ON TCHEBYCHEFF QUADRATURE

PAUL ERDÖS AND A. SHARMA

1. Tchebycheff proposed the problem of finding n + 1 constants A, x_1, x_2, \ldots, x_n $(-1 \le x_1 < x_2 < \ldots < x_n \le +1)$ such that the formula

(1)
$$\int_{-1}^{1} f(x) dx = A \sum_{i=1}^{n} f(x_i)$$

is exact for all algebraic polynomials of degree $\leq n$. In this case it is clear that A = 2/n. Later S. Bernstein (1) proved that for $n \geq 10$ not all the x_i 's can be real. For a history of the problem and for more references see Natanson (4). However, we know that for suitable A_i , the formula

(2)
$$\int_{-1}^{1} f(x) dx = \sum_{i=1}^{n} A_{i} f(\xi_{i})$$

is exact for all polynomials of degree $\leq 2n - 1$ and that all the ξ_i 's are real. Indeed the ξ_i 's are the zeros of the Legendre polynomials $P_n(x)$ of degree n and all the A_i 's are non-negative.

Thus one observes that if one determines n + 1 constants as in the Tchebycheff case, there exists a number n_0 (in this case $n_0 = 10$) such that not all the x_i 's are real for $n > n_0$. However, if we allow ourselves more freedom, as in the Gauss quadrature case of formula (2), there is no number n_0 such that for $n > n_0$ some of the ξ_i 's must become imaginary, since in this case all the ξ_i 's turn out to be real and lie in [-1, 1].

Two questions arise naturally in this connection. We formulate them as follows:

PROBLEM 1. Given a fixed integer k, we wish to determine n + k + 1 $(n \ge k + 2)$ constants $A_i, y_i (i = 1, 2, ..., k), x_j (j = 1, 2, ..., n - k)$, and B so that the formula

(3)
$$\int_{-1}^{1} f(x) dx = \sum_{i=1}^{k} A_{i} f(y_{i}) + B \sum_{j=1}^{n-k} f(x_{j})$$

is exact for all polynomials of degree $\leq n + k$. We require the y_i 's and x_j 's to be in [-1, 1]. Does there exist a number n_0 such that for $n > n_0$ the formula (3) is no longer valid?

PROBLEM 2. If for every n, the formula (3) is only required to be valid for all polynomials of degree m = m(n) < n, what is the order of m(n)?

The object of this paper is to show that in Problem 2, $m(n) = O(\sqrt{n})$, whence it is clear that the answer to Problem 1 is in the affirmative.

Received May 19, 1964.

When n = k or k + 1, Problem 1 has a negative answer as is seen by the Gauss quadrature formula. For k = 0, the answer to Problem 1 is known and is due to Bernstein. But Problem 2 does not seem to have been formulated even for k = 0.

If k = 1, one can determine the constants in (3) easily when n = 2 or 3. When n = 2, one has the system of equations

$$A + B = 2,$$

$$Ay_1 + Bx_1 = 0,$$

$$Ay_1^2 + Bx_1^2 = \frac{2}{3},$$

$$Ay_1^3 + Bx_1^3 = 0,$$

which have the solution A = B = 1, $x_1 = -y_1 = 1/\sqrt{3}$. Also when k = 1, n = 3, we have the system of equations

$$A + 2B = 2,$$

$$Ay_1 + B(x_1 + x_2) = 0,$$

$$Ay_1^2 + B(x_1^2 + x_2^2) = \frac{2}{3},$$

$$Ay_1^3 + B(x_1^3 + x_3^3) = 0,$$

$$Ay_1^4 + B(x_1^4 + x_2^4) = \frac{2}{5},$$

which have a solution, viz. $y_1 = 0$, $x_1 = -x_2 = \sqrt{\frac{3}{5}}$, $A = \frac{8}{9}$, $B = \frac{5}{9}$.

For larger values of n, the equations become very cumbersome to handle.

