ON TCHEBYCHEFF QUADRATURE

PAUL ERDÖS AND A. SHARMA

1. Tchebycheff proposed the problem of finding $n+1$ constants $A, x_{1}, x_{2}, \ldots, x_{n}\left(-1 \leqslant x_{1}<x_{2}<\ldots<x_{n} \leqslant+1\right)$ such that the formula

$$
\begin{equation*}
\int_{-1}^{1} f(x) d x=A \sum_{i=1}^{n} f\left(x_{i}\right) \tag{1}
\end{equation*}
$$

is exact for all algebraic polynomials of degree $\leqslant n$. In this case it is clear that $A=2 / n$. Later S. Bernstein (1) proved that for $n \geqslant 10$ not all the x_{i} 's can be real. For a history of the problem and for more references see Natanson (4). However, we know that for suitable A_{i}, the formula

$$
\begin{equation*}
\int_{-1}^{1} f(x) d x=\sum_{i=1}^{n} A_{i} f\left(\xi_{i}\right) \tag{2}
\end{equation*}
$$

is exact for all polynomials of degree $\leqslant 2 n-1$ and that all the ξ_{i} 's are real. Indeed the ξ_{i} 's are the zeros of the Legendre polynomials $P_{n}(x)$ of degree n and all the A_{i} 's are non-negative.

Thus one observes that if one determines $n+1$ constants as in the Tchebycheff case, there exists a number n_{0} (in this case $n_{0}=10$) such that not all the x_{i} 's are real for $n>n_{0}$. However, if we allow ourselves more freedom, as in the Gauss quadrature case of formula (2), there is no number n_{0} such that for $n>n_{0}$ some of the ξ_{i} 's must become imaginary, since in this case all the ξ_{i} 's turn out to be real and lie in $[-1,1]$.

Two questions arise naturally in this connection. We formulate them as follows:

Problem 1. Given a fixed integer k, we wish to determine $n+k+1(n \geqslant k+2)$ constants $A_{i}, y_{i}(i=1,2, \ldots, k), x_{j}(j=1,2, \ldots, n-k)$, and B so that the formula

$$
\begin{equation*}
\int_{-1}^{1} f(x) d x=\sum_{i=1}^{k} A_{i} f\left(y_{i}\right)+B \sum_{j=1}^{n-k} f\left(x_{j}\right) \tag{3}
\end{equation*}
$$

is exact for all polynomials of degree $\leqslant n+k$. We require the y_{i} 's and x_{j} 's to be in $[-1,1]$. Does there exist a number n_{0} such that for $n>n_{0}$ the formula (3) is no longer valid?

Problem 2. If for every n, the formula (3) is only required to be valid for all polynomials of degree $m=m(n)<n$, what is the order of $m(n)$?

The object of this paper is to show that in Problem 2, $m(n)=O(\sqrt{ } n)$, whence it is clear that the answer to Problem 1 is in the affirmative.

[^0]When $n=k$ or $k+1$, Problem 1 has a negative answer as is seen by the Gauss quadrature formula. For $k=0$, the answer to Problem 1 is known and is due to Bernstein. But Problem 2 does not seem to have been formulated even for $k=0$.

If $k=1$, one can determine the constants in (3) easily when $n=2$ or 3 . When $n=2$, one has the system of equations

$$
\begin{gathered}
A+B=2, \\
A y_{1}+B x_{1}=0, \\
A y_{1}^{2}+B x_{1}^{2}=\frac{2}{3}, \\
A y_{1}^{3}+B x_{1}^{3}=0,
\end{gathered}
$$

which have the solution $A=B=1, x_{1}=-y_{1}=1 / \sqrt{ } 3$. Also when $k=1$, $n=3$, we have the system of equations

