E 1 C26
1

	 E
2E log Nk - C 5 E log Nk .

n,EFk(2E),na< (É) J

	

1 - 2E!

It follows by the definition of the set rk(2E) that for sufficiently large k

Sk(E) = F 1 ~; g(p) log p

nj Er'k(2E)
ri,

1-ZE n Nk f
p

1-E j< P J <nj
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Nk
Nk

	

N E

(1 .21) Li
Gnn)

>

	

Lr n - C 5 Elog Nk 1(1 - c) G(Nk ) > (1 - C6 E)G(Nk)log N k 'n=i

	

ii

In view of (1 .8) . (1 .10), and (1 .13), we have however the relation

N

(1 .22)

	

lim
l01

	

2, G(n) = L(g) '
N-

	

gNn=i

n

Comparing (1 .21) and (1 .22), we conclude that

L(g) > (1 - C6 E)B,

which is impossible of B = +-, and also if B is finite and B > L(g), provided that E
is chosen sufficiently small. This contradiction proves that B = L(g) .

Now we prove that the assumption A < L(g) also leads to a contradiction . The
proof is similar to that given above for the impossibility of B > L(g), but is some-
what simpler because 0 < A < L(g) and thus A is always finite. wherefore we need
not distinguish between two cases (as before between B =+- and B <+-).

Let {Nk} be a sequence of natural numbers such that limk _, a, G(Nk ) = A. Let
yk (E) denote the set of those integers n (1 < n < NO for which G(n) > (1 + E)A, and
let us call the values n belonging to yk(E) the F, - bad values . We choose k9(E) so
large that

G(Nk)<A(1+E'ő( l + and IA(Nk )! < .E ö ~ l
+E

for k Z kcl(E), and D(E) so that

G(n) > A (1 - E • 6 C I + E

	

for n > D(E) .

It follows from (1 .11) that if k > k IO(E), then

Now if n is 2E-bad and n < n' < ( 1 +
EE

) n, then

and thus n' is E-bad. For the sum

g(p)log p< C 6	 E ) lo Np

	

- 7

	

1+E

	

g k .
Nk
-]P

Eyk(E)

G(n1) > n' G(n) > (	1+ 2E ) ( 1 + 2E) A = (1 + E)A ,

Sk(E} _

	

1

	

E

	

g(p)log p

n~ Eyk (2 E) n j

	

Nk

	

1+2F,

	

pnJ<-P < n'	J i+E
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we obtain the inequalities

k(E) < C 8 E N r, g(p)p g p

[p] EYk(E)

and

	 E

	

1
sk(E) > Ö

1 + E

	

njE

	

?E) nj'

Nk(1+E)
nJ < (1+2E)N(E)

and thus it follows that

and thus, in view of (1 .22),

L(g) < (1+E)A+C10 E .

This contradicts the inequality L(g) > A, if E is sufficiently small. Thus L(g) > A
is impossible, and Theorem 3 is proved .

Let us mention that the condition (0.6) is certainly satisfied if g(p) has a positive
lower bound .

2. STRONGLY MULTIPLICATIVE FUNCTIONS

Corresponding to two number-theoretical functions g 1 = gl (n) and 92 = g2(n) we
define the function 93 = gl * 9. (called the convolution of g1 and g2 ) by putting

Clearly, if any two of

(2.1)

r

	

1 < C9 E log Nk -nj £yk(2E) nj -
Nk(1+E)

nJ
< (1+2E)N(E)

This implies (since from the first part of the proof we already know that G(n) is
bounded) that for k > k 1I(E)

Nk

r G(n)

n=1 n

log N C (1 +E)A+C 10 E,
k

g3 (n) = Li g 1(d) g2 ( d) .
dln

gl 1 92 y 93 are multiplicative, so is the third, and

00

	

00

	

00
g3(S)

_

	

g 1() 1C

	

g2(s ) J .
n=1 n n=1 n /\n=1 n



(2 .2)

	

Z! Ig2(n)n

converges, then M(g3) exists and

where
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We shall use the following simple lemma, which is due to A . Wintner [8] :

LEMMA . If 93 = gl * g2, and if further the mean value M(gl ) of g l exists and
the series

gl(p) _

n=1

M(g3) = M(g l ) 2j g 'nn)

n=1

Proof of Theorem 2 . Let g l (n) denote the exponentially multiplicative function
whose values for primes are the same as those of g(n) . Then by virtue of (2 .1),

g(n) = gl(n) * g2.(n),

zi (-1)kk	

_

	 (p)k+1 + (-1),g(p)f

00g2(n)

	

~ 1 ~ ~ k=0

n=, ns

	

p

	

= Z

	

pfs

It follows from the convergence of the series (0.5) that the series (2.2) converges ;
thus by our lemma M(g) exists and (0.3) holds . This proves Theorem 2 .

