
ON TCHEBYCHEFF QUADRATURE
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1. Tchebycheff proposed the problem of finding n + 1 constants
A, x 1 , X2	x, (-1 < x 1 < x2 < . . . < x n < + 1) such that the formula

( 1)

	

f
f(x)dx

1

	

= A~f(x i )
1

	

i=1

is exact for all algebraic polynomials of degree <n. In this case it is clear that
A = 2/n . Later S . Bernstein (1) proved that for n > 10 not all the x i's can
be real . For a history of the problem and for more references see Natanson (4) .
However, we know that for suitable A i, the formula

(2)

	

J f(x)dx
.1

	

= ~ Aif%)
1

	

x=1

is exact for all polynomials of degree <2n - 1 and that all the p i's are real .
Indeed the ~i 's are the zeros of the Legendre polynomials P . (x) of degree n and
all the A is are non-negative .

Thus one observes that if one determines n + 1 constants as in the Tcheby-
cheff case, there exists a number no (in this case no = 10) such that not all
the x i's are real for n > n o . However, if we allow ourselves more freedom, as
in the Gauss quadrature case of formula (2), there is no number no such that
for n > n o some of the p i's niust become imaginary, since in this case all the
is turn out to be real and lie in [-1, 1] .
'I'wo questions arise naturally in this connection . We formulate them as

follows

PROBLEw 1 . Given a fixed integer k, we wish to determine n + k + 1 (n > k + 2)
constants .4 j , y i (i = 1, 2, . . . , k), x ; (j = 1, 2, . . . , n - k), and B so that the
f ormitla

(3)

is exact for all polynomials of degree < n + k . We require the y is and x j's to be
in [-1, 1] . Does there exist a number n o such that for n > n o the formula (3) is
no longer valid?

PROBLEM 2 . If for every n, the formula (3) is only required to be valid for all
polynomials of degree m = m (n) < n, what is the order of m (n) ?

The object of this paper is to show that in Problem 2, m(n) = 0(á/n),
whence it is clear that the answer to Problem 1 is in the affirmative .

Received Mav 19, 1964 .

1

	

n-h

~ 1 f(x)dx = ZA if(yi)+ BZ f(xj)
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When n = k or k + 1, Problem 1 has a negative answer as is seen by the
Gauss quadrature formula . For k = 0, the answer to Problem 1 is known and
is due to Bernstein . But Problem 2 does not seem to have been formulated
even for k = 0 .

If k = 1, one can determine the constants in (3) easily when n = 2 or 3 .
When n = 2, one has the system of equations

A+B=2,
Ay, + Bx, = 0,
Ay,l + Bx, 1 _ ,
Ay, 3 + Bx13 = 0,

which have the solution A = B = 1, x, _ -y, = 1/x/3 . Also when k = 1,
n = 3, we have the system of equations

A+2B=2,
Ay, +B(.e,+x 2) = 0,
Ay, 2 + B (x1 2 + xz 2) = á ,
Ay1 3 + B (X13 + x :, 2) = 0,
:1 y, 4 + B (x, 4 + x, 4) = J,

which have a solution, viz . y, = 0, x, _ -x 2 _

	

A = , B = .
For larger values of n, the equations become very cumbersome to handle .

2 . We shall prove the following :

THEOREM 1 . k being a fixed integer and n a large integer, if the formula (3)
Is exact for all polynomials of degree <m = m(n) < n for real x j , y,, A , and B
with x„ y, in I -1, 1 ], then m < c h. -\/n inhere c k depends on k only .

A consequence of Theorem 1 is the following result .

2. There exists an integer n„ such that for n > n o no formula (3) can
be valid for every polynomial f (x) of degree <n + k with real

Y1, y2, . . . , yk, x1, x2, . •

	

, xn-k

in [-1, 1] .

We assume in our proof of Theorem 1 that the x i and y j are in [-1, 1],
but we can also prove it without assuming this . It suffices to assume that they
are real . The proof of this stronger statement follows the same lines but is a
bit more complicated .

For the proof of Theorem 1, we need the following lemmas .

LEMMA 1 . (2, p . 529). For the fundamental polynomials l kn (x) of Lagrange
interpolation formed upon any n points x, < x 2 < . . . < xn , we have

(4)

	

lkn (x) + lk+1,,, (x)

	

1

for x, < x < xk+i .
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It follows from this lemma that for every x o with x k < xo < xk+1, we have

(5)

	

either lkn (x o ) > 2 or lk+l,n(xo)

	

z •
From a theorem of Fejér (3), we know that when ~1, ~2, . . . , n are the

Tchebyeheff abscissas (zeros of 7'n(X) = cos no, cos B = x), we have

whence
(7)

	

lin (x)I < V/2

	

(i = 1, 2, . . . , n ; -1 < x < 1) .