2. We shall prove the following:

THEOREM 1. k being a fixed integer and n a large integer, if the formula (3) is exact for all polynomials of degree $\leq m = m(n) < n$ for real x_i, y_i, A_i , and B with x_i, y_i in [-1, 1], then $m \leq c_k \sqrt{n}$ where c_k depends on k only.

A consequence of Theorem 1 is the following result.

THEOREM 2. There exists an integer n_0 such that for $n > n_0$ no formula (3) can be valid for every polynomial f(x) of degree $\leq n + k$ with real

 $y_1, y_2, \ldots, y_k, x_1, x_2, \ldots, x_{n-k}$

in [-1, 1].

We assume in our proof of Theorem 1 that the x_i and y_i are in [-1, 1], but we can also prove it without assuming this. It suffices to assume that they are real. The proof of this stronger statement follows the same lines but is a bit more complicated.

For the proof of Theorem 1, we need the following lemmas.

LEMMA 1. (2, p. 529). For the fundamental polynomials $l_{kn}(x)$ of Lagrange interpolation formed upon any n points $x_1 < x_2 < \ldots < x_n$, we have

$$l_{kn}(x) + l_{k+1,n}(x) \ge 1$$

for $x_k \leq x \leq x_{k+1}$.

It follows from this lemma that for every x_0 with $x_k \leq x_0 \leq x_{k+1}$, we have

(5) either
$$l_{kn}(x_0) \ge \frac{1}{2}$$
 or $l_{k+1,n}(x_0) \ge \frac{1}{2}$.

From a theorem of Fejér (3), we know that when $\xi_1, \xi_2, \ldots, \xi_n$ are the Tchebycheff abscissas (zeros of $T_n(x) = \cos n\theta$, $\cos \theta = x$), we have

(6)
$$\sum_{i=1}^{n} l_{in}^{2}(x) \leqslant 2$$

whence

(7)
$$|l_{in}(x)| \leq \sqrt{2}$$
 $(i = 1, 2, ..., n; -1 \leq x \leq 1).$

LEMMA 2. Given an integer m sufficiently large and points $x_0, y_1, y_2, \ldots, y_k$ in [-1, 1], such that

$$x_0 = 1 - c_1/m^2$$
, $|x_0 - y_i| > c_2/m^2$ $(i = 1, 2, ..., k)$,

 c_1, c_2 being some positive constants independent of m, there exist constants c_3, c_4 depending on c_1, c_2 , and k, and a polynomial $P_m(x)$ of degree $\leq m$, with the following properties:

(i) 0 ≤ P_m(x) ≤ α^k for -1 ≤ x ≤ 1, α independent of m,
(ii) P_m(x₀) = 1,
(iii) P_m(y_i) = 0, i = 1, 2, ..., k,
(iv) P_m(x) < ½ if |x₀ - x| > c₃/m²,

and

(v)
$$\int_{-1}^{1} P_m(x) dx < c_4/m^2$$
.

Proof. It is enough to prove the result for k = 1. For if $P_{M,i}(x)$ is a polynomial of degree M = [m/k] with properties (ii), (iv), and (v) and with $P_{M,i}(y_i) = 0$ and $0 < P_{M,i}(x) \leq \alpha$ for $-1 \leq x \leq 1$ instead of (i) and (iii), then we consider the polynomial

$$P(x) = \prod_{i=1}^{k} P_{M,i}(x)$$

which is of degree $\leq m$. It is clear that P(x) possesses properties (i)-(iv), and since $P_{M,i}(x)$ (i = 1, 2, ..., k) are non-negative, we have

(8)
$$\int_{-1}^{1} P(x) = \int_{-1}^{1} \prod_{i=1}^{k} P_{M,i}(x) dx$$
$$\leqslant \prod_{i=1}^{k-1} \max_{-1 \leqslant x \leqslant 1} P_{M,i}(x) \int_{-1}^{1} P_{M,k}(x) dx$$
$$\leqslant C_{5}/M^{2} \leqslant C_{6}/m^{2}.$$

We may therefore take k = 1 in the lemma. Set

(9)
$$P_m(x) = C_7 \frac{(x-y_1)^2}{(x_0-y_1)^2} (l_{pm}(x))^4,$$

where $l_{pm}(x)$ is the fundamental polynomial of Lagrange interpolation on Tchebycheff abscissas $(-1 < \xi_m < \xi_{m-1} < \ldots \xi_1 < 1)$ given by

$$\xi_j = \cos \frac{2j-1}{2m} \pi, \quad j = 1, 2, \dots, m.$$

Put $\xi_0 = 1$ and $\xi_{m+1} = -1$. Then

(10)
$$l_{pm}(x) = \frac{T_m(x)}{(x - \xi_p)T_m'(\xi_p)}.$$

We shall show that $P_m(x)$ is the polynomial required. Since $x_0 = 1 - C_1/m^2$, we may suppose that $\xi_{p+1} \leq x_0 \leq \xi_p$ for some finite p, p independent of m. By Lemma 1 and the remark following it, either $l_{pm}(x_0) \geq \frac{1}{2}$ or $l_{p+1,m}(x_0) \geq \frac{1}{2}$. Let $l_{pm}(x_0) \geq \frac{1}{2}$, to be precise. Using (7), we can fix a constant $C_8 \leq 4$ such that

(11)
$$P_m(x_0) = C_8 (l_{pm}(x_0)) = 1.$$

Thus $P_m(x)$ satisfies (ii) and (iii). To prove that $P_m(x)$ satisfies (i) and (iv), we observe that if $|x - y_1| \leq |x_0 - y_1|$, we have

(12)
$$P_m(x) \leqslant C_8 (l_{pm}(x)) \leqslant 16.$$

If $|x - y_1| > |x_0 - y_1|$ we shall still show that $P_m(x)$ is bounded. For if $\xi_{i+1} \leq y_1 \leq \xi_i$, then from (10), we have for $\xi_{s+1} \leq x \leq \xi_s$, the inequality

(13)
$$|l_{pm}(x)| \leq \frac{1}{m|\xi_s - \xi_p|} \cdot \sqrt{(1 - \xi_p^2)}$$

= $\frac{\left|\sin\frac{2p - 1}{2m}\pi\right|}{2m\left|\sin\frac{s - p}{2m}\pi\right| \left|\sin\frac{s + p - 1}{2m}\pi\right|} \leq \frac{C_9}{(s - p)^2} \cdot$

Also for $\xi_{s+1} \leq x \leq \xi_s$, we have

(14)
$$\frac{(x-y_1)^2}{(x_0-y_1)^2} \leqslant \frac{(\xi_{s+1}-\xi_i)^2}{(x_0-y_1)^2} \leqslant \frac{(1-\xi_{s+1})^2}{(C_2/m^2)^2} = C_{10} \left(m \sin \frac{2s+1}{2m} \pi\right)^4 = C_{11} \cdot s^4.$$

Thus we have for $|x - y_1| > |x_0 - y_1|$,

(15)
$$P_m(x) \leqslant 4 \left(\frac{C_9}{(s-p)^2} \right)^4 \cdot C_{11} s^4 = \frac{C_{12} s^4}{(s-p)^8} \leqslant \frac{C_{13}}{(s-p)^4} .$$

We can now prove part (iv) of the lemma. Namely, the constant C_3 can be taken so large that for all x such that $|x_0 - x| > C_3/m^2$ inequality (15) will hold, and with such a large s that the right-hand member of (15) will be $\leq \frac{1}{2}$. Also, combining (15) and (12) we prove part (i) of the lemma with $\alpha = \max(16, C_{13})$. To prove (v) we observe that

$$I = \int_{-1}^{1} P_m(x) dx = I_1 + I_2 + I_3 + I_4,$$

where

$$I_{1} = \sum_{s=0}^{p-1} \int_{\xi_{s+1}}^{\xi_{s}} P_{m}(x)dx, \qquad I_{2} = \int_{\xi_{p+1}}^{\xi_{p}} P_{m}(x)dx,$$
$$I_{3} = \sum_{s=p+1}^{\xi_{0}-1} \int_{\xi_{s+1}}^{\xi_{s}} P_{m}(x)dx, \qquad I_{4} = \sum_{s=\xi_{0}}^{m} \int_{\xi_{s+1}}^{\xi_{s}} P_{m}(x)dx.$$