$$
\begin{aligned}
& A+2 B=2, \\
& A y_{1}+B\left(x_{1}+x_{2}\right)=0, \\
& A y_{1}{ }^{2}+B\left(x_{1}{ }^{2}+x_{2}^{2}\right)=\frac{2}{3}, \\
& A y_{1}{ }^{3}+B\left(x_{1}{ }^{3}+x_{3}{ }^{3}\right)=0, \\
& A y_{1}{ }^{4}+B\left(x_{1}^{4}+x_{2}^{4}\right)=\frac{2}{5},
\end{aligned}
$$

which have a solution, viz. $y_{1}=0, x_{1}=-x_{2}=\sqrt{ } \frac{3}{5}, A=\frac{8}{9}, B=\frac{5}{9}$.
For larger values of n, the equations become very cumbersome to handle.
2. We shall prove the following:

Theorem 1. k being a fixed integer and n a large integer, if the formula (3) is exact for all polynomials of degree $\leqslant m=m(n)<n$ for real x_{i}, y_{i}, A_{i}, and B with x_{i}, y_{i} in $[-1,1]$, then $m \leqslant c_{k} \sqrt{ } n$ where c_{k} depends on k only.

A consequence of Theorem 1 is the following result.
Theorem 2. There exists an integer n_{0} such that for $n>n_{0}$ no formula (3) can be valid for every polynomial $f(x)$ of degree $\leqslant n+k$ with real

$$
y_{1}, y_{2}, \ldots, y_{k}, x_{1}, x_{2}, \ldots, x_{n-k}
$$

in $[-1,1]$.
We assume in our proof of Theorem 1 that the x_{i} and y_{i} are in $[-1,1]$, but we can also prove it without assuming this. It suffices to assume that they are real. The proof of this stronger statement follows the same lines but is a bit more complicated.

For the proof of Theorem 1, we need the following lemmas.
Lemma 1. (2, p. 529). For the fundamental polynomials $l_{k n}(x)$ of Lagrange interpolation formed upon any n points $x_{1}<x_{2}<\ldots<x_{n}$, we have

$$
\begin{equation*}
l_{k n}(x)+l_{k+1, n}(x) \geqslant 1 \tag{4}
\end{equation*}
$$

for $x_{k} \leqslant x \leqslant x_{k+1}$.

It follows from this lemma that for every x_{0} with $x_{k} \leqslant x_{0} \leqslant x_{k+1}$, we have

$$
\begin{equation*}
\text { either } l_{k n}\left(x_{0}\right) \geqslant \frac{1}{2} \text { or } l_{k+1, n}\left(x_{0}\right) \geqslant \frac{1}{2} \tag{5}
\end{equation*}
$$

From a theorem of Fejér (3), we know that when $\xi_{1}, \xi_{2}, \ldots, \xi_{n}$ are the Tchebycheff abscissas (zeros of $T_{n}(x)=\cos n \theta, \cos \theta=x$), we have

$$
\begin{equation*}
\sum_{i=1}^{n} l_{i n}{ }^{2}(x) \leqslant 2 \tag{6}
\end{equation*}
$$

whence

$$
\begin{equation*}
\left|l_{\text {in }}(x)\right| \leqslant \sqrt{ } 2 \quad(i=1,2, \ldots, n ;-1 \leqslant x \leqslant 1) \tag{7}
\end{equation*}
$$

Lemma 2. Given an integer m sufficiently large and points $x_{0}, y_{1}, y_{2}, \ldots, y_{k}$ in $[-1,1]$, such that

$$
x_{0}=1-c_{1} / m^{2}, \quad\left|x_{0}-y_{i}\right|>c_{2} / m^{2} \quad(i=1,2, \ldots, k),
$$

c_{1}, c_{2} being some positive constants independent of m, there exist constants c_{3}, c_{4} depending on c_{1}, c_{2}, and k, and a polynomial $P_{m}(x)$ of degree $\leqslant m$, with the following properties:
(i) $0 \leqslant P_{m}(x) \leqslant \alpha^{k}$ for $-1 \leqslant x \leqslant 1, \alpha$ independent of m,
(ii) $P_{m}\left(x_{0}\right)=1$,
(iii) $P_{m}\left(y_{i}\right)=0, i=1,2, \ldots, k$,
(iv) $P_{m}(x)<\frac{1}{2}$ if $\left|x_{0}-x\right|>c_{3} / m^{2}$,
and