Clearly the conditions (0.5) and (0.6) of Theorem 2 are satisfied if g(p) has a
positive lower bound and is also bounded from above .

Deduction of Theorem 1 from Theorem 2 . Suppose that g(n) satisfies the con-
ditions of Theorem 1, and define the strongly multiplicative function g l(n) by putting

g(p)

	

if g(p) > i/2,

1

	

if g(p) < 1/2 .

Since the series (0 .4) is supposed to converge, it follows that if S denotes the set of
those primes p for which g(p) < 1/2, then the series

z 1
pES p

converges . Putting g(n) = g l(n) * g 2 (n), we see that

Li
g. (n)

_

	

(1 + g(p)s -1

pES

	

p

Thus the series

1 g2,(n)
n
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is convergent .

Clearly g l (n) satisfies the conditions of Theorem 2, because

(3 .1)

It follows that M(gl) exists ; thus Lemma 1 can be applied, and we conclude that
M(g) exists and (0.3) holds . This proves Theorem 1 .

3 . GENERAL MULTIPLICATIVE FUNCTIONS

THEOREM 4 . Let g(n) be a nonnegative multiplicative function for which the
series (0.2) and the series

n=1

g2 (P) +

	

g(pk)

p p 2

	

P k=2 pk

converge, and suppose that to every positive E there correspond positive constants
ő (s) and N(e) such that condition (0.6) is satisfied. Then M(g) exists and

W

(3 .2)

	

M(g) _ H / 1 + ~ g(pk)- g(pk-i )

P

	

k=1

	

pk

Proof. We deduce Theorem 4 from Theorem 2 by using again the lemma in Sec-
tion 2 . Let gl(n) be the exponentially multiplicative function that takes the same
value as g(n), when n is prime, and put g = g2 * g 2 . Then clearly g i satisfies the
conditions of Theorem 2, and thus M(g1) exists . Further,

k

	

k_k

n)

	

°° ~ g(pf)(-1)k-p
	

+ ~ f-O

	

(k _ ~)!
g2(
n

	

p

	

k=2

	

pks

Thus it follows from the convergence of the series (3 .1) that

~ !g2(n)i <
n

therefore the lemma can be applied, and the existence of M(g) and the validity of
(3 .2) follow .

COROLLARY . Let g(n) be a nonnegative multiplicative function, and suppose
there exist positive constants a and b such that

g(p) > a and g(pk ) < b

for all primes p and for k = 1, 2, • •

	

Suppose further that the series (0.2) con-
verges. Then M(g) exists and (3.2) holds .

F, gi(p) _

	

1 + g2(P)

	

r 2(g(p) - 1) 2 + 3

p2

	

pES p 2 p2 -

	

p2
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4. MULTIPLICATIVE FUNCTIONS WHOSE MEAN VALUE IS 0 OR +-

The condition in Theorem 2 that the series (0.5) should converge is necessary
for the convergence (to a positive limit) of the infinite product on the right-hand side
of (0 .3) . As a matter of fact, it is easy to see that if the series (0.2) converges and
the series (0 .5) diverges, then

lim

	

Il
(1

+ g(p) - 1 ) = 0 .
pX_+~ P<x

Thus one is led to the conjecture that if all the other conditions of Theorem 2 are
satisfied but the series (0 .5) diverges, then M(g) = 0 . Similarly, if for instance g(n)
is completely multiplicative and the series (0.5) diverges, then the product on the
right of (3 .2) diverges to +-, and thus one is again led to the conjecture that if all
the other conditions of Theorem 4 are satisfied for a completely multiplicative func-
tion but the series (3 .1) diverges, then M(g)

	

Both these conjectures are true,
as is shown by the following theorems .