LEMMA 2. Given an integer m sufficiently large and points xo, y1, Y2	yk
in [-1, 1], such that

xo = 1 - c1/m 2 ,

	

xo - y i j > c 2/m 2

	

(i = 1, 2, . . . , k),

c l , c 2 being some positive constants independent of m, there exist constants c 3i c 4
depending on c 1 , c2, and k, and a polynomial P m (x) of degree <m, with the
following properties :

(i) 0 < P .n, (x) < a" for -1
(ü) Pm(xo) = 1,
(iii) Pm (yi) = 0, i = i, 2, . . . . k,
(iv) Pin(X) < 2 if Ixp - xI > c3/m 2 ,

and

(v)
f

1 Pm(x)dx < c 4/m 2 .
1

Proof. It is enough to prove the result for k = 1 . For if PJ,, i ( x) is a poly-
nomial of degree 17 = [m/k] with properties (ü), (iv), and (v) and with
PM , i (y i) = 0 and 0 < P M , i (x) < a for -1 < x < i instead of (i) and (iii),
then we consider the polynomial

n

(6 )

	

u lin2 (x) < 2
i=1

< x < 1, a independent of m,

k
P(x) = 11 PM.i(x)

i l

which is of degree <m. It is clear that P(x) possesses properties (i)-(iv), and
since P .,r , l (x) (i = 1, 2, . . . , k) are non-negative, we have

(g)

	

f
P1 (x) = í 1 FP,,, i (x)dx

1

	

1 i=1

k-1

	

1
max Pm, i (x)

f
Pm , k (x)dx

i=1 -1<x<1

	

1

< C;/1172 < Co/m2 .
We may therefore take k = i in the lemma. Set

(9)

	

Pm(x) = C7 (x - yl)2 Y,.W)4 ,
(xo - y1)



where 1Dm (x) is the fundamental polynomial of Lagrange interpolation on
Tchebycheff abscissas (-1 < ~m <

	

< . . . ~1 < 1) given by
2j-1

7r,

	

1,2, . . .,m .= cos 2m

	

'
Put ~o = 1 and ~,+1 = - 1 . Then

(10)

	

1'.(X) =
	 T,n(x)	

(x - ~,) Zm' (~,)

We shall show that P,,,(x) is the polynomial required . Since x o = 1 - Cl/m2 ,
we may suppose that ~,+i < x o < ~, for some finite p, p independent of m.
By Lemma 1 and the remark following it, either 1P ,,,(x o ) 2 or 1,+i .m(xo) > 122-

Let 1, (x o ) > 2, to be precise . Using (7), we can fix a constant C$ < 4 such
that

(11)

	

P.(xo) = Cs (lym(xo)) = 1 .

Thus P,(x) satisfies (ü) and (iii) . To prove that P.(x) satisfies (i) and (iv),
we observe that if Ix - y l l < Ixo - yi , we have

(12)

	

P n (x) < C s (1, (x)) < 16 .

If ~x - yij > Ix o - yll we shall still show that Pm (x) is bounded . For if
~i+i < y i < ~ j , then from (10), we have for ~,+i < x < ~,, the inequality

(13)

	

~1Pm(x)~ < m

2m

Also for ~,+i < x < ~,, we have

1	 1/
(1
- rp 2)

Ss - sp

(14)	(x- yi) 2

	

( +I- ~X

	

(1 -
(xo - yj) 2 < -(xo - Y1) - < (C,>lm
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sin 2P - 1 ',2m

	

Co
s-P

	

I S+P
2m

	

a	 -1 < (s-P)sin	 7r

	

I sin
'Int

2s+ 1

	

}= Cio m sin 2m- 7 = Cii s .~

Thus we have for Ix - y,J > 1xo - y i ;,

(15)

	

P., (x) < 4

	

Cs

	

. C I I S 4 _ Cr2S4 8 <	 C13

((S -P)2

	

(S - P)

	

(S-P)

We can now prove part (iv) of the lemma . Namely, the constant C 3 can be
taken so large that for all x such that Ixo - xj > C3/m2 inequality (15) will
hold, and with such a large s that the right-hand member of (15) will be < 2 .
Also, combining (15) and (12) we prove part (i) of the lemma with
a = max(16, C,,) .



W56

where

and

Is ., - s .,+1j (1 _ ,+ 1)
>

	

C,9 111

	

s

	

C-10I, < C7

	

(

	

~

s - P)~ (xo - yl) < m"

	

(s - p)11 <
ni° .

Combining all these estimates for Ii , I_, 1 3 , and 14, we see at once that Property
(iv) is verified . This completes the proof of Lemma 2 .