Here s_0 is the largest value of s for which $|\xi_s - y_1| < |x_0 - y_1|$. Since

$$|\xi_s - \xi_{s+1}| = \left|\cos\frac{2s-1}{2m} \pi - \cos\frac{2s+1}{2m} \pi\right| \leq C_{14} \cdot \frac{s}{m^2},$$

we have, using the definition (9) of $P_m(x)$,

$$I_{1} \leqslant C_{7} \sum_{s=0}^{p-1} C_{9}^{4} \frac{|\xi_{s} - \xi_{s+1}|}{(s-p)^{8}} \cdot \frac{(1-\xi_{i+1})^{2}}{(C_{3}/m^{2})^{2}}$$
$$\leqslant \frac{C_{7} C_{9}^{4}}{C_{3}^{2}} \cdot \frac{C_{14}}{m^{2}} \sum_{s=0}^{p-1} \frac{s}{(s-p)^{8}} \cdot \left(m \sin \frac{2i+1}{2m} \pi\right)^{4}$$
$$\leqslant \frac{C_{15}}{m^{2}} \sum_{s=0}^{p-1} \frac{s}{(s-p)^{8}} \leqslant \frac{C_{16}}{m^{2}}.$$

Similarly,

$$I_{2} \leqslant 4|\xi_{p} - \xi_{p+1}| \cdot \frac{(1 - \xi_{p+1})^{2}}{(x_{0} - y_{1})^{2}} \leqslant \frac{C_{17}}{m^{2}},$$
$$I_{3} \leqslant C_{7} \sum_{s=p+1}^{s_{0}-1} \frac{|\xi_{s} - \xi_{s+1}|}{(s - p)^{8}} \leqslant \frac{C_{18}}{m^{2}},$$

and

$$I_4 \leqslant C_7 \sum_{s=s_0}^m \frac{|\xi_s - \xi_{s+1}|}{(s-p)^8} \cdot \frac{(1-\xi_{s+1})^2}{(x_0 - y_1)^2} \leqslant \frac{C_{19}}{m^2} \sum_{s=s_0}^m \frac{s^5}{(s-p)^8} \leqslant \frac{C_{20}}{m^2}.$$

Combining all these estimates for I_1 , I_2 , I_3 , and I_4 , we see at once that Property (iv) is verified. This completes the proof of Lemma 2.

LEMMA 3. If $Q_m(x)$ is a polynomial of degree m, non-negative in $-1 \le x \le 1$, and if $Q_m(x_0) = 1$ for some x_0 in [-1, 1], then

$$\int_{-1}^1 Q_m(x) dx \geqslant \frac{1}{2m^2}.$$

This is an immediate consequence of Bernstein's inequality regarding derivatives of a polynomial of degree m.

656

3. Proof of Theorem 1. We shall show that if we allow m > Mt where $M = [a\sqrt{n}]$, a and t being sufficiently large constants, we arrive at a contradiction.

Taking f(x) to be a polynomial

$$P_{2k}(x) = \prod_{i=1}^{k} (x - y_i)^2,$$

we see at once from (3) that B > 0.

Consider now the k + 1 intervals

$$\left(1-\frac{iC}{M^2},1-\frac{(i-1)C}{M^2}\right), \quad i=1,2,\ldots,k+1,$$

where *C* is sufficiently large. Denote the *i*th interval by I_i . Then there is at least one of the intervals, I_j (say), which is free of the *k* points y_1, y_2, \ldots, y_k . Denote the middle half of I_j by I', so that I' is

$$\left(1 - \frac{4j-1}{4M^2}C, 1 - \frac{4j-3}{4M^2}C\right).$$

We consider now two possibilities:

(i) there is no x_i in I',

(ii) there is at least one x_i in I'.