THEOREM 5 . Let g(n) be a nonnegative, completely multiplicative function such
that the series (0.2) converges and the series (0.5) diverges. Suppose further that
condition (0 .6) holds. Then M(g) _+-, that is,

N

(4 .1)

	

lim 1 rig(n) _ +
N-+~ N n=1

THEOREM 6 . Let g(n) be a nonnegative, strongly multiplicative function such
that the series (0.2) converges and the series (0.5) diverges. Suppose that condi-
tion (0 .6) holds. Then M(g) = 0 .

It should be mentioned that if under the conditions of Theorem 5 we put

(4 .2)

	

E(p) = 1 + Z g(pk)- g(pk-1 )

then

and thus

while under the conditions of Theorem 6

and thus

k=1

	

pk

1- 1

E(p) =

	

p
1 _ g(p)

p

lim E E(p)
x- P<x

E(p) = 1 + g(p)- 1
p

lim

	

II E(p) = 0 .
X- +-0 P! x
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This shows that Theorems 2 and 6 can be combined and expressed in the form of the
following single statement :

THEOREM 7. If g(n) is a nonnegative and strongly multiplicative function such
that the series (0.2) converges and condition (0 .6) is fulfilled, then M(g) exists and

(4.3) M(g) = lim n (1 + g(p) - 1 )
X- - p<x P

this limit being positive or zero according to whether the series (0.5) converges or
diverges .

Similarly, combining Theorem 5 with what follows from Theorem 4 for complete-
ly multiplicative functions, we obtain the following result .

THEOREM 8 . Let g(n) be a nonnegative and completely multiplicative function
for which the series (0.2) converges and condition (0.6) is fulfilled; suppose further
that g(p) < p for all primes p . Then

M(g) = lim
x->

(1 p)
p<x (1

_ g(P) ) '

P

this limit being either finite and positive or infinite according to whether the series
(0 .5) converges or diverges .

These theorems suggest the following conjecture : The mean value of a nonnega-
tive multiplicative function g(n) exists if and only if the limit

lim II E(p)
X-- p<x

exists (where E(p) is defined by (4 .2)), and the two are equal whenever they exist,
including the case where the limit is +- .

Proof of Theorem 5 . Let g(n) be a completely multiplicative function satisfying
the conditions of Theorem 5 . Let g1(n) be the exponentially multiplicative function
for which g1(p) = g(p) for all primes . Then, by Theorem 3, M(gl) exists and is
positive . Now clearly if

n = al . . a rP1

	

P r P r+1 P S I

where ai > 2 (i = 1, 2, • • • , r), then

r
g(n) = r ~i g(p . ) g

(nZ
) .

i-1

	

Pi
r

Since however 1/r > 1/2 r-1 > ai!/Rj=1 ai ! , it follows that

r
g(n) > Li g,>(pi)g,( n2 ) ,

1=1

	

Pi
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and thus, for any fixed D > 0,

However, for each fixed p < D,

and therefore

N

N
E g(n) > N ri Cg(p2 ) z g1(m)

n=1

	

p<D

	

m< N- p2

lim 1NN -> -

M(gl )
g1(m) =

	

2
N

	

p
m<Z

P

N

lim inf N ri g(n) > M(gl ) ri g
2

Zp)N- +~ n=1

	

p<D p

Since this holds for arbitrarily large values of D and the series (0.5) diverges, by
hypothesis, it follows that

N

lim
N Zi g(n) _ +- ,

N-- n=1
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and thus Theorem 5 is proved .

Proof of Theorem 6 . Let g(n) be a strongly multiplicative function satisfying
the conditions of Theorem 6 . Let gl(n) be the exponentially multiplicative function
for which g 1 (p) = g(p), and go(n) the multiplicative function defined by

go(p) = g(p)

	

and

	

go(pk) = 0 for k > 2 .

First we prove that M(g o ) exists and is equal to 0. To show this, let g (D)(n) be the
multiplicative function defined as follows :

g(D)(p) = g(p)

	

for all primes p,

g(D)(p 2 ) = 0

	

for p < D,

g(D) (pk ) =
g1(pk) if p < D and k > 3 or p > D and k > 2 .