$$
\text { (v) } \int_{-1}^{1} P_{m}(x) d x<c_{4} / m^{2}
$$

Proof. It is enough to prove the result for $k=1$. For if $P_{M, i}(x)$ is a polynomial of degree $M=[m / k]$ with properties (ii), (iv), and (v) and with $P_{M, i}\left(y_{i}\right)=0$ and $0<P_{M, i}(x) \leqslant \alpha$ for $-1 \leqslant x \leqslant 1$ instead of (i) and (iii), then we consider the polynomial

$$
P(x)=\prod_{i=1}^{k} P_{M, i}(x)
$$

which is of degree $\leqslant m$. It is clear that $P(x)$ possesses properties (i)-(iv), and since $P_{M, i}(x)(i=1,2, \ldots, k)$ are non-negative, we have

$$
\begin{align*}
\int_{-1}^{1} P(x) & =\int_{-1}^{1} \prod_{i=1}^{k} P_{M, i}(x) d x \tag{8}\\
& \leqslant \prod_{i=1}^{k-1} \max _{-1 \leqslant x \leqslant 1} P_{M, i}(x) \int_{-1}^{1} P_{M, k}(x) d x \\
& \leqslant C_{5} / M^{2} \leqslant C_{6} / \mathrm{m}^{2}
\end{align*}
$$

We may therefore take $k=1$ in the lemma. Set

$$
\begin{equation*}
P_{m}(x)=C_{7} \frac{\left(x-y_{1}\right)^{2}}{\left(x_{0}-y_{1}\right)^{2}}\left(l_{p m}(x)\right)^{4} \tag{9}
\end{equation*}
$$

where $l_{p m}(x)$ is the fundamental polynomial of Lagrange interpolation on Tchebycheff abscissas $\left(-1<\xi_{m}<\xi_{m-1}<\ldots \xi_{1}<1\right)$ given by

$$
\xi_{j}=\cos \frac{2 j-1}{2 m} \pi, \quad j=1,2, \ldots, m .
$$

Put $\xi_{0}=1$ and $\xi_{m+1}=-1$. Then

$$
\begin{equation*}
l_{p m}(x)=\frac{T_{m}(x)}{\left(x-\xi_{p}\right) T_{m}^{\prime}\left(\xi_{p}\right)} . \tag{10}
\end{equation*}
$$

We shall show that $P_{m}(x)$ is the polynomial required. Since $x_{0}=1-C_{1} / m^{2}$, we may suppose that $\xi_{p+1} \leqslant x_{0} \leqslant \xi_{p}$ for some finite p, p independent of m. By Lemma 1 and the remark following it, either $l_{p m}\left(x_{0}\right) \geqslant \frac{1}{2}$ or $l_{p+1, m}\left(x_{0}\right) \geqslant \frac{1}{2}$. Let $l_{p m}\left(x_{0}\right) \geqslant \frac{1}{2}$, to be precise. Using (7), we can fix a constant $C_{8} \leqslant 4$ such that

$$
\begin{equation*}
P_{m}\left(x_{0}\right)=C_{8}\left(l_{p m}\left(x_{0}\right)\right)=1 . \tag{11}
\end{equation*}
$$

Thus $P_{m}(x)$ satisfies (ii) and (iii). To prove that $P_{m}(x)$ satisfies (i) and (iv), we observe that if $\left|x-y_{1}\right| \leqslant\left|x_{0}-y_{1}\right|$, we have

$$
\begin{equation*}
P_{m}(x) \leqslant C_{8}\left(l_{p m}(x)\right) \leqslant 16 . \tag{12}
\end{equation*}
$$