In case (i), we take x_0 to be the middle point of I'. Then one can easily see that there exist constants C_1 and C_2 such that

$$x_0 = 1 - C_1/M^2$$
 and $|x_0 - y_i| > C_2/M^2$ for $i = 1, 2, ..., k$.

Then by Lemma 2, there exists a non-negative polynomial $P_M(x)$ of degree M which satisfies the conditions (i)-(v) of Lemma 2. By the quadrature formula (3), we have

$$\int_{-1}^{1} P_M(x) dx = B \sum_{i=1}^{n-k} P_M(x_i) < \frac{C_4}{M^2},$$

where the inequality follows from Lemma 2, (v).

Since $P_M(x_0) = 1$, we have by Lemma 3

$$\int_{-1}^{1} P_M(x) dx > \frac{1}{2M^2} \,,$$

so that for a suitable constant λ between C_4 and $\frac{1}{2}$, we have

$$B \sum_{i=1}^{n-k} P_M(x_i) = \frac{\lambda}{M^2}.$$

Again using (3) and Property (iv) of Lemma 2, we have

$$\int_{-1}^{1} (P_M(x))^t dx = B \sum_{i=1}^{n-k} (P_M(x_i))^t < B \sum_{i=1}^{n-k} P_M(x_i) (\frac{1}{2})^{t-1},$$

while Lemma 3 gives

$$\int_{-1}^{1} (P_M(x))^t dx > \frac{1}{2M^2 t^2};$$

whence we have

$$\frac{1}{2M^2t^2} < \frac{\lambda}{M^2} \left(\frac{1}{2}\right)^{t-1},$$

which is impossible for t sufficiently large. Thus we cannot have case (i). Thus there is at least one x_i (say x_1) in I', and there exist constants C_1 and C_2 such that

$$x_1 = 1 - C_1/M^2$$
 and $|x_1 - y_i| > C_2/M^2$, $i = 1, 2, ..., k$.

Then there exists a polynomial $P_M(x)$ of Lemma 2. As in case (i), we have

$$\int_{-1}^{1} P_M(x) dx = B \sum_{i=1}^{n-k} P_M(x_i) < \frac{C_4}{M^2}.$$

Since by Property (ii) of Lemma 2, $P_M(x_i) = 1$, we have

$$B < C_4/M^2 < C_4/a^2 n$$
 (since $M = [a \sqrt{n}]$).

However, taking

$$f(x) = P_{2k}(x) = \prod_{i=1}^{k} (x - y_i)^2$$

in (3), we have $|P_{2k}(x)| \leq 2^{2k}$ in (-1, 1), so that

$$\alpha_{k} = \int_{-1}^{1} P_{2k}(x) dx = B \sum_{i=1}^{n-k} P_{2k}(x_{i}) < \frac{C_{4}}{a^{2}n} (n-k) 2^{2k} < \frac{C_{4}}{a^{2}} \cdot 2^{2k},$$

which is impossible if $a > (C_4 2^{2k} / \alpha_k)^{\frac{1}{2}}$.

This contradiction completes the proof of the theorem.

4. By a modification of our method we can show that not all the x_i 's can be real if the quadrature formula is to hold. We do not know if the order of m given by Theorem 1 is the best possible. It would be interesting to find a numerical value for the n_0 whose existence is claimed in Theorem 2. Another interesting problem which calls for attention is the study of the modified Tchebycheff quadrature problem when some weight-function is used in formula (3). It would also be interesting to inquire into the nature of n_0 as a function of k.

References

- S. Bernstein, Über die Quadraturformeln von Cotes und Tschebyscheff, Dokl. Akad. Nauk, 14 (1937), 323–327 (Russian).
- P. Erdös and P. Turán, On Interpolation III (Interpolatory Theory of Polynomials), Ann. Math., 41 (3) (1940), 510-553.
- 3. L. Fejér, Mechanische Quadraturen mit Cotesschen Zahlen, Math. Z., 37 (1933), 287-310.
- 4. I. P. Natanson, Konstruktive Funktionentheorie (Berlin, 1955), pp. 466-479.

University of Alberta, Calgary