Clearly, for all n and D,

go(n) < g (D)(n) < g l (n) .

For each square-free integer d, let us further define g (d)(n) as the exponentially
multiplicative function for which g (d)(p) = 0 if pld and g (

,d)(n) = g l (n) if n is
relatively prime to d . Then
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g (D) (n)
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N

N ri g l(n) _ z f g(2~)

	

g (P)(m)

n=1

	

p< D ,
\

	

m< NN
-P2

-

	

~

	

,~ g(pz ) g(qZ)

p< D, q< D, p#q

	

4

	

m<N
P q

For each square-free d, M(g (d) ) clearly exists by Theorem 3, and

M(g id) ) = M(gl ) exp ~-

	

g(pp)
pld

it follows that M(g (D)) exists and

M(g(D))

	

g(p2) exp ~- g(pp) ~~ M(gl)

Since

-F

D~ p~D \1 -
g2p

2
Z) exp

(-

gpp)
» = 0,

g(p)

p< D

	

2p

(Pq)(m )91

it follows that M(g o ) = 0. Using the lemma in Section 2, we easily see that M(g) = 0 .
Thus Theorem 6 is proved .

In all our theorems we have supposed that the series (0 .2) converges . If this
condition is dropped, then M(g) does not exist in general . As a matter of fact, it is
easy to construct multiplicative (and strongly multiplicative) functions, bounded by
positive constants both from below and above, for which the series (0 .2) diverges
and the logarithmic means

oscillate between different upper and lower limits . For this purpose it is sufficient
to put

2

N
1 E g(n)

log N n-1 n

(nZk < p < n2k+1) ,

(nZk+1 < p < n 2k+2)

for some rapidly increasing sequence {nk}, It is well known that

N

	

N

lim inf
1
N r g(n) < lim inf 1

	

g(n)

N-i oo

	

n=1

	

N--> oo log N n=1 n

N

	

N
< lim sup l01 N

E g(n) < lim sup
N Zi g(n),

N-~ g n=1

	

N- n=1
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and it follows that M(g) does not exist .

We can also give a counterexample showing that the convergence of the series
(0 .2) alone does not ensure the existence of M(g), not even if the values 0 and +
are admitted, and not even if g(p) has a positive lower bound . Let pk denote the
least prime p for which

and let

Then

g(Pk)=4
'

and thus the series (0.2) converges . Let us now put

g(p2 ) = 0

	

(P ~ {pk}),

4
g2 (pk )

g(N)

4
g2

(Pk)

g(pf) = g(p 2 )

and thus the arithmetic mean values

N n=1

g(p) = 2 (p ~ {pkD

Li

	

g(p)- 1 = O(k-3/2 ),
ee/k<

P
<ee k+1

	

p

(p prime, k > 3) .

Then the series E g(pk)/pk diverges, and Theorem 4 is not applicable .

It is easy to see that the product

.11 E(p) = 1

	

I + g(p)- 1 + g(p 2)- g(p)

P<X

	

P<X
(

	

p

	

p2

oscillates between 0 and -, if the sequence {nj } increases fast enough . It follows
that the logarithmic mean values

N
	 1 E g(n)

log N n=1 n

(n2 J <
k < n 2 +1 )-

(n,,+, < k< n

do the same . In our example g(p) is bounded from below, and thus condition (0 .6) is
of course fulfilled .
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Remark. After finishing this paper, we were informed by E . Wirsing that he has
constructed a nonnegative multiplicative function g(n) for which the series (0.2) and
(3.1) converge but M(g) does not exist . This example shows that the condition (0.6)
in Theorem 4 is necessary . By modifying slightly the example one can show that the
condition is necessary also in Theorems 2 and 3 . Wirsing's example concerning
Theorem 4 is as follows : Let pk be defined as the least prime greater than ek, and
let

e k
g(pk) = k (k = 1, 2, . . . ) ,

g(p) = 0

	

(p ~ {pk}),

g(pf) = 0

	

(p prime, f > 2) .

Wirsing further proved that if g(n) is a nonnegative multiplicative function for
which g(pk) is bounded from above, then the convergence of the series (0 .2) alone
is sufficient for the existence of the mean value M(g) . His results will be published
in a forthcoming paper .
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