LFMMA 3. If Q(x) is a polynomial of degree m, non-negative in -1 < x < 1,
and i/• Q ,(x o) = I for some x0 in [-1, 1], then
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To prove (v) we observe that
1(~

I = J Pra(x)dx = Ii + 12 + 13 + I4,
1

I i - Z f ,s
P.(x)dx

	

12 = J

p
P.(x)dx,

—o

	

#s+i

	

En+i

sa-1

	

(~

	

m

	

~s

I3 =

	

J

	

Pm (x)dx,

	

14 -

	

P„ (x) dx .e'=p+1

	

S=80 f~ s +i
Here s o is the largest value of s for which 1s, - y,J < Ixo - y i l . Since

2s-I

	

2s +1
COS --

2
m a - cos 2m 7r

we have, using the definition (9) of P (x),

Il < C7 1E , C94
(s

	

~4I . .( ~~ 3/ i ~„

)

2

C7 C94 Cl ; P-1

	

S

	

2i + I-

	

- •	
2

	

m sin -
C3

	

--- ~r
In =o (s - P)"

	

2m

C15
p-1 I

	

S

	

C16

m - • .=o (s - p)

	

m 2 .

Siiililarly,

(1- SV+1)

	

C17
12 <

	

s~i+i
(

	

yl)= <
ni-

xa -

L < C-

	

~ '-- ,+1
< --—p+

	

3
3 V ~~

	

8 V 2>
1 (s - P)

	

M 2

1
(. )dx > 2m2

<Clam
s

This is an immediate consequence of Bernstein's inequality regarding
derivatives of a polynomial of degree m.



we see at once from (3) that B > 0 .
Consider now the k + 1 intervals
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3. Proof of Theorem 1 . We shall show that if we allow m > Ut where
-l1 = [a 1/n], a and t being sufficiently large constants, we arrive at a
contradiction .
Taking f (x) to be a polynomial

k

P2k(x) _
i=1

iC

	

(i - 1)Cl
1- 2 ,1---.

	

>

(x - yi) 2,

i = 1,2, . . . .k+ 1,

where C is sufficiently large . Denote the ith interval by I i . Then there is at
least one of the intervals, I ; (sav), which is free of the k points y 1 , Y2	y k .

Denote the middle half of I; by I', so that I' is

C1

	

411 C, 1 - I	1121P

	

C) .

We consider now two possibilities :
(i) there is no x i in I',
(ü) there is at least one x i in I' .

In case (i), we take x o to be the middle point of I' . Then one can easily see
that there exist constants C, and C 2 such that

x„ = 1 - C,/111 2 and !x o - yip > C21-11' for b* = 1, 2,

	

k.

"Then by Lemma 2, there exists a non-negative polynomial P M (x) of degree
JI which satisfies the conditions (i)-(v) of Lemma 2 . By the quadrature
formula (3), we have

1

	

n-k

	

C4P n,,(x)dx = B

	

P,,,(x i ) <

	

,
J-, 1

	

i=i

	

1<I

where the inequality follows front Lemma 2, (v) .
Since P,,(x ( ,) = 1, we have by Lemma 3

1
1'r(x)dx >1-, 1

	

2.11> ,

so that for a suitable constant a between C4 and 2, we have
n-h'

13

	

PV(xi) _
i=1

	

-1I-

Again using (3) and Property (iv) of Lemma 2, we have

(P',,(x))'dx = 13
-1

n-1r

	

n-k
(X i »' < B

	

(X

	

1)1 1,
i=1

	

i=1



1

	

~- 1/ a-i

21hí2 < 11C'

	

'

which is impossible for t sufficiently large . Thus we cannot have case (i) . Thus
there is at least one x i (say x l ) in P, and there exist constants C 1 and C 2 such
that

x, = 1 - C 11 112 and ~x 1 - y iI > C2/11 2 ,

	

i = 1, 2, . . . , k .

Then there exists a polynomial P,,r (x) of Leinnla 2 . As in case (i), we have
1

	

n -k

P,(x)dx = B Z PM(xi) < Cz .. -1

	

i-1

	

L7

Since by Property (ü) of Leni na 2, P,, r (x i ) = 1, we have

R < C4 /111-2 < C 4 1a 2n (since 1I = [a 1/n]) .
I lowever, taking

= P2A- (x) _ 11 (.~
,C -

yi)
2

f(- )
i=1

111 ( .i), WC have ~P2h(x)1 < 2 2k 111

	

1), so that

cx,, - f 1

	

n-k

P •2 k (x)dx I3

	

< Ca
(n

	

k)2
0
"k <

C4
',-

1

	

=1

	

a n

	

<1

„-hick is impossible if a > (C4 2 2k/a x-) ` .

This contradiction completes the proof of the theorem .

4 . By a modification of our method we can show that not all the x i 's can be
real if the quadrature formula is to hold . We do not know if the order of to
given by Theorem I is the best possible . It would be interesting to find a
numerical value for the n o whose existence is claimed in Theorem 2 . Another
interesting problem which calls for attention is the study of the modified
Tchebychef quadrature problem when some weight-function is used in formula
(3) . It would also be interesting to inquire into the nature of n o as a function
of k .
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while Lemma 3 gives
1

"dx
J 1 (Paz(x)) >

2112i2
;

whence we have
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