If $\left|x-y_{1}\right|>\left|x_{0}-y_{1}\right|$ we shall still show that $P_{m}(x)$ is bounded. For if $\xi_{i+1} \leqslant y_{1} \leqslant \xi_{i}$, then from (10), we have for $\xi_{s+1} \leqslant x \leqslant \xi_{s}$, the inequality

$$
\begin{align*}
&\left|l_{p m}(x)\right| \leqslant \frac{1}{m\left|\xi_{s}-\xi_{p}\right|} \cdot \sqrt{ }\left(1-\xi_{p}^{2}\right) \tag{13}\\
&=\frac{\left|\sin \frac{2 p-1}{2 m} \pi\right|}{2 m\left|\sin \frac{s-p}{2 m} \pi\right|\left|\sin \frac{s+p-1}{2 m} \pi\right|} \leqslant \frac{C_{9}}{(s-p)^{2}}
\end{align*}
$$

Also for $\xi_{s+1} \leqslant x \leqslant \xi_{s}$, we have

$$
\begin{align*}
& \frac{\left(x-y_{1}\right)^{2}}{\left(x_{0}-y_{1}\right)^{2}} \leqslant \frac{\left(\xi_{s+1}-\xi_{i}\right)^{2}}{\left(x_{0}-y_{1}\right)^{2}} \leqslant \frac{\left(1-\xi_{s+1}\right)^{2}}{\left(C_{2} / m^{2}\right)^{2}} \tag{14}\\
&=C_{10}\left(m \sin \frac{2 s+1}{2 m} \pi\right)^{4}=C_{11} \cdot s^{4}
\end{align*}
$$

Thus we have for $\left|x-y_{1}\right|>\left|x_{0}-y_{1}\right|$,

$$
\begin{equation*}
P_{m}(x) \leqslant 4\left(\frac{C_{9}}{(s-p)^{2}}\right)^{4} \cdot C_{11} s^{4}=\frac{C_{12} s^{4}}{(s-p)^{5}} \leqslant \frac{C_{13}}{(s-p)^{4}} . \tag{15}
\end{equation*}
$$

We can now prove part (iv) of the lemma. Namely, the constant C_{3} can be taken so large that for all x such that $\left|x_{0}-x\right|>C_{3} / m^{2}$ inequality (15) will hold, and with such a large s that the right-hand member of (15) will be $\leqslant \frac{1}{2}$. Also, combining (15) and (12) we prove part (i) of the lemma with $\alpha=\max \left(16, C_{13}\right)$.

To prove (v) we observe that

$$
I=\int_{-1}^{1} P_{m}(x) d x=I_{1}+I_{2}+I_{3}+I_{4}
$$

where

$$
\begin{array}{ll}
I_{1}=\sum_{s=0}^{p-1} \int_{\xi_{s}+1}^{\xi_{s}} P_{m}(x) d x, & I_{2}=\int_{\xi_{p}+1}^{\xi_{p}} P_{m}(x) d x \\
I_{3}=\sum_{s=p+1}^{s_{0}-1} \int_{\xi_{s+1}}^{\xi_{s}} P_{m}(x) d x, & I_{4}=\sum_{s=s_{0}}^{m} \int_{\xi_{s+1}}^{\xi_{s}} P_{m}(x) d x .
\end{array}
$$

Here s_{0} is the largest value of s for which $\left|\xi_{s}-y_{1}\right|<\left|x_{0}-y_{1}\right|$. Since

$$
\left|\xi_{s}-\xi_{s+1}\right|=\left|\cos \frac{2 s-1}{2 m} \pi-\cos \frac{2 s+1}{2 m} \pi\right| \leqslant C_{14} \cdot \frac{s}{m^{2}}
$$

we have, using the definition (9) of $P_{m}(x)$,

$$
\begin{aligned}
I_{1} & \leqslant C_{7} \sum_{s=0}^{p-1} C_{9}{ }^{4} \frac{\left|\xi_{s}-\xi_{s+1}\right|}{(s-p)^{8}} \cdot \frac{\left(1-\xi_{i+1}\right)^{2}}{\left(C_{3} / m^{2}\right)^{2}} \\
& \leqslant \frac{C_{7} C_{9}{ }^{4}}{C_{3}{ }^{2}} \cdot \frac{C_{14}}{m^{2}} \sum_{s=0}^{p-1} \frac{s}{(s-p)^{8}} \cdot\left(m \sin \frac{2 i+1}{2 m} \pi\right)^{4} \\
& \leqslant \frac{C_{15}}{m^{2}}{ }^{p} \sum_{s=0}^{p-1!} \frac{s}{(s-p)^{8}} \leqslant \frac{C_{16}}{m^{2}} .
\end{aligned}
$$

Similarly,

$$
\begin{gathered}
I_{2} \leqslant 4\left|\xi_{p}-\xi_{p+1}\right| \cdot \frac{\left(1-\xi_{p+1}\right)^{2}}{\left(x_{0}-y_{1}\right)^{2}} \leqslant \frac{C_{17}}{m^{2}}, \\
\quad I_{3} \leqslant C_{7} \sum_{s=p+1}^{s_{0}-1} \frac{\left|\xi_{s}-\xi_{s+1}\right|}{(s-p)^{8}} \leqslant \frac{C_{18}}{m^{2}},
\end{gathered}
$$

and

Combining all these estimates for I_{1}, I_{2}, I_{3}, and I_{4}, we see at once that Property (iv) is verified. This completes the proof of Lemma 2.

Lemma 3. If $Q_{m}(x)$ is a polynomial of degree m, non-negative in $-1 \leqslant x \leqslant 1$, and if $Q_{m}\left(x_{0}\right)=1$ for some x_{0} in $[-1,1]$, then

$$
\int_{-1}^{1} Q_{m}(x) d x \geqslant \frac{1}{2 m^{2}}
$$

This is an immediate consequence of Bernstein's inequality regarding derivatives of a polynomial of degree m.
3. Proof of Theorem 1. We shall show that if we allow $m>M t$ where $M=[a \sqrt{ } n], a$ and t being sufficiently large constants, we arrive at a contradiction.

Taking $f(x)$ to be a polynomial

$$
P_{2 k}(x)=\prod_{i=1}^{k}\left(x-y_{i}\right)^{2}
$$

we see at once from (3) that $B>0$.
Consider now the $k+1$ intervals

$$
\left(1-\frac{i C}{M^{2}}, 1-\frac{(i-1) C}{M^{2}}\right), \quad i=1,2, \ldots, k+1
$$

where C is sufficiently large. Denote the i th interval by I_{i}. Then there is at least one of the intervals, I_{j} (say), which is free of the k points $y_{1}, y_{2}, \ldots, y_{k}$. Denote the middle half of I_{j} by I^{\prime}, so that I^{\prime} is

$$
\left(1-\frac{4 j-1}{4 M^{2}} C, 1-\frac{4 j-3}{4 M^{2}} C\right) .
$$

We consider now two possibilities:
(i) there is no x_{i} in I^{\prime},
(ii) there is at least one x_{i} in I^{\prime}.

In case (i), we take x_{0} to be the middle point of I^{\prime}. Then one can easily see that there exist constants C_{1} and C_{2} such that

$$
x_{0}=1-C_{1} / M^{2} \text { and }\left|x_{0}-y_{i}\right|>C_{2} / M^{2} \quad \text { for } i=1,2, \ldots, k .
$$

Then by Lemma 2 , there exists a non-negative polynomial $P_{M}(x)$ of degree M which satisfies the conditions (i)-(v) of Lemma 2. By the quadrature formula (3), we have

$$
\int_{-1}^{1} P_{M}(x) d x=B \sum_{i=1}^{n-k} P_{M}\left(x_{i}\right)<\frac{C_{4}}{M^{2}}
$$

where the inequality follows from Lemma 2 , (v).
Since $P_{M}\left(x_{0}\right)=1$, we have by Lemma 3

$$
\int_{-1}^{1} P_{M}(x) d x>\frac{1}{2 M^{2}},
$$

so that for a suitable constant λ between C_{4} and $\frac{1}{2}$, we have

$$
B \sum_{i=1}^{n-k} P_{M}\left(x_{i}\right)=\frac{\lambda}{M^{2}} .
$$

Again using (3) and Property (iv) of Lemma 2, we have

$$
\int_{-1}^{1}\left(P_{M}(x)\right)^{t} d x=B \sum_{i=1}^{n-k}\left(P_{M}\left(x_{i}\right)\right)^{t}<B \sum_{i=1}^{n-k} P_{M}\left(x_{i}\right)\left(\frac{1}{2}\right)^{t-1},
$$

while Lemma 3 gives

$$
\int_{-1}^{1}\left(P_{M}(x)\right)^{t} d x>\frac{1}{2 M^{2} t^{2}} ;
$$

whence we have

$$
\frac{1}{2 M^{2} t^{2}}<\frac{\lambda}{M^{2}}\left(\frac{1}{2}\right)^{t-1}
$$

which is impossible for t sufficiently large. Thus we cannot have case (i). Thus there is at least one x_{i} (say x_{1}) in I^{\prime}, and there exist constants C_{1} and C_{2} such that

$$
x_{1}=1-C_{1} / M^{2} \quad \text { and } \quad\left|x_{1}-y_{i}\right|>C_{2} / M^{2}, \quad i=1,2, \ldots, k .
$$

Then there exists a polynomial $P_{M}(x)$ of Lemma 2. As in case (i), we have

$$
\int_{-1}^{1} P_{M}(x) d x=B \sum_{i=1}^{n-k} P_{M}\left(x_{i}\right)<\frac{C_{4}}{M^{2}} .
$$

Since by Property (ii) of Lemma $2, P_{M}\left(x_{i}\right)=1$, we have

$$
B<C_{4} / M^{2}<C_{4} / a^{2} n(\text { since } M=[a \sqrt{ } n])
$$

However, taking

$$
f(x)=P_{2 k}(x)=\prod_{i=1}^{k}\left(x-y_{i}\right)^{2}
$$

in (3), we have $\left|P_{2 k}(x)\right| \leqslant 2^{2 k}$ in $(-1,1)$, so that

$$
\alpha_{k}=\int_{-1}^{1} P_{2 k}(x) d x=B \sum_{i=1}^{n-k} P_{2 k}\left(x_{i}\right)<\frac{C_{4}}{a^{2} n}(n-k) 2^{2 k}<\frac{C_{4}}{a^{2}} \cdot 2^{2 k},
$$

which is impossible if $a>\left(C_{4} 2^{2 k} / \alpha_{k}\right)^{\frac{1}{2}}$.
This contradiction completes the proof of the theorem.
4. By a modification of our method we can show that not all the x_{i} 's can be real if the quadrature formula is to hold. We do not know if the order of m given by Theorem 1 is the best possible. It would be interesting to find a numerical value for the n_{0} whose existence is claimed in Theorem 2. Another interesting problem which calls for attention is the study of the modified Tchebycheff quadrature problem when some weight-function is used in formula (3). It would also be interesting to inquire into the nature of n_{0} as a function of k.

References

1. S. Bernstein, Über die Quadraturformeln von Cotes und Tschebyscheff, Dokl. Akad. Nauk, 14 (1937), 323-327 (Russian).
2. P. Erdös and P. Turán, On Interpolation III (Interpolatory Theory of Polynomials), Ann. Math., 41 (3) (1940), 510-553.
3. L. Fejér, Mechanische Quadraturen mit Cotesschen Zahlen, Math. Z., 37 (1933), 287-310.
4. I. P. Natanson, Konstruktive Funktionentheorie (Berlin, 1955), pp. 466-479.

[^0]: Received May 19, 1